1
|
Shi F, Du M, Wang Q, Adu-Frimpong M, Li C, Zhang X, Ji H, Toreniyazov E, Cao X, Wang Q, Xu X. Isoliquiritigenin Containing PH Sensitive Micelles for Enhanced Anti-Colitis Activity. J Pharm Sci 2024; 113:918-929. [PMID: 37777013 DOI: 10.1016/j.xphs.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Isoliquiritigenin (ISL) is known to have a variety of pharmacological activities, but its poor water solubility limits its application. In order to improve the bioavailability of ISL and its anti-colitis activity, this study aims to develop an effective drug delivery system loaded with ISL. In this study, ISL pH-sensitive micelles (ISL-M) were prepared by thin film hydration method. The micellar size (PS), polydispersity index (PDI), electrokinetic potential (ζ-potential), drug loading (DL), encapsulation rate (EE) and other physical parameters were characterized. The storage stability of ISL-M was tested, release in vitro and pharmacokinetic studies in rats were performed, and the anti-inflammatory effect of ISL-M on ulcerative colitis induced by dextran sulfate sodium (DSS) was evaluated. The results showed that PS, PDI, ZP, EE% and DL% of ISL-M were 151.15±1.04 nm, 0.092±0.014, -31.32±0.721 mV, 93.97±1.53 % and 8.42±0.34 %, respectively. Compared with unformulated ISL (F-ISL), the cumulative release rate of ISL-M in the three different media was significantly increased and showed a certain pH sensitivity. The area under drug curve (AUC0-t) and peak concentration (Cmax) of ISL-M group were 2.94 and 4.06 times higher than those of ISL group. In addition, ISL-M is expected to develop new methods for increasing the bioavailability and anti-inflammatory activity of ISL.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qin Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Xinyue Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, PR China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
2
|
Amengual J, Notaro-Roberts L, Nieh MP. Morphological control and modern applications of bicelles. Biophys Chem 2023; 302:107094. [PMID: 37659154 DOI: 10.1016/j.bpc.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Bicellar systems have become popularized as their rich morphology can be applied in biochemistry, physical chemistry, and drug delivery technology. To the biochemical field, bicelles are powerful model membranes for the study of transmembrane protein behavior, membrane transport, and environmental interactions with the cell. Their morphological responses to environmental changes reveal a profound fundamental understanding of physical chemistry related to the principle of self-assembly. Recently, they have also drawn significant attention as theranostic nanocarriers in biopharmaceutical and diagnostic research due to their superior cellular uptake compared to liposomes. It is evident that applications are becoming broader, demanding to understand how the bicelle will form and behave in various environments. To consolidate current works on the bicelle's modern applications, this review will discuss various effects of composition and environmental conditions on the morphology, phase behavior, and stability. Furthermore, various applications such as payload entrapment and polymerization templating are presented to demonstrate their versatility and chemical nature.
Collapse
Affiliation(s)
- Justin Amengual
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States
| | - Luke Notaro-Roberts
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
3
|
Cheng J, Wang L, Guttha V, Haugstad G, Kandimalla KK. Delivery of RNA to the Blood-Brain Barrier Endothelium Using Cationic Bicelles. Pharmaceutics 2023; 15:2086. [PMID: 37631300 PMCID: PMC10459289 DOI: 10.3390/pharmaceutics15082086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction is prevalent in Alzheimer's disease and other neurological disorders. Restoring normal BBB function through RNA therapy is a potential avenue for addressing cerebrovascular changes in these disorders that may lead to cognitive decline. Although lipid nanoparticles have been traditionally used as drug carriers for RNA, bicelles have been emerging as a better alternative because of their higher cellular uptake and superior transfection capabilities. Cationic bicelles composed of DPPC/DC7PC/DOTAP at molar ratios of 63.8/25.0/11.2 were evaluated for the delivery of RNA in polarized hCMEC/D3 monolayers, a widely used BBB cell culture model. RNA-bicelle complexes were formed at five N/P ratios (1:1 to 5:1) by a thin-film hydration method. The RNA-bicelle complexes at N/P ratios of 3:1 and 4:1 exhibited optimal particle characteristics for cellular delivery. The cellular uptake of cationic bicelles laced with 1 mol% DiI-C18 was confirmed by flow cytometry and confocal microscopy. The ability of cationic bicelles (N/P ratio 4:1) to transfect polarized hCMEC/D3 with FITC-labeled control siRNA was tested vis-a-vis commercially available Lipofectamine RNAiMAX. These studies demonstrated the higher transfection efficiency and greater potential of cationic bicelles for RNA delivery to the BBB endothelium.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Lushan Wang
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Vineetha Guttha
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Greg Haugstad
- The Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| |
Collapse
|
4
|
Liu CH, Krueger S, Nieh MP. Synthesis of Polymer Nanoweb via a Lipid Template. ACS Macro Lett 2023:993-998. [PMID: 37406157 DOI: 10.1021/acsmacrolett.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy.
Collapse
Affiliation(s)
- Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standard and Technology, Gaithersburg, Maryland 20899, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Fang JM, Basu S, Phu J, Nieh MP, LoTurco JJ. Cellular Localization, Aggregation, and Cytotoxicity of Bicelle-Quantum Dot Nanocomposites. ACS APPLIED BIO MATERIALS 2023; 6:566-577. [PMID: 36739562 DOI: 10.1021/acsabm.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bicelles are discoidal lipid nanoparticles (LNPs) in which the planar bilayer and curved rim are, respectively, composed of long- and short-chain lipids. Bicellar LNPs have a hydrophobic core, allowing hydrophobic molecules and large molecular complexes such as quantum dots (QDs) to be encapsulated. In this study, CdSe/ZnS QDs were encapsulated in bicelles made of dipalmitoyl phosphatidylcholine, dihexanoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol, and distearoyl phosphatidylethanolamine conjugated with polyethylene glycerol amine 2000 to form a well-defined bicelle-QD nanocomplex (known as NANO2-QD or bicelle-QD). The bicelle-QD was then incubated with Hek293t cells and HeLa cells for different periods of time to determine changes in their cellular localization. Bicelle-QDs readily penetrated Hek293t cell membranes within 15 min of incubation, localized to the cytoplasm, and associated with mitochondria and intracellular vesicles. After 1 h, the bicelle-QDs enter the cell nucleus. Large aggregates form throughout the cell after 2 h and QDs are nearly absent from the nucleus by 4 h. Previous reports have demonstrated that CdSe/ZnS QDs can be toxic to cells, and we have found that encapsulating QDs in bicelles can attenuate but did not eliminate cytotoxicity. The present research outcome demonstrates the time-resolved pathway of bicelle-encapsulated QDs in Hek293t cells, morphological evolution in cells over time, and cytotoxicity of the bicelle-QDs, providing important insight into the potential application of the nanocomplex for cellular imaging.
Collapse
Affiliation(s)
- Justin M Fang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Sayan Basu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Jak Phu
- Department of Biomedical Engineering, SUNY Stony Brook University, Stony Brook, New York11794, United States
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States.,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
6
|
Stable Discoidal Bicelles: Formulation, Characterization, and Functions. Methods Mol Biol 2023; 2622:147-157. [PMID: 36781758 DOI: 10.1007/978-1-0716-2954-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Bicellar mixtures have been used as alignable membrane substrates under a magnetic field applicable for the structural characterization of membrane-associated proteins. Recently, it has shown that bicelles can serve as nanocarriers to effectively deliver hydrophobic therapeutic molecules to cancer cells with a three- to ten-fold enhancement compared to that of liposomes of a chemically identical composition. In this chapter, detailed preparation protocol, common structural characterization methods, the structural stability, the cellular uptake and a few unique functions of bicellar nanodiscs are discussed.
Collapse
|
7
|
Liu CH, Cheu C, Barker JG, Yang L, Nieh MP. Facile polymerization in a bicellar template to produce polymer nano-rings. J Colloid Interface Sci 2023; 630:629-637. [DOI: 10.1016/j.jcis.2022.09.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
|
8
|
Mechanisms of membrane protein crystallization in 'bicelles'. Sci Rep 2022; 12:11109. [PMID: 35773455 PMCID: PMC9246360 DOI: 10.1038/s41598-022-13945-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress, mainly due to the development of LCP and ‘bicelle’ crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the “bicelle” crystallization matrix in the course of MP crystal growth. Initially, the matrix corresponds to liquid-like bicelle state. However, after adding the precipitant, the crystallization matrix transforms to jelly-like state. The data suggest that this final phase is composed of interconnected ribbon-like bilayers, where crystals grow. A small amount of multilamellar phase appears, and its volume increases concomitantly with the volume of growing crystals. We suggest that the lamellar phase surrounds the crystals and is critical for crystal growth, which is also common for LCP crystallization. The study discloses mechanisms of “bicelle” MP crystallization and will support rational design of crystallization.
Collapse
|
9
|
Garcia CR, Rad AT, Saeedinejad F, Manojkumar A, Roy D, Rodrigo H, Chew SA, Rahman Z, Nieh MP, Roy U. Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection. Nanomedicine (Lond) 2022; 17:959-978. [PMID: 35642549 PMCID: PMC9583757 DOI: 10.2217/nnm-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Combination antiretroviral therapy has significantly advanced HIV-1 infection treatment. However, HIV-1 remains persistent in the brain; the inaccessibility of the blood–brain barrier allows for persistent HIV-1 infections and neuroinflammation. Nanotechnology-based drug carriers such as nanodiscoidal bicelles can provide a solution to combat this challenge. Methods This study investigated the safety and extended release of a combination antiretroviral therapy drug (tenofovir)-loaded nanodiscs for HIV-1 treatment in the brain both in vitro and in vivo. Result The nanodiscs entrapped the drug in their interior hydrophobic core and released the payload at the desired location and in a controlled release pattern. The study also included a comparative pharmacokinetic analysis of nanodisc formulations in in vitro and in vivo models. Conclusion The study provides potential applications of nanodiscs for HIV-1 therapy development.
Collapse
Affiliation(s)
- Caroline R Garcia
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Armin T Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA.,Encapsulate, University of Connecticut Technology Incubation Program, Farmington, CT 06032, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Arvind Manojkumar
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Deepa Roy
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hansapani Rodrigo
- Department of Mathematical & Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Upal Roy
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
10
|
Alahmadi I, Hoy D, Tahmasbi Rad A, Patil S, Alahmadi A, Kinnun J, Scott HL, Katsaras J, Nieh MP. Changes Experienced by Low-Concentration Lipid Bicelles as a Function of Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4332-4340. [PMID: 35357197 DOI: 10.1021/acs.langmuir.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Differential scanning calorimetry (DSC) of dipalmitoyl phosphatidylcholine (DPPC), dihexanoyl phosphatidylcholine, and dipalmitoyl phosphatidylglycerol bicelles reveals two endothermic peaks. Based on analysis of small angle neutron scattering and small angle X-ray scattering data, the two DSC peaks are associated with the melting of DPPC and a change in bicellar morphology─namely, either bicelle-to-spherical vesicle or oblate-to-spherical vesicle. The reversibility of the two structural transformations was examined by DSC and found to be consistent with the corresponding small angle scattering data. However, the peak that is not associated with the melting of DPPC does not correspond to any structural transformation for bicelles containing distearoyl phosphatidylethanolamine conjugated with polyethylene glycol. Based on complementary experimental data, we conclude that membrane flexibility, lipid miscibility, and differential solubility between the long- and short-chain lipids in water are important parameters controlling the reversibility of morphologies experienced by the bicelles.
Collapse
Affiliation(s)
- Ibtihal Alahmadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Donyeil Hoy
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sanyukta Patil
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anas Alahmadi
- Department of Electrical Engineering, Technical and Vocational Training Corporation, Riyadh 11472, Saudi Arabia
| | - Jacob Kinnun
- Large Scale Structures Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Haden L Scott
- Large Scale Structures Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Labs and Soft Matter Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Rad AT, Hargrove D, Daneshmandi L, Ramsdell A, Lu X, Nieh MP. Codelivery of Paclitaxel and Parthenolide in Discoidal Bicelles for a Synergistic Anticancer Effect: Structure Matters. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- Encapsulate, University of Connecticut Technology Incubation Program Farmington CT 06032
| | - Derek Hargrove
- School of Pharmacy University of Connecticut Storrs CT 06269 USA
| | - Leila Daneshmandi
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Encapsulate, University of Connecticut Technology Incubation Program Farmington CT 06032
| | - Amanda Ramsdell
- Department of Chemical and Bimolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Xiuling Lu
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- School of Pharmacy University of Connecticut Storrs CT 06269 USA
| | - Mu-Ping Nieh
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- Department of Chemical and Bimolecular Engineering University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
12
|
Rad AT, Bao Y, Jang HS, Xia Y, Sharma H, Dormidontova EE, Zhao J, Arora J, John VT, Tang BZ, Dainese T, Hariri A, Jokerst JV, Maran F, Nieh MP. Aggregation-Enhanced Photoluminescence and Photoacoustics of Atomically Precise Gold Nanoclusters in Lipid Nanodiscs (NANO 2). ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009750. [PMID: 34366760 PMCID: PMC8341053 DOI: 10.1002/adfm.202009750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 05/25/2023]
Abstract
The authors designed a structurally stable nano-in-nano (NANO2) system highly capable of bioimaging via an aggregation-enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SC n H2n+1)18, n = 4-16] encapsulated in discoidal phospholipid bicelles through a one-pot synthesis. The detailed morphological characterization of NANO2 is conducted using cryogenic transmission electron microscopy, small/wide angle X-ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2 is 20-60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near-infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation-enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters' ligands. With the advantages of biocompatibility and high cellular uptake, NANO2 is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yue Bao
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Hyun-Sook Jang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yan Xia
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Hari Sharma
- Department of Physics, University of Connecticut, Storrs, CT 06269, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Physics, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Zhao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Jaspreet Arora
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Tiziano Dainese
- Department of Chemistry, University of Padova, Padova 35131, Italy
| | - Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Flavio Maran
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA, Department of Chemistry, University of Padova, Padova 35131, Italy
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut Storrs, CT 06269, USA; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Bharatiya B, Wang G, Rogers SE, Pedersen JS, Mann S, Briscoe WH. Mixed liposomes containing gram-positive bacteria lipids: Lipoteichoic acid (LTA) induced structural changes. Colloids Surf B Biointerfaces 2021; 199:111551. [PMID: 33387794 DOI: 10.1016/j.colsurfb.2020.111551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022]
Abstract
Lipoteichoic acid (LTA), a surface associated polymer amphiphile tethered directly to the Gram-positive bacterial cytoplasmic membrane, is a key structural and functional membrane component. Its composition in the membrane is regulated by bacteria under different physiological conditions. How such LTA compositional variations modulate the membrane structural stability and integrity is poorly understood. Here, we have investigated structural changes in mixed liposomes mimicking the lipid composition of Gram-positive bacteria membranes, in which the concentration of Bacillus Subtilis LTA was varied between 0-15 mol%. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements indicated formation of mixed unilamellar vesicles, presumably stabilized by the negatively charged LTA polyphosphates. The vesicle size increased with the LTA molar concentration up to ∼6.5 mol%, accompanied by a broadened size distribution, and further increasing the LTA concentration led to a decrease in the vesicle size. At 80 °C, SANS analyses showed the formation of larger vesicles with thinner shells. Complementary Cryo-TEM imaging confirmed the vesicle formation and the size increase with LTA addition, as well as the presence of interconnected spherical aggregates of smaller size at higher LTA concentrations. The results are discussed in light of the steric and electrostatic interactions of the bulky LTA molecules with increased chain fluidity at the higher temperature, which affect the molecular packing and interactions, and thus depend on the LTA composition, in the membrane.
Collapse
Affiliation(s)
- Bhavesh Bharatiya
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Gang Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Building 1590-252, 8000, Aarhus C, Denmark
| | - Stephen Mann
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
14
|
Li M, Heller WT, Liu CH, Gao CY, Cai Y, Hou Y, Nieh MP. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183315. [PMID: 32304755 DOI: 10.1016/j.bbamem.2020.183315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023]
Abstract
The spontaneously formed structures of physiologically relevant lipid model membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1,2-hexanoyl-sn-glycero-3-phosphocholine have been evaluated in depth using small angle neutron scattering. Although a common molar ratio of long- to short- chain phospholipids (~4) as reported in many bicellar mixtures was used, discoidal bicelles were not found as the major phase throughout the range of lipid concentration and temperature studied, indicating that the required condition for the formation of bicelle is the immiscibility between the long- and short- chain lipids, which were in the gel and Lα phases, respectively, in previous reports. In this study, all lipids are in the Lα phase. The characterization outcome suggests that the spontaneous structures tie strongly with the physical parameters of the system such as melting transition temperature of the long-chain lipid, total lipid concentration and charge density of the system. Multilamellar vesicles, unilamellar vesicles, ribbons and perforated lamellae can be obtained based on the analysis of the small angle neutron scattering results, leading to the construction of structural diagrams. This report provides the important map to choose suitable lipid systems for the structural study of membrane-associated proteins, design of theranostic nanocarriers or other related research fields.
Collapse
Affiliation(s)
- Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - Carrie Y Gao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yutian Cai
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Yiming Hou
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs 06269, USA.
| |
Collapse
|
15
|
Formulation of Bicelles Based on Lecithin-Nonionic Surfactant Mixtures. MATERIALS 2020; 13:ma13143066. [PMID: 32659968 PMCID: PMC7412056 DOI: 10.3390/ma13143066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/01/2023]
Abstract
Bicelles have been intensively studied for use as drug delivery carriers and in biological studies, but their preparation with low-cost materials and via a simple process would allow their use for other purposes as well. Herein, bicelles were prepared through a semi-spontaneous method using a mixture of hydrogenated soybean lecithin (SL) and a nonionic surfactant, polyoxyethylene cholesteryl ether (ChEO10), and then we investigated the effect of composition and temperature on the structure of bicelles, which is important to design tailored systems. As the fraction of ChEO10 (XC) was increased, a bimodal particle size distribution with a small particle size of several tens of nanometers and a large particle size of several hundred nanometers was obtained, and only small particles were observed when XC ≥ 0.6, suggesting the formation of significant structure transition (liposomes to bicelles). The small-angle neutron scattering (SANS) spectrum for these particles fitted a core-shell bicelle model, providing further evidence of bicelle formation. A transition from a monomodal to a bimodal size distribution occurred as the temperature was increased, with this transition taking place at lower temperatures when higher SL-ChEO10 concentrations were used. SANS showed that this temperature-dependent size change was reversible, suggesting the SL-ChEO10 bicelles were stable against temperature, hence making them suitable for several applications.
Collapse
|
16
|
Cheu C, Yang L, Nieh MP. Refining internal bilayer structure of bicelles resolved by extended-q small angle X-ray scattering. Chem Phys Lipids 2020; 231:104945. [PMID: 32621811 DOI: 10.1016/j.chemphyslip.2020.104945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 11/15/2022]
Abstract
The internal profile across the bilayer reveals important structural information regarding the crystallinity of acyl chains or the positions of encapsulated species. Here, we demonstrate that a simple five-layer-core-shell discoidal model can be employed to best fit the extended-q small angle X-ray scattering (SAXS) data and resolve the bilayer internal structure (with sub-nanometer resolution) of a nanoscale discoidal system comprised of a mixture of long- and short- chain lipids (known as "bicelles"). In contrast to the traditional core-shell discoidal model, the detailed structure in the hydrophobic core such as the methylene and methyl groups can be distinguished via this model. The refined model is validated by the SAXS data of bicelles whose electron scattering length density of the hydrophobic core is adjusted by the addition of a long-chain lipid with a fluorine-end group. The higher resolution of the bilayer internal structure can be employed to advance our understanding of the interaction and conformation of the membrane and associated molecules, such as membrane-associated proteins and locations of entrapped species in the lipid nanoparticles.
Collapse
Affiliation(s)
- Catherine Cheu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Lin Yang
- Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000, USA
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
17
|
Yang CH, Lin TL, Jeng US. Small-Angle X-ray Scattering Studies on the Structure of Disc-Shaped Bicelles Incorporated with Neutral PEGylated Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9483-9492. [PMID: 31287319 DOI: 10.1021/acs.langmuir.9b00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, small-angle X-ray scattering (SAXS) is successfully employed to investigate the structure of the DPPC/diC7PC disc-shaped bicelles incorporated with different amounts of C16-PEG2000-Ceramide lipids. The incorporation of the C16-PEG2000-Ceramide lipids could provide an antifouling capability to the bicelle for biomedical applications. However, traditionally it is believed that most of the incorporated PEGlylated lipids should lie in the rim of the disc-shaped bicelle. In this study, high sensitivity SAXS reveals the distribution of the added C16-PEG2000-Ceramide lipids in both the planar region and in the rim of the bicelle. The PEG brushes of C16-PEG2000-Ceramide lipids form a second shell outside the lipid headgroup shell of the bicelle. A double shell disc bicelle model is used in analyzing the SAXS data. The lipid density of C16-PEG2000-Ceramide in the rim is found to be about 1.7 times the C16-PEG2000-Ceramide lipid density in the planar region for all three C16-PEG2000-Ceramide concentrations, 1, 2, and 3 mM. Moreover, the bicelle core radius can be predicted well using the actual molecular ratio of lipids in the planar region to the lipids in the rim of the bicelles in the model calculation.
Collapse
Affiliation(s)
- Ching-Hsun Yang
- Department of Engineering and System Science , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| | - Tsang-Lang Lin
- Department of Engineering and System Science , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , No. 101, Hsin-Ann Road, Hsinchu Science Park , Hsinchu , Taiwan 30076 , Republic of China
- Department of Chemical Engineering , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| |
Collapse
|
18
|
Tahmasbi Rad A, Malik S, Yang L, Oberoi-Khanuja TK, Nieh MP, Bahal R. A universal discoidal nanoplatform for the intracellular delivery of PNAs. NANOSCALE 2019; 11:12517-12529. [PMID: 31188378 DOI: 10.1039/c9nr03667a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide nucleic acids (PNAs) have gained considerable attention due to their remarkable potential in gene editing and targeting-based strategies. However, cellular delivery of PNAs remains a challenge in developing their broader therapeutic applications. Here, we investigated a novel complex made of lipid bicelles and PNA-based carriers for the efficient delivery of PNAs. For proof of concept, PNAs targeting microRNA (miR) 210 and 155 were tested. Comprehensive evaluation of positive as well as negative charge-containing bicelles with PNA : lipid ratios of 1 : 100, 1 : 1000, and 1 : 2500 was performed. The negatively charged bicelles with a PNA : lipid molar ratio of 1 : 2500 yielded a discoidal shape with a uniform diameter of ∼30 nm and a bilayer thickness of 5 nm, while the positively charged bicellar system contained irregular vesicles after the incorporation of PNA. Small-angle X-ray scattering (SAXS) analysis was performed to provide insight into how the hydrophobic PNAs interact with bicelles. Further, flow cytometry followed by confocal microscopy analyses substantiate the superior transfection efficiency of bicelles containing dye-conjugated antimiR PNAs. Functional analysis also confirmed miR inhibition by PNA oligomers delivered by bicelles. The nanodiscoidal complex opens a new pathway to deliver PNAs, which, on their own, are a great challenge to be endocytosed into cells.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Shipra Malik
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| | - Lin Yang
- National Synchrotron Light Source - II, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
19
|
Tahmasbi Rad A, Chen CW, Aresh W, Xia Y, Lai PS, Nieh MP. Combinational Effects of Active Targeting, Shape, and Enhanced Permeability and Retention for Cancer Theranostic Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10505-10519. [PMID: 30793580 DOI: 10.1021/acsami.8b21609] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combinatory modulation of the physical and biochemical characteristics of nanocarrier delivery systems is an emergent topic in the field of nanomedicine. Here, we studied the combined effects of incorporation of active targeting moieties into nanocarriers and their morphology affecting the enhanced permeation and retention effect for nanomedicine cancer therapy. Self-assembled lipid discoidal and vesicular nanoparticles with low-polydispersity sub-50 nm size range and identical chemical compositions were synthesized, characterized, and correlated with in vitro cancer cellular internalization, in vivo tumor accumulation and cancer treatments. The fact that folate-associated bicelle yields the best outcome is indicative of the preference for discoidal carriers over spherical carriers and the improved targeting efficacy due to the targeting ligand/receptor binding. The approach is successfully adopted to design the nanocarriers for photodynamic therapy, which yields a consistent trend in in vitro and in vivo efficacy: folate nanodiscs > folate vesicles > nonfolate nanodiscs > nonfolate vesicles. Folate discs not only have shown a higher tumor uptake and photothermal therapeutic efficiency, but also minimize skin photosensitivity side effects. The advantages of nanodiscoidal bicelles as nanocarriers, including well-defined size, robust formation, easy encapsulation of hydrophobic molecules (therapeutics and/or diagnostics), easy incorporation of targeting molecules, and low toxicity, enable the scalable manufacturing of a generalized in vivo multimodal delivery platform.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Polymer Program, Institute of Materials Sciences , University of Connecticut , 191 Auditorium Road , Storrs , Connecticut 06269 , United States
| | - Ching-Wen Chen
- Department of Chemistry , National Chung Hsing University , Taichung 402 , Taiwan , ROC
| | - Wafa Aresh
- Polymer Program, Institute of Materials Sciences , University of Connecticut , 191 Auditorium Road , Storrs , Connecticut 06269 , United States
| | | | - Ping-Shan Lai
- Department of Chemistry , National Chung Hsing University , Taichung 402 , Taiwan , ROC
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Sciences , University of Connecticut , 191 Auditorium Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
20
|
Andersson J, Fuller MA, Wood K, Holt SA, Köper I. A tethered bilayer lipid membrane that mimics microbial membranes. Phys Chem Chem Phys 2018; 20:12958-12969. [DOI: 10.1039/c8cp01346b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work presents a self-assembled lipid bilayer architecture mimicking the outer membrane of Gram negative bacteria.
Collapse
Affiliation(s)
- Jakob Andersson
- Flinders Centre for Nanoscale Science and Technology and College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Melanie A. Fuller
- Flinders Centre for Nanoscale Science and Technology and College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering
- Australian Nuclear Science and Technology Organisation
- Kirrawee DC
- Australia
| | - Stephen A. Holt
- Australian Centre for Neutron Scattering
- Australian Nuclear Science and Technology Organisation
- Kirrawee DC
- Australia
| | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology and College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| |
Collapse
|
21
|
Jang HS. The Diverse Range of Possible Cell Membrane Interactions with Substrates: Drug Delivery, Interfaces and Mobility. Molecules 2017; 22:molecules22122197. [PMID: 29232886 PMCID: PMC6149826 DOI: 10.3390/molecules22122197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The cell membrane has gained significant attention as a platform for the development of bio-inspired nanodevices due to its immune-evasive functionalities and copious bio-analogs. This review will examine several uses of cell membranes such as (i) therapeutic delivery carriers with or without substrates (i.e., nanoparticles and artificial polymers) that have enhanced efficiency regarding copious cargo loading and controlled release, (ii) exploiting nano-bio interfaces in membrane-coated particles from the macro- to the nanoscales, which would help resolve the biomedical issues involved in biological interfacing in the body, and (iii) its effects on the mobility of bio-moieties such as lipids and/or proteins in cell membranes, as discussed from a biophysical perspective. We anticipate that this review will influence both the development of novel anti-phagocytic delivery cargo and address biophysical problems in soft and complex cell membrane.
Collapse
Affiliation(s)
- Hyun-Sook Jang
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea.
| |
Collapse
|
22
|
Aramaki K, Iwata C, Mata J, Maehara T, Aburano D, Sakanishi Y, Kitao K. One-step formulation of nonionic surfactant bicelles (NSBs) by a double-tailed polyglycerol-type nonionic surfactant. Phys Chem Chem Phys 2017; 19:23802-23808. [PMID: 28530285 DOI: 10.1039/c7cp02585h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bicelles are generally formed by phospholipid-based systems and are useful for various applications, such as nanocarriers or membrane protein crystallization. The same disc-like assemblies, nonionic surfactant bicelles (NSBs), can also be formed using nonionic amphiphiles, but this has not been reported extensively. We report a novel NSB system that employs the double-tailed nonionic amphiphile, polyglyceryl dialkyl ether (C12CmGn), which has two alkyl chains and a polyglyceryl group. A symmetric-tail molecule, C12C12G13.8, formed vesicles, whereas an asymmetric-tail molecule, C12C14G15.5, formed NSBs through a simple one-step process using ultrasonication. The 1 wt% aqueous solution of C12C14G15.5 was in a two-phase equilibrium of a lamellar phase and a water phase. Transparent dispersion was obtained through ultrasonication treatment. The size distribution in the dispersion was obtained by dynamic light scattering (DLS), resulting in a narrow distribution of around 20 nm in diameter. A negatively-stained transmission electron microscopy (TEM) image showed oblong and spherical shapes, which are typically observed in bicelle-forming systems. A small angle neutron scattering (SANS) measurement well proved bicelle formation by fitting a core-shell bicelle form factor model. The disc thickness and diameter were in agreement with the values obtained by DLS and TEM, respectively. A larger shell thickness at the rim part than at the flat disc part suggested that NSB aggregates have inhomogeneous molecular distribution. Similar to phospholipid systems, the bicelle-forming C12C14G15.5 system produced a defective lamellar phase formation at high surfactant concentrations, whereas a general lamellar phase was formed in the vesicle-forming C12C12G13.8 system.
Collapse
Affiliation(s)
- Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sharma H, Dormidontova EE. Lipid Nanodisc-Templated Self-Assembly of Gold Nanoparticles into Strings and Rings. ACS NANO 2017; 11:3651-3661. [PMID: 28291322 DOI: 10.1021/acsnano.6b08043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit strong fluorescent and electromagnetic properties, which can be enhanced upon clustering and used in therapeutic, imaging, and sensing applications. A combination of gold nanoparticles with lipid nanodiscs can be attractive for AuNP self-assembly and useful in biomedical applications. Using molecular dynamics simulations we show that lipid nanodiscs can serve as templates for AuNP clustering into rings and string-like structures. We demonstrate that equilibrium encapsulation of 1 nm hydrophobically modified AuNPs into lipid nanodiscs composed of a mixture of dipalmitoylphosphatidylcholine (DPPC) and dihexanoylphosphatidylcholine (DHPC) lipids occurs at the rim and results in formation of a ring of gold. The interior of the nanodisc is inaccessible to AuNPs due to the DPPC liquid crystalline order. With temperature increase the lipid order diminishes, initiating the nanodisc transformation into a vesicle, upon which encapsulated AuNPs cluster into a close-packed string or nanoring, thereby stalling the vesiculation process at a "round vase" or cup-like stage depending on the AuNP concentration. In contrast, encapsulation of AuNPs by an equilibrium lipid vesicle results in its deformation with randomly clustered AuNPs, in agreement with experimental observations. We characterize the AuNP cluster size and surface-to-surface pair distribution, both of which impact the AuNP luminescent properties. We investigate the effect of alkane tether length on the nanodisc stability and AuNP clustering inside the nanodiscs and vesicles. Our results show that lipid nanodiscs can enhance gold cluster formation, which can be further exploited in imaging applications.
Collapse
Affiliation(s)
- Hari Sharma
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Zhang Y, Xuan S, Owoseni O, Omarova M, Li X, Saito ME, He J, McPherson GL, Raghavan SR, Zhang D, John VT. Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2780-2789. [PMID: 28248521 DOI: 10.1021/acs.langmuir.6b04190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the ability of hydrophobically modified polypeptoids (HMPs), which are amphiphilic pseudopeptidic macromolecules, to connect across lipid bilayers and thus form layered structures on liposomes. The HMPs are obtained by attaching hydrophobic decyl groups at random points along the polypeptoid backbone. Although native polypeptoids (with no hydrophobes) have no effect on liposomal structure, the HMPs remodel the unilamellar liposomes into structures with comparable diameters but with multiple concentric bilayers. The transition from single-bilayer to multiple-bilayer structures is revealed by small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). The spacing between bilayers is found to be relatively uniform at ∼6.7 nm. We suggest that the amphiphilic nature of the HMPs explains the formation of multibilayered liposomes; i.e., the HMPs insert their hydrophobic tails into adjacent bilayers and thereby serve as the connective glue between bilayers. At higher HMP concentrations, the liposomes are entirely disrupted into much smaller micellelike structures through extensive hydrophobe insertion. Interestingly, these small structures can reattach to fresh unilamellar liposomes and self-assemble to form new two-bilayer liposomes. The two-bilayer liposomes in our study are reminiscent of two-bilayer organelles such as the nucleus in eukaryotic cells. The observations have significance in designing new nanoscale drug delivery carriers with multiple drugs on separate lipid bilayers and extending liposome circulation times with entirely biocompatible materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | | | | |
Collapse
|
25
|
Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials 2017; 123:118-126. [PMID: 28167390 DOI: 10.1016/j.biomaterials.2017.01.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/19/2017] [Accepted: 01/28/2017] [Indexed: 12/19/2022]
Abstract
Although PEGylated liposomes (PEG-LS) have been intensively studied as drug-delivery vehicles, the rigidity and the hydrophilic PEG corona of liposomal membranes often limits cellular uptake, resulting in insufficient drug delivery to target cells. Thus, it is necessary to develop a new type of lipid-based self-assembled nanoparticles capable of enhanced cellular uptake, tissue penetration, and drug release than conventional PEGylated liposomes. Herein, we describe a simple modification of bicellar formulation in which the addition of a PEGylated phospholipid produced a dramatic physicochemical change in morphology, i.e., the disc-shaped bicelle became a uniformly distributed ultra-small (∼12 nm) spherical micelle. The transformed lipid-based nanoparticles, which we termed hyper-cell-permeable micelles (HCPMi), demonstrated not only prolonged stability in serum but also superior cellular and tumoral uptake compared to a conventional PEGylated liposomal system (PEG-LS). In addition, HCPMi showed rapid cellular uptake and subsequent cargo release into the cytoplasm of cancer cells. Cells treated with HCPMi loaded with docetaxel (DTX) had an IC50 value of 0.16 μM, compared with 0.78 μM with PEG-LS loaded with DTX, a nearly five-fold decrease in cell viability, indicating excellent efficiency in HCPMi uptake and release. In vivo tumor imaging analysis indicated that HCPMi penetrated deep into the tumor core and achieved greater uptake than PEG-LS. Results of HCPMi (DTX) treatment of allograft and xenograft mice in vivo showed high tumoral uptake and appreciable tumor retardation, with ∼70% tumor weight reduction in the SCC-7 allograft model. Taken together, these findings indicate that HCPMi could be developed further as a highly competent lipid-based drug-delivery system.
Collapse
|
26
|
Liu Y, Xia Y, Rad AT, Aresh W, Nieh MP. Stable Discoidal Bicelles: A Platform of Lipid Nanocarriers for Cellular Delivery. Methods Mol Biol 2017; 1522:273-282. [PMID: 27837547 DOI: 10.1007/978-1-4939-6591-5_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bicellar mixtures have been used as alignable membrane substrates for the structural characterization of membrane-associated proteins. Most recently, it has been shown that bicelles can serve as nanocarriers to effectively deliver hydrophobic molecules to cancer cells with a 3- to 10-fold enhancement compared to that of chemically identical liposomes. In this chapter, a detailed preparation protocol, common structural characterization methods, the structural stability and the cellular uptake of bicellar nanodisks are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Yan Xia
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Wafa Aresh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269, USA.
| |
Collapse
|
27
|
Lin L, Wang X, Li X, Yang Y, Yue X, Zhang Q, Dai Z. Modulating Drug Release Rate from Partially Silica-Coated Bicellar Nanodisc by Incorporating PEGylated Phospholipid. Bioconjug Chem 2016; 28:53-63. [PMID: 27718555 DOI: 10.1021/acs.bioconjchem.6b00508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of hybrid bicelles. It was found that the drug release rate increased with increasing the molar percentages of DSPE-PEG2000, and 57.38%, 69.21%, 78.69%, 81.64%, and 82.23% of hydrophobic doxorubicin was released within 120 h from the nanodics incorporating with 0%, 2.5%, 5%, 10%, and 20% DSPE-PEG2000, respectively. Compared with the non-PEGylated nanodisc and free doxorubicin, the PEGylated nanodiscs showed good biocompatibility, high cellular uptake, and adhesion, as well as high local drug accumulation. In addition, both in vitro and in vivo results demonstrated significantly improved antitumor efficacy of the PEGylated nanodisc than its control groups. Thus, the PEGylated nanodisc with partial silica coating offers a facile and efficient strategy of drug delivery for chemotherapy with improved patient acceptance and compliance.
Collapse
Affiliation(s)
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| | | | | | | | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
28
|
Xia Y, Charubin K, Marquardt D, Heberle FA, Katsaras J, Tian J, Cheng X, Liu Y, Nieh MP. Morphology-Induced Defects Enhance Lipid Transfer Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9757-9764. [PMID: 27560711 DOI: 10.1021/acs.langmuir.6b02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular transfer between nanoparticles has been considered to have important implications regarding nanoparticle stability. Recently, the interparticle spontaneous lipid transfer rate constant for discoidal bicelles was found to be very different from spherical, unilamellar vesicles (ULVs). Here, we investigate the mechanism responsible for this discrepancy. Analysis of the data indicates that lipid transfer is entropically favorable, but enthalpically unfavorable with an activation energy that is independent of bicelle size and long- to short-chain lipid molar ratio. Moreover, molecular dynamics simulations reveal a lower lipid dissociation energy cost in the vicinity of interfaces ("defects") induced by the segregation of the long- and short-chain lipids in bicelles; these defects are not present in ULVs. Taken together, these results suggest that the enhanced lipid transfer observed in bicelles arises from interfacial defects as a result of the hydrophobic mismatch between the long- and short-chain lipid species. Finally, the observed lipid transfer rate is found to be independent of nanoparticle stability.
Collapse
Affiliation(s)
| | | | - Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz , Graz 8010, Austria
- Department of Physics, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Xia Y, Li M, Charubin K, Liu Y, Heberle FA, Katsaras J, Jing B, Zhu Y, Nieh MP. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12920-8. [PMID: 26540211 DOI: 10.1021/acs.langmuir.5b03291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.
Collapse
Affiliation(s)
- Yan Xia
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Ying Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Frederick A Heberle
- Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831 United States
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831 United States
- Department of Physics and Astronomy, University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Benxin Jing
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Yingxi Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
- Department of Chemical Engineering and Materials Science, Wayne State University , Detroit, Michigan 48202 United States
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
30
|
Draney AW, Smrt ST, Lorieau JL. Use of isotropically tumbling bicelles to measure curvature induced by membrane components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11723-11733. [PMID: 25203267 DOI: 10.1021/la5030668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Isotropically tumbling discoidal bicelles are a useful biophysical tool for the study of lipids and proteins by NMR, dynamic light scattering, and small-angle X-ray scattering. Isotropically tumbling bicelles present a low-curvature central region, typically enriched with DMPC in the lamellar state, and a highly curved detergent rim, typically composed of DHPC. In this report, we study the impact of the partitioning and induced curvature of a few molecules of a foreign lipid on the bicelle size, structure, and curvature. Previous approaches for studying curvature have focused on macroscopic and bulk properties of membrane curvature. In the approach presented here, we show that the conical shape of the DOPE lipid and the inverted-conical shape of the DPC lipid induce measurable curvature changes in the bicelle size. Bicelles with an average of 1.8 molecules of DOPE have marked increases in the size of bicelles, consistent with negative membrane curvature in the central region of the bicelle. With bicelle curvature models, radii of curvature on the order of -100 Å and below are measured, with a greater degree of curvature observed in the more pliable Lα state above the phase-transition temperature of DMPC. Bicelles with an average of 1.8 molecules of DPC are reduced in size, consistent with positive membrane curvature in the rim, and at higher temperatures, DPC is distributed in the central region to form mixed-micelle structures. We use translational and rotational diffusion measurements by NMR, size-exclusion chromatography, and structural models to quantitate changes in bicelle size, curvature, and lipid dynamics.
Collapse
Affiliation(s)
- Adrian W Draney
- Department of Chemistry, University of Illinois at Chicago , Chicago Illinois 60607, United States
| | | | | |
Collapse
|