1
|
Daddi-Moussa-Ider A, Tjhung E, Pradas M, Richter T, Menzel AM. Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:58. [PMID: 39322774 PMCID: PMC11424714 DOI: 10.1140/epje/s10189-024-00452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Dynamics at low Reynolds numbers experiences recent revival in the fields of biophysics and active matter. While in bulk isotropic fluids it is exhaustively studied, this is less so in anisotropic fluids and in confined situations. Here, we combine the latter two by studying the rotation of a disk-like inclusion in a uniaxially anisotropic, globally oriented, incompressible two-dimensional fluid film. In terms of a perturbative expansion in parameters that quantify anisotropies in viscosity and in additional linear friction with a supporting substrate or other type of confinement, we derive analytical expressions for the resulting hydrodynamic flow and pressure fields as well as for the resistance and mobility coefficients of the rotating disk. It turns out that, in contrast to translational motion, the solutions remain well-behaved also in the absence of the additional linear friction. Comparison with results from finite-element simulations shows very good agreement with those from our analytical calculations. Besides applications to describe technological systems, for instance, in the area of microfluidics and thin cells of aligned nematic liquid crystals, our solutions are important for quantitative theoretical approaches to fluid membranes and thin films in general featuring a preferred direction.
Collapse
Affiliation(s)
| | - Elsen Tjhung
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Marc Pradas
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Thomas Richter
- Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
2
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
3
|
CDR3 binding chemistry controls TCR V-domain rotational probability and germline CDR2 scanning of polymorphic MHC. Mol Immunol 2022; 144:138-151. [DOI: 10.1016/j.molimm.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022]
|
4
|
Dependence of Protein Structure on Environment: FOD Model Applied to Membrane Proteins. MEMBRANES 2021; 12:membranes12010050. [PMID: 35054576 PMCID: PMC8778870 DOI: 10.3390/membranes12010050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
The natural environment of proteins is the polar aquatic environment and the hydrophobic (amphipathic) environment of the membrane. The fuzzy oil drop model (FOD) used to characterize water-soluble proteins, as well as its modified version FOD-M, enables a mathematical description of the presence and influence of diverse environments on protein structure. The present work characterized the structures of membrane proteins, including those that act as channels, and a water-soluble protein for contrast. The purpose of the analysis was to verify the possibility that an external force field can be used in the simulation of the protein-folding process, taking into account the diverse nature of the environment that guarantees a structure showing biological activity.
Collapse
|
5
|
Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1-40) Peptides. Biomolecules 2021; 11:biom11121848. [PMID: 34944492 PMCID: PMC8699037 DOI: 10.3390/biom11121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway.
Collapse
|
6
|
Tennakoon M, Senarath K, Kankanamge D, Chadee DN, Karunarathne A. A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy. Mol Biol Cell 2021; 32:1446-1458. [PMID: 34106735 PMCID: PMC8351738 DOI: 10.1091/mbc.e20-11-0750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023] Open
Abstract
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Deborah N. Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| |
Collapse
|
7
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
8
|
Tiwari N, Wegner S, Hassan A, Dwivedi N, Rai R, Sinha N. Probing short and long-range interactions in native collagen inside the bone matrix by BioSolids CryoProbe. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:99-107. [PMID: 32761649 DOI: 10.1002/mrc.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone. We report here approximately a fourfold sensitivity enhancement in the natural abundance 13 C spectrum compared with the room temperature conventional solid-state NMR probe. With the advantage of sensitivity enhancement, we have been able to perform natural abundance 15 N cross-polarization magic angle spinning (CPMAS) and two-dimensional (2D) 1 H-13 C heteronuclear correlation (HETCOR) experiments of native collagen within a reasonable timeframe. Due to high sensitivity, 2D 1 H/13 C HETCOR experiments have helped in detecting several short and long-range interactions of native collagen assembly, thus significantly expanding the scope of the method to such challenging biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Alia Hassan
- Bruker BioSpin Corporation, Fällanden, Switzerland
| | - Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
9
|
Pacull EM, Sendker F, Bernhard F, Scheidt HA, Schmidt P, Huster D, Krug U. Integration of Cell-Free Expression and Solid-State NMR to Investigate the Dynamic Properties of Different Sites of the Growth Hormone Secretagogue Receptor. Front Pharmacol 2020; 11:562113. [PMID: 33324203 PMCID: PMC7723455 DOI: 10.3389/fphar.2020.562113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cell-free expression represents an attractive method to produce large quantities of selectively labeled protein for NMR applications. Here, cell-free expression was used to label specific regions of the growth hormone secretagogue receptor (GHSR) with NMR-active isotopes. The GHSR is a member of the class A family of G protein-coupled receptors. A cell-free expression system was established to produce the GHSR in the precipitated form. The solubilized receptor was refolded in vitro and reconstituted into DMPC lipid membranes. Methionines, arginines, and histidines were chosen for 13C-labeling as they are representative for the transmembrane domains, the loops and flanking regions of the transmembrane α-helices, and the C-terminus of the receptor, respectively. The dynamics of the isotopically labeled residues was characterized by solid-state NMR measuring motionally averaged 1H-13C dipolar couplings, which were converted into molecular order parameters. Separated local field DIPSHIFT experiments under magic-angle spinning conditions using either varying cross polarization contact times or direct excitation provided order parameters for these residues showing that the C-terminus was the segment with the highest motional amplitude. The loop regions and helix ends as well as the transmembrane regions of the GHSR represent relatively rigid segments in the overall very flexible receptor molecule. Although no site resolution could be achieved in the experiments, the previously reported highly dynamic character of the receptor concluded from uniformly 13C labeled receptor samples could be further specified by this segmental labeling approach, leading to a more diversified understanding of the receptor dynamics under equilibrium conditions.
Collapse
Affiliation(s)
- Emelyne M Pacull
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Franziska Sendker
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ulrike Krug
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
11
|
Depta PN, Jandt U, Dosta M, Zeng AP, Heinrich S. Toward Multiscale Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model for the Integration of Molecular Dynamics and the Discrete Element Method. J Chem Inf Model 2019; 59:386-398. [PMID: 30550276 DOI: 10.1021/acs.jcim.8b00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most processes involved in biological and biotechnological systems spread over many scales in space and time. For example, the interaction of multiple enzymes in heterogeneous enzymatic agglomerates or clusters, necessary for efficient enzymatic conversion, is of high interest for research and enzyme engineering. In order to understand and predict their overall behavior and performance, it is important to describe these scales as completely as possible, known as multiscale modeling. While many different approaches have been presented in recent years, knowledge about protein formation and bioagglomeration at the micro scale is still very limited. In an attempt to address such systems, we propose a bottom- up multiscale modeling methodology, bridging the gaps between molecular dynamics (MD) with an explicit solvent and the larger scale discrete element method (DEM) using an implicit solvent and abstracting macromolecules (e.g., proteins) as objects with anisotropic properties. We term this approach the molecular discrete element method (MDEM). For this, we present an orientation-sensitive diffusion model for DEM, which describes the dynamics of anisotropic translational and rotational diffusion, while implicitly considering solvent molecules and enforcing a canonical ensemble. A general-purpose model and parametrization approach is presented, which can be used to simulate any process involving diffusion of discrete particles. Effects of temperature and viscosity changes can be considered, and guidance is provided concerning time step selection. This model is generally applicable and serves as a precondition to enforce the proper dynamics (i.e., diffusion characteristics and canonical ensemble, similar to a thermostat in MD) for the proposed multiscale modeling methodology with anisotropic properties. Thereby, it presents a first step toward modeling at the micro scale and is integral to enforcing dynamics of such systems and therefore extensively validated. As a next step, interaction models are to be defined and added to the presented model. In comparison to atomistic and coarse-grained (CG) MD, a speedup of 5-7 orders of magnitude can be achieved. The approach is demonstrated on multiple components of the pyruvate dehydrogenase enzyme complex, a multienzymatic machinery that involves very different types of enzymes and is of high value to further elucidate the mechanisms of bioagglomeration and metabolic channeling.
Collapse
|
12
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
13
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
15
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH. Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs Solution-State Methods. J Phys Chem B 2017; 121:7671-7680. [PMID: 28737919 DOI: 10.1021/acs.jpcb.7b06944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and dynamical characterization of membrane proteins in a lipid bilayer at physiological pH and temperature and free of crystal constraints is crucial for the elucidation of a structure/dynamics-activity relationship. Toward this aim, we explore here the properties of the outer-membrane protein OmpX embedded in lipid bilayer nanodiscs using proton-detected magic angle spinning (MAS) solid-state NMR at 60 and 110 kHz. [1H,15N]-correlation spectra overlay well with the corresponding solution-state NMR spectra. Line widths as well as line intensities in solid and solution both depend critically on the sample temperature and, in particular, on the crossing of the lipid phase transition temperature. MAS (110 kHz) experiments yield well-resolved NMR spectra also for fully protonated OmpX and both below and above the lipid phase transition temperature.
Collapse
Affiliation(s)
| | - Lukas Frey
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Bibow
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon , 7 passage du Vercors, 69367 Lyon, France
| | - Roland Riek
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Senicourt L, Duma L, Papadopoulos V, Lacapere JJ. Solid-State NMR of Membrane Protein Reconstituted in Proteoliposomes, the Case of TSPO. Methods Mol Biol 2017; 1635:329-344. [PMID: 28755378 DOI: 10.1007/978-1-4939-7151-0_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural studies of membrane proteins (MP) in a native or native-like environment remain a challenge. X-ray crystallography of three-dimensional crystals of MP in lipids and cryo-electron microscopy of two-dimensional crystals also in lipids have given atomic structures of several MP. Recent developments of solid-state NMR (ssNMR) provided structural data of MP in lipids and should give access to the dynamic behavior of MP's in a native-like environment. Preparation of samples for ssNMR is not trivial with overexpressed proteins since purified recombinant MP have to be reincorporated in proteoliposomes and concentrated in the small volume of the rotor used for ssNMR studies. We present here the protocol that we have used to study the recombinant mouse TSPO1, an integral membrane protein of 20 kDa mostly found in the outer membrane of mitochondria and overexpressed in E. coli bacteria.
Collapse
Affiliation(s)
- Lucile Senicourt
- Sorbonne Universités-UPMC University of Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University, CNRS UMR 7203 LBM, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Luminita Duma
- CNRS Enzyme and Cell Engineering Laboratory, Sorbonne Universités, Université de Technologie de Compiègne, Rue Roger Couttolenc, CS 60319, 60203, Compiègne Cedex, France
| | - Vassilios Papadopoulos
- The Research Institute of the McGill, University Health Center, Montreal, QC, Canada, H4A 3J1.,Department of Medicine, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Jean-Jacques Lacapere
- Sorbonne Universités-UPMC University of Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University, CNRS UMR 7203 LBM, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| |
Collapse
|
18
|
|
19
|
Liu L, Mayo DJ, Sahu ID, Zhou A, Zhang R, McCarrick RM, Lorigan GA. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Methods Enzymol 2015; 564:289-313. [PMID: 26477255 DOI: 10.1016/bs.mie.2015.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by overexpression systems are discussed.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
| | - Daniel J Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andy Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|