1
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Yee C, Görtemaker K, Wellpott R, Koch KW. Kinetics of cone specific G-protein signaling in avian photoreceptor cells. Front Mol Neurosci 2023; 16:1107025. [PMID: 36733826 PMCID: PMC9887155 DOI: 10.3389/fnmol.2023.1107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Cone photoreceptor cells of night-migratory songbirds seem to process the primary steps of two different senses, vision and magnetoreception. The molecular basis of phototransduction is a prototypical G protein-coupled receptor pathway starting with the photoexcitation of rhodopsin or cone opsin thereby activating a heterotrimeric G protein named transducin. This interaction is well understood in vertebrate rod cells, but parameter describing protein-protein interactions of cone specific proteins are rare and not available for migratory birds. European robin is a model organism for studying the orientation of birds in the earth magnetic field. Recent findings showed a link between the putative magnetoreceptor cryptochrome 4a and the cone specific G-protein of European robin. In the present work, we investigated the interaction of European robin cone specific G protein and cytoplasmic regions of long wavelength opsin. We identified the second loop in opsin connecting transmembrane regions three and four as a critical binding interface. Surface plasmon resonance studies using a synthetic peptide representing the second cytoplasmic loop and purified G protein α-subunit showed a high affinity interaction with a K D value of 21 nM. Truncation of the G protein α-subunit at the C-terminus by six amino acids slightly decreased the affinity. Our results suggest that binding of the G protein to cryptochrome can compete with the interaction of G protein and non-photoexcited long wavelength opsin. Thus, the parallel presence of two different sensory pathways in bird cone photoreceptors is reasonable under dark-adapted conditions or during illumination with short wavelengths.
Collapse
Affiliation(s)
- Chad Yee
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Katharina Görtemaker
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Rieke Wellpott
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany,Research Center Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany,*Correspondence: Karl-Wilhelm Koch, ✉
| |
Collapse
|
3
|
Ho PS, Kao TY, Li CC, Lan YJ, Lai YC, Chiang YW. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15372-15383. [PMID: 36454955 DOI: 10.1021/acs.langmuir.2c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodiscs are broadly used for characterization of membrane proteins as they are generally assumed to provide a near-native environment. In fact, it is an open question whether the physical properties of lipids in nanodiscs and membrane vesicles of the same lipid composition are identical. Here, we investigate the properties of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and their mixtures) in two different sample types, nanodiscs and multilamellar vesicles, by means of spin-label electron spin resonance techniques. Our results provide a quantitative description of lipid dynamics and ordering, elucidating the molecular details of how lipids in the two sample types behave differently in response to temperature and lipid composition. We show that the properties of lipids are altered in nanodiscs such that the dissimilarity of the fluid and gel lipid phases is reduced, and the first-order phase transitions are largely abolished in nanodiscs. We unveil that the ensemble of lipids in the middle of a nanodisc bilayer, as probed by the end-chain spin-label 16-PC, is promoted to a state close to a miscibility critical point, thereby rendering the phase transitions continuous. Critical phenomena have recently been proposed to explain features of the heterogeneity in native cell membranes. Our results lay the groundwork for how to establish a near-native environment in nanodiscs with simple organization of lipid components.
Collapse
Affiliation(s)
- Pei-Shan Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402-002, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
4
|
Fang B, Zhao L, Du X, Liu Q, Yang H, Li F, Sheng Y, Zhao W, Zhong H. Studying the
Rhodopsin‐Like
G Protein Coupled Receptors by Atomic Force Microscopy. Cytoskeleton (Hoboken) 2022; 78:400-416. [DOI: 10.1002/cm.21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Fang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Li Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Xiaowei Du
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Qiyuan Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
- School of Basic Medicine Gannan Medical University Ganzhou People's Republic of China
| | - Hui Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Fangzuo Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Yaohuan Sheng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| |
Collapse
|
5
|
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods. Comput Struct Biotechnol J 2021; 19:3720-3734. [PMID: 34285774 PMCID: PMC8258797 DOI: 10.1016/j.csbj.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
A hybrid stochastic/deterministic model of mouse rod phototransduction is presented. Rod photocurrent to photovoltage conversion in darkness is accurately characterized. Photoresponses to dim and bright stimuli and in various mutants are well reproduced. Recently debated molecular mechanisms of the phototransduction cascade are examined.
The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine-5′-triphosphate
- Arr, arrestin
- BG, background illumination
- CNG, cyclic nucleotide-gated (channel)
- CSM, completely substituted mutant of rhodopsin
- CV, coefficient of variation
- DM, deterministic model
- Dynamic modeling
- E, effector of the phototransduction cascade, activated PDE
- FFT, fast Fourier-transform
- GC, guanylate cyclase
- GCAPs, guanylate cyclase-activating proteins
- GDP, guanosine-5′-diphosphate
- GPCR, G protein-coupled receptor
- GTP, guanosine-5′-triphosphate
- Gt, G protein/transducin
- Gα, α-subunit of the G protein
- Gβγ, β- and γ-subunit of the G protein
- HSDM, hybrid stochastic/deterministic model
- Light adaptation
- MPR, multiple photon response
- PDE, phosphodiesterase 6
- Ph, photons
- Phototransduction
- R, rhodopsin
- RGS, regulator of G protein signaling
- RK, rhodopsin kinase
- ROS, rod outer segment
- Rec, recoverin
- Rn, activated rhodopsin that has been phosphorylated n times
- SD, standard deviation
- SPR, single photon response
- Stochastic simulation
- Systems biology
- TTP, time to peak
- cGMP, cyclic guanosine monophosphate
- ΔJ, photocurrent
- ΔU, photovoltage
Collapse
|
6
|
Park PSH. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Arch 2021; 473:1361-1376. [PMID: 33591421 DOI: 10.1007/s00424-021-02522-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Vasudevan S, Park PSH. Differential Aggregation Properties of Mutant Human and Bovine Rhodopsin. Biochemistry 2020; 60:6-18. [PMID: 33356167 DOI: 10.1021/acs.biochem.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin is the light receptor required for the function and health of photoreceptor cells. Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinal degeneration. Bovine rhodopsin is often used as a model to understand the effect of pathogenic mutations in rhodopsin due to the abundance of structural information on the bovine form of the receptor. It is unclear whether or not the bovine rhodopsin template is adequate in predicting the effect of these mutations occurring in human retinal disease or in predicting the efficacy of therapeutic strategies. To better understand the extent to which bovine rhodopsin can serve as a model, human and bovine P23H rhodopsin mutants expressed heterologously in cells were examined. The aggregation properties and cellular localization of the mutant receptors were determined by Förster resonance energy transfer and confocal microscopy. The potential therapeutic effects of the pharmacological compounds 9-cis retinal and metformin were also examined. Human and bovine P23H rhodopsin mutants exhibited different aggregation properties and responses to the pharmacological compounds tested. These observations would lead to different predictions on the severity of the phenotype and divergent predictions on the benefit of the therapeutic compounds tested. The bovine rhodopsin template does not appear to adequately model the effects of the P23H mutation in the human form of the receptor.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
8
|
Sechrest ER, Murphy J, Senapati S, Goldberg AFX, Park PSH, Kolandaivelu S. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes. Sci Rep 2020; 10:17885. [PMID: 33087780 PMCID: PMC7577997 DOI: 10.1038/s41598-020-74628-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein localized to photoreceptor outer segment (OS) disc membranes. Several mutations in PRCD are linked to retinitis pigmentosa (RP) in canines and humans, and while recent studies have established that PRCD is required for high fidelity disc morphogenesis, its precise role in this process remains a mystery. To better understand the part which PRCD plays in disease progression as well as its contribution to photoreceptor OS disc morphogenesis, we generated a Prcd-KO animal model using CRISPR/Cas9. Loss of PRCD from the retina results in reduced visual function accompanied by slow rod photoreceptor degeneration. We observed a significant decrease in rhodopsin levels in Prcd-KO retina prior to photoreceptor degeneration. Furthermore, ultrastructural analysis demonstrates that rod photoreceptors lacking PRCD display disoriented and dysmorphic OS disc membranes. Strikingly, atomic force microscopy reveals that many disc membranes in Prcd-KO rod photoreceptor neurons are irregular, containing fewer rhodopsin molecules and decreased rhodopsin packing density compared to wild-type discs. This study strongly suggests an important role for PRCD in regulation of rhodopsin incorporation and packaging density into disc membranes, a process which, when dysregulated, likely gives rise to the visual defects observed in patients with PRCD-associated RP.
Collapse
Affiliation(s)
- Emily R Sechrest
- Department of Pharmaceutical Sciences, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA. .,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.
| |
Collapse
|
9
|
Senapati S, Park PSH. Differential adaptations in rod outer segment disc membranes in different models of congenital stationary night blindness. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183396. [PMID: 32533975 DOI: 10.1016/j.bbamem.2020.183396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
Rod photoreceptor cells initiate scotopic vision when the light receptor rhodopsin absorbs a photon of light to initiate phototransduction. These photoreceptor cells are exquisitely sensitive and have adaptive mechanisms in place to maintain optimal function and to overcome dysfunctional states. One adaptation rod photoreceptor cells exhibit is in the packing properties of rhodopsin within the membrane. The mechanism underlying these adaptations is unclear. Mouse models of congenital stationary night blindness with different molecular causes were investigated to determine which signals are important for adaptations in rod photoreceptor cells. Night blindness in these mice is caused by dysfunction in either rod photoreceptor cell signaling or bipolar cell signaling. Changes in the packing of rhodopsin within photoreceptor cell membranes were examined by atomic force microscopy. Mice expressing constitutively active rhodopsin did not exhibit any adaptations, even under constant dark conditions. Mice with disrupted bipolar cell signaling exhibited adaptations, however, they were distinct from those in mice with disrupted phototransduction. These differential adaptations demonstrate that although multiple molecular defects can lead to a similar primary defect causing disease (i.e., night blindness), they can cause different secondary effects (i.e., adaptations). The lighting environment or signaling defects present from birth and during early rearing can condition mice and affect the adaptations occurring in more mature animals. A comparison of effects in wild-type mice, mice with defective phototransduction, and mice with defective bipolar cell signaling, indicated that bipolar cell signaling plays a role in this conditioning but is not required for adaptations in more mature animals.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. PLoS One 2020; 15:e0226123. [PMID: 32032370 PMCID: PMC7006936 DOI: 10.1371/journal.pone.0226123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The visual photopigment protein rhodopsin (Rh) is a typical G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disk membrane of rod-photoreceptor cells. Rh molecule has a tendency to form dimer, and the dimer tends to form rows, which is suggested to heighten phototransduction efficiency in single-photon regime. In addition, the dimerization confers Rh an affinity for lipid raft, i.e. raftophilicity. However, the mechanism by which Rh-dimer raftophilicity contributes to the organization of the higher order structure remains unknown. In this study, we performed coarse-grained molecular dynamics simulations of a disk membrane model containing unsaturated lipids, saturated lipids with cholesterol, and Rh-dimers. We described the Rh-dimers by two-dimensional particle populations where the palmitoyl moieties of each Rh exhibits raftophilicity. We simulated the structuring of Rh in a disk for two types of Rh-dimer, i.e., the most and second most stable Rh dimers, which exposes the raftophilic regions at the dimerization-interface (H1/H8 dimer) and two edges away from the interface (H4/H5 dimer), respectively. Our simulations revealed that only the H1/H8 dimer could form a row structure. A small number of raftophilic lipids recruited to and intercalated in a narrow space between H1/H8 dimers stabilize the side-by-side interaction between dimers in a row. Our results implicate that the nano-sized lipid raft domains act as a “glue” to organize the long row structures of Rh-dimers.
Collapse
Affiliation(s)
- Yukito Kaneshige
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Yasushi Tanimoto
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
11
|
Feldman TB, Ivankov OI, Kuklin AI, Murugova TN, Yakovleva MA, Smitienko OA, Kolchugina IB, Round A, Gordeliy VI, Belushkin AV, Ostrovsky MA. Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183000. [DOI: 10.1016/j.bbamem.2019.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/16/2023]
|
12
|
Park PSH. Rhodopsin Oligomerization and Aggregation. J Membr Biol 2019; 252:413-423. [PMID: 31286171 DOI: 10.1007/s00232-019-00078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the light receptor in photoreceptor cells of the retina and a prototypical G protein-coupled receptor. Two types of quaternary structures can be adopted by rhodopsin. If rhodopsin folds and attains a proper tertiary structure, it can then form oligomers and nanodomains within the photoreceptor cell membrane. In contrast, if rhodopsin misfolds, it cannot progress through the biosynthetic pathway and instead will form aggregates that can cause retinal degenerative disease. In this review, emerging views are highlighted on the supramolecular organization of rhodopsin within the membrane of photoreceptor cells and the aggregation of rhodopsin that can lead to retinal degeneration.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Hayashi F, Saito N, Tanimoto Y, Okada K, Morigaki K, Seno K, Maekawa S. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Commun Biol 2019; 2:209. [PMID: 31240247 PMCID: PMC6570657 DOI: 10.1038/s42003-019-0459-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disc membrane. Recent studies have suggested that rhodopsin forms highly ordered rows of dimers responsible for single-photon detection by rod photoreceptors. Dimerization is also known to confer to rhodopsin a high affinity for ordered lipids (raftophilicity). However, the role of rhodopsin organization and its raftophilicity in phototransduction remains obscure, owing to the lack of direct observation of rhodopsin dynamics and distribution in native discs. Here, we explore the single-molecule and semi-multimolecule behaviour of rhodopsin in native discs. Rhodopsin forms transient meso-scale clusters, even in darkness, which are loosely confined to the disc centre. Cognate G protein transducin co-distributes with rhodopsin, and exhibits lateral translocation to the disc periphery upon activation. We demonstrate that rhodopsin offers inherently distributed and stochastic platforms for G protein signalling by self-organizing raftophilic clusters, which continually repeat generation/extinction in the disc membrane.
Collapse
Affiliation(s)
- Fumio Hayashi
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Natsumi Saito
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Yasushi Tanimoto
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keisuke Okada
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Kenichi Morigaki
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keiji Seno
- Faculty of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
- International Mass Imaging Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Shohei Maekawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
14
|
Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Anal Chem 2019; 91:7226-7235. [PMID: 31074606 DOI: 10.1021/acs.analchem.9b00546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Adolfo B Poma
- Institute of Fundamental Technological Research , Polish Academy of Sciences , Pawińskiego 5B , 02-106 Warsaw , Poland.,Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Marek Cieplak
- Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , 02-093 Warsaw , Poland
| | - Paul S H Park
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
15
|
Sapra KT, Spoerri PM, Engel A, Alsteens D, Müller DJ. Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Curr Opin Cell Biol 2019; 57:25-32. [PMID: 30412846 PMCID: PMC6472649 DOI: 10.1016/j.ceb.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay extracellular information across cell membranes through a continuum of conformations that are not always captured in structures. Hence, complementary approaches are required to quantify the physical and chemical properties of the dynamic conformations linking to GPCR function. Atomic force microscopy (AFM)-based high-resolution imaging and force spectroscopy are unique methods to scrutinize GPCRs and to sense their interactions. Here, we exemplify recent AFM-based applications to directly observe the supramolecular assembly of GPCRs in native membranes, to measure the ligand-binding free-energy landscape, and how interactions modulate the structural properties of GPCRs. Common trends in GPCR function are beginning to emerge. We envision that technical developments in combining AFM with superresolution fluorescence imaging will provide insights into how cellular states modulate GPCRs and vice versa.
Collapse
Affiliation(s)
- K Tanuj Sapra
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Patrizia M Spoerri
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Engel
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Daniel J Müller
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
16
|
Senapati S, Park PSH. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy. Methods Mol Biol 2019; 1886:61-74. [PMID: 30374862 DOI: 10.1007/978-1-4939-8894-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane proteins play an integral role in cellular communication. They are often organized within the crowded cell membrane into nanoscale domains (i.e., nanodomains), which facilitates their function in cell signaling processes. The visualization of membrane proteins and nanodomains within biological membranes under physiological conditions presents a challenge and is not possible using conventional microscopy methods. Atomic force microscopy (AFM) provides an opportunity to study the organization of membrane proteins within biological membranes with sub-nanometer resolution. An example of a membrane protein organized into nanodomains is rhodopsin. Rhodopsin is expressed in photoreceptor cells of the retina and upon photoactivation initiates a series of biochemical reactions called phototransduction, which represents the first steps of vision. AFM has provided an opportunity to directly visualize the packing of rhodopsin in native retinal membranes and the quantitative analysis of AFM images is beginning to reveal insights about the nanodomain organization of rhodopsin in the membrane. In this report, we outline procedures for imaging rhodopsin nanodomains by AFM and the quantitative analysis of those AFM images.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
18
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
19
|
Ramirez SA, Leidy C. Effect of the Organization of Rhodopsin on the Association between Transducin and a Photoactivated Receptor. J Phys Chem B 2018; 122:8872-8879. [PMID: 30156842 DOI: 10.1021/acs.jpcb.8b07401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After photoactivation, rhodopsin (R), a G-protein-coupled receptor, rapidly activates multiple transducin G-proteins (G) in an initial amplification step of phototransduction. G-protein activation requires diffusion-mediated association with an active rhodopsin (R*) at the rod disk membrane. Different organizations of R within the membrane have been revealded by several microscopy studies, including static and freely diffusing situations. However, it is unclear how such different scenarios influence the activation rate of G proteins. Through Monte Carlo simulations, we study the association reaction between a photoactivated rhodopsin and transducin under different reported receptor organizations including (a) R monomers diffusing freely, (b) R forming static dispersed crystalline domains made of rows of dimers, and (c) R arranged in static tracks formed by two adjacent rows of dimers. A key parameter in our simulations is the probability of binding following a collision ( p). For high p, the association rate between R* and G is higher in the freely diffusive system than in the static organizations, but for low collision efficiencies, the static organizations can result in faster association rates than the mobile system. We also observe that with low p, increasing the concentration of R increases the association rate significantly in the dispersed crystals configuration and just slightly in the free diffusive system. In summary, the lateral organization of rhodopsin influences the association rate between R* and G in a manner strongly dependent on the collision efficiency.
Collapse
Affiliation(s)
- Samuel A Ramirez
- Department of Pharmacology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 ; United States
| | - Chad Leidy
- Department of Physics , Universidad de los Andes , Bogotá 111711 , Colombia
| |
Collapse
|
20
|
Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer. Methods Cell Biol 2018; 149:87-105. [PMID: 30616829 DOI: 10.1016/bs.mcb.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells of the retina that plays a central role in phototransduction and rod photoreceptor cell health. Rhodopsin mutations are the leading known cause of autosomal dominant retinitis pigmentosa, a retinal degenerative disease. A majority of rhodopsin mutations cause misfolding and aggregation of the apoprotein opsin. The nature of aggregates formed by misfolded rhodopsin mutants and the associated cell toxicity is poorly understood. Misfolding rhodopsin mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand rhodopsin aggregation, disease pathogenesis, and evaluate therapeutic strategies. To better understand the aggregation of misfolded rhodopsin mutants, a Förster resonance energy transfer assay has been developed to monitor the aggregation of fluorescently tagged mutant rhodopsins expressed in live cells.
Collapse
|
21
|
Gragg M, Park PSH. Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2938-2948. [PMID: 29890221 PMCID: PMC6066411 DOI: 10.1016/j.bbadis.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022]
Abstract
The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental.
Collapse
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Biochemistry 2018; 57:5188-5201. [PMID: 30085663 DOI: 10.1021/acs.biochem.8b00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors can exist as dimers and higher-order oligomers in biological membranes. The specific oligomeric assembly of these receptors is believed to play a major role in their function, and the disruption of native oligomers has been implicated in specific human pathologies. Computational predictions and biochemical analyses suggest that two molecules of rhodopsin (Rho) associate through the interactions involving its fifth transmembrane helix (TM5). Interestingly, there are several pathogenic loss-of-function mutations within TM5 that face the lipid bilayer in a manner that could potentially influence the dimerization of Rho. Though several of these mutations are known to induce misfolding, the pathogenic defects associated with V209M and F220C Rho remain unclear. In this work, we utilized a variety of biochemical and biophysical approaches to elucidate the effects of these mutations on the dimerization, folding, trafficking, and function of Rho in relation to other pathogenic TM5 variants. Chemical cross-linking, bioluminescence energy transfer, and pulsed-interleaved excitation fluorescence cross-correlation spectroscopy experiments revealed that each of these mutants exhibits a wild type-like propensity to self-associate within the plasma membrane. However, V209M and F220C each exhibit subtle defects in cellular trafficking. Together, our results suggest that the RP pathology associated with the expression of the V209M and F220C mutants could arise from defects in folding and cellular trafficking rather than the disruption of dimerization, as has been previously proposed.
Collapse
Affiliation(s)
- D Paul Mallory
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Elizabeth Gutierrez
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Margaret Pinkevitch
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Christie Klinginsmith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - William D Comar
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Francis J Roushar
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Adam W Smith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
23
|
Senapati S, Gragg M, Samuels IS, Parmar VM, Maeda A, Park PSH. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1403-1413. [PMID: 29626443 DOI: 10.1016/j.bbamem.2018.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
Docosahexaenoic acid (DHA) is enriched in photoreceptor cell membranes. DHA deficiency impairs vision due to photoreceptor cell dysfunction, which is caused, at least in part, by reduced activity of rhodopsin, the light receptor that initiates phototransduction. It is unclear how the depletion of membrane DHA impacts the structural properties of rhodopsin and, in turn, its activity. Atomic force microscopy (AFM) was used to assess the impact of DHA deficiency on membrane structure and rhodopsin organization. AFM revealed that signaling impairment in photoreceptor cells is independent of the oligomeric status of rhodopsin and causes adaptations in photoreceptor cells where the content and density of rhodopsin in the membrane is increased. Functional and structural changes caused by DHA deficiency were reversible.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ivy S Samuels
- Research Service, Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH 44106, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Rakshit T, Senapati S, Parmar VM, Sahu B, Maeda A, Park PSH. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28645515 DOI: 10.1016/j.bbamcr.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Berger M, Manghi M, Destainville N. Nanodomains in Biomembranes with Recycling. J Phys Chem B 2016; 120:10588-10602. [PMID: 27654087 DOI: 10.1021/acs.jpcb.6b07631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e., active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains also called protein clusters. The model includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases in equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that, when taking recycling into account, the typical cluster size at steady state increases logarithmically with the recycling rate at fixed protein concentration. Using physically realistic model parameters, the predicted 2-fold increase due to recycling in living cells is most likely experimentally measurable with the help of super-resolution microscopy.
Collapse
Affiliation(s)
- Mareike Berger
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
26
|
Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 2016; 473:3819-3836. [PMID: 27623775 DOI: 10.1042/bcj20160422] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.
Collapse
|
27
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Gragg M, Kim TG, Howell S, Park PSH. Wild-type opsin does not aggregate with a misfolded opsin mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1850-9. [PMID: 27117643 DOI: 10.1016/j.bbamem.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tae Gyun Kim
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - P S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Tanimoto Y, Okada K, Hayashi F, Morigaki K. Evaluating the Raftophilicity of Rhodopsin Photoreceptor in a Patterned Model Membrane. Biophys J 2015; 109:2307-16. [PMID: 26636942 PMCID: PMC4675817 DOI: 10.1016/j.bpj.2015.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
Lipid rafts in the cell membrane are believed to affect various membrane functions, including the signaling by G-protein coupled receptors (GPCRs). However, the regulatory roles of lipid rafts on GPCRs' functions are still poorly understood, partially owing to the lack of the methods to quantitatively evaluate the affinity of membrane proteins to lipid raft (raftophilicity). Here, we describe a methodology to gauge the raftophilicity of a representative GPCR in vertebrate photoreceptor, i.e., rhodopsin (Rh), and its cognate G protein transducin (Gt) by using a patterned model membrane. We generated a substrate-supported planar lipid bilayer that has patterned regions of liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains. We reconstituted Rh and Gt into the patterned membrane and observed their lateral distribution and diffusion. Mobile and functional Rh molecules could be reconstituted through the rapid dilution of solubilized Rh, by optimizing the reconstitution conditions including the chamber design, protein/detergent concentrations, and solution mixing. We determined the partition and diffusion coefficients of Rh and Gt in the Lo-rich and Ld-rich regions. Both Rh and Gt were predominantly localized in the Ld phase, suggesting their low affinity to lipid rafts. Patterned model membrane offers a robust and scalable platform for systematically and quantitatively studying the functional roles of lipid rafts in biological membranes including retinal disk membranes.
Collapse
Affiliation(s)
- Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Keisuke Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Kobe, Japan.
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan; Research Center for Environmental Genomics, Kobe University, Kobe, Japan.
| |
Collapse
|
30
|
Koch KW, Dell'Orco D. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Front Mol Neurosci 2015; 8:67. [PMID: 26635520 PMCID: PMC4646965 DOI: 10.3389/fnmol.2015.00067] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023] Open
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona Verona, Italy
| |
Collapse
|
31
|
Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis. PLoS One 2015; 10:e0141114. [PMID: 26492040 PMCID: PMC4619631 DOI: 10.1371/journal.pone.0141114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022] Open
Abstract
Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.
Collapse
|
32
|
Miller LM, Gragg M, Kim TG, Park PSH. Misfolded opsin mutants display elevated β-sheet structure. FEBS Lett 2015; 589:3119-25. [PMID: 26358292 DOI: 10.1016/j.febslet.2015.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023]
Abstract
Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate the aggregation of misfolded opsin mutants. The effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.
Collapse
Affiliation(s)
- Lisa M Miller
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Tae Gyun Kim
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
33
|
Dell'Orco D, Koch KW. Transient complexes between dark rhodopsin and transducin: circumstantial evidence or physiological necessity? Biophys J 2015; 108:775-7. [PMID: 25650944 DOI: 10.1016/j.bpj.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Daniele Dell'Orco
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Centre for BioMedical Computing, University of Verona, Verona, Italy.
| | - Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
34
|
Rakshit T, Park PSH. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes. Biochemistry 2015; 54:2885-94. [PMID: 25881629 DOI: 10.1021/acs.biochem.5b00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodopsin is the light receptor embedded in rod outer segment (ROS) disc membranes of photoreceptor cells that initiates vision via phototransduction. The relationship between rhodopsin expression and the formation of membrane structures in the ROS is unclear but important to better understand both normal function and pathological conditions. To determine the impact of reduced rhodopsin expression on the structure of ROS discs and the supramolecular organization of rhodopsin, ROS disc membrane samples from heterozygous rhodopsin knockout mice were examined by atomic force microscopy. Similar to rhodopsin in wild-type mice, rhodopsin formed nanodomains in ROS disc membranes of heterozygous knockout mice. The reduced rhodopsin expression in heterozygous knockout mice resulted in ROS disc membranes that were smaller compared to those in wild-type mice at all ages tested. Changes in ROS disc membrane properties were observed between 4 and 6 weeks of age in heterozygous knockout mice that were not present in age-matched wild-type mice. In 4 week old mice, the number and density of rhodopsin in ROS disc membranes was lower than that in age-matched wild-type mice. In contrast, 6 and 8 week old mice had more rhodopsin molecules present in disc membranes compared to 4 week old mice, which resulted in rhodopsin densities similar to those found in age-matched wild-type mice. Thus, mechanisms appear to be present that maintain a constant density of rhodopsin within ROS disc membranes even when reducing the expression of the light receptor by about half. These adaptive mechanisms, however, only occur after 4 weeks of age.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|