1
|
Zaborowska-Mazurkiewicz M, Bizoń T, Matyszewska D, Fontaine P, Bilewicz R. Oxidation of lipid membrane cholesterol by cholesterol oxidase and its effects on raft model membrane structure. Colloids Surf B Biointerfaces 2024; 245:114191. [PMID: 39232481 DOI: 10.1016/j.colsurfb.2024.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The effects of a peripheral protein - cholesterol oxidase (3β-hydroxysteroid oxidase, ChOx) on the characteristics of model lipid membranes composed of cholesterol, cholesterol:sphingomyelin (1:1), and the raft model composed of DOPC:Chol:SM (1:1:1) were investigated using two membrane model systems: the flat monolayer prepared by the Langmuir technique and the curved model consisting of liposome of the same lipids. The planar monolayers and liposomes were employed to follow membrane cholesterol oxidation to cholestenone catalyzed by ChOx and changes in the lipid membrane structure accompanying this reaction. Changes in the structure of liposomes in the presence of the enzyme were reflected in the changes of hydrodynamic diameter and fluorescence microscopy images, while changes of surface properties of planar membranes were evaluated by grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy. UV-Vis absorbance measurements confirmed the activity of the enzyme in the tested systems. A better understanding of the interactions between the enzyme and the cell membrane may help in finding alternative ways to decrease excessive cholesterol levels than the common approach of treating hypercholesterolemia with statins, which are not free from undesirable side effects, repeatedly reported in the literature and observed by the patients.
Collapse
Affiliation(s)
| | - Teresa Bizoń
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02093, Poland
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Philippe Fontaine
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02093, Poland.
| |
Collapse
|
2
|
Zaborowska M, Broniatowski M, Fontaine P, Bilewicz R, Matyszewska D. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers. J Phys Chem B 2023; 127:7135-7147. [PMID: 37551973 PMCID: PMC10440791 DOI: 10.1021/acs.jpcb.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Indexed: 08/09/2023]
Abstract
Lipid rafts are condensed regions of cell membranes rich in cholesterol and sphingomyelin, which constitute the target for anticholesterolemic drugs - statins. In this work, we use for the first time a combined grazing-incidence X-ray diffraction (GIXD)/polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS)/Brewster angle microscopy (BAM) approach to show the statin effect on model lipid rafts and its components assembled in Langmuir monolayers at the air-water interface. Two representatives of these drugs, fluvastatin (FLU) and cerivastatin (CER), of different hydrophobicity were chosen, while cholesterol (Chol) and sphingomyelin (SM), and their 1:1 mixture were selected to form condensed monolayers of lipid rafts. The effect of statins on the single components of lipid rafts indicated that both the hydrophobicity of the drugs and the organization of the layer determined the drug-lipid interaction. For cholesterol monolayers, only the most hydrophobic CER was effectively changing the film structure, while for the less organized sphingomyelin, the biggest effect was observed for FLU. This drug affected both the polar headgroup region as shown by PM-IRRAS results and the 2D crystalline structure of the SM monolayer as evidenced by GIXD. Measurements performed for Chol/SM 1:1 models proved also that the statin effect depends on the presence of Chol-SM complexes. In this case, the less hydrophobic FLU was not able to penetrate the binary layer at all, while exposure to the hydrophobic CER resulted in the phase separation and formation of ordered assemblies. The changes in the membrane properties were visualized by BAM images and GIXD patterns and confirmed by thermodynamic parameters of hysteresis in the Langmuir monolayer compression-decompression experiments.
Collapse
Affiliation(s)
| | - Marcin Broniatowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Kraków, Poland
| | - Philippe Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Dorota Matyszewska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
3
|
Zaborowska M, Dziubak D, Matyszewska D, Sek S, Bilewicz R. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies. Molecules 2021; 26:5483. [PMID: 34576954 PMCID: PMC8467995 DOI: 10.3390/molecules26185483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air-water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air-water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.
Collapse
Affiliation(s)
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
4
|
Sun Z, He G, Huang N, Thilakavathy K, Lim JCW, Kumar SS, Xiong C. Glycyrrhizic Acid: A Natural Plant Ingredient as a Drug Candidate to Treat COVID-19. Front Pharmacol 2021; 12:707205. [PMID: 34305613 PMCID: PMC8298820 DOI: 10.3389/fphar.2021.707205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
The total number of cumulative cases and deaths from the COVID-19 pandemic caused by SARS-CoV-2 is still increasing worldwide. Although many countries have actively implemented vaccination strategies to curb the epidemic, there is no specific efficient therapeutic drug for this virus to effectively reduce deaths. Therefore, the underappreciated macromolecular compounds have become the spotlight of research. Furthermore, the medicinal compounds in plants that provide myriad possibilities to treat human diseases have become of utmost importance. Experience indicates that Traditional Chinese medicine effectively treats SARS and has been used for treating patients with COVID-19 in China. As one of the world's oldest herbal remedies, licorice is used for treating patients with all stages of COVID-19. Glycyrrhizic acid (GA), the main active compound in licorice, has been proven effective in killing the SARS virus. Meanwhile, as a natural plant molecule, GA can also directly target important protein structures of the SARS-CoV-2 virus and inhibit the replication of SARS-CoV-2. In this review, we summarized the immune synergy of GA and its potential role in treating COVID-19 complications. Besides, we reviewed its anti-inflammatory effects on the immune system and its positive effects in cooperation with various drugs to fight against COVID-19 and its comorbidities. The purpose of this review is to elucidate and suggest that GA can be used as a potential drug during COVID-19 treatment.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Guozhong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ninghao Huang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Genetics and Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - S. Suresh Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
6
|
de Groot C, Müsken M, Müller-Goymann CC. The bidesmosidic triterpene saponins hederacoside C and ginsenoside Rb1 exhibit low affinity to cholesterol in liposomal membranes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zou Y, Pan R, Liu Y, Liu X, Chen X, Wang J, Wan Z, Guo J, Yang X. Effects of γ-zein peptides on lipid membrane organization: Quartz crystal microbalance with dissipation and Langmuir monolayer studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers. Colloids Surf B Biointerfaces 2018; 166:286-294. [DOI: 10.1016/j.colsurfb.2018.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022]
|
9
|
Zou Y, Pan R, Ruan Q, Wan Z, Guo J, Yang X. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4913-4922. [PMID: 29634259 DOI: 10.1021/acs.jafc.8b00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To understand the underlying molecular mechanism of the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g., DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in the enterocytes.
Collapse
Affiliation(s)
- Yuan Zou
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Runting Pan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Qijun Ruan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Zhili Wan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jian Guo
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xiaoquan Yang
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
10
|
Yin T, Cao X, Liu X, Wang J, Shi C, Su J, Zhang Y, Gou J, He H, Guo H, Tang X, Zhao Y. Interfacial molecular interactions based on the conformation recognition between the insoluble antitumor drug AD-1 and DSPC. Colloids Surf B Biointerfaces 2016; 146:902-9. [PMID: 27469574 DOI: 10.1016/j.colsurfb.2016.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Abstract
In this study, molecular interactions between the anti-cancer agent 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol (AD-1) and phospholipid 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated using the Langmuir film balance technique. The characteristics of binary Langmuir monolayers consisting of DSPC and AD-1 were conducted on the basis of the surface pressure-area per molecule (π-A) isotherms. It was found that the drug was able to become efficiently inserted into preformed DSPC monolayers, indicating a preferential interaction between AD-1 and DSPC. For the examined lateral pressure at 20mN/m, the largest negative values of ΔGex were found for the AD-1/DSPC monolayer, which should be the most stable. Based on the calculated values of ΔGex, we found that the AD-1/DSPC systems exhibited the best mixed characteristics when the molar fraction of the AD-1 was 0.8; at that relative concentration, the AD-1 molecules can mix better and interact with the phospholipid molecules. In addition, the drug-DSPC binary supramolecular structure was also deposited on the mica plates as shown by atomic force microscopy (AFM). Finally, molecular docking calculations explained satisfactorily that, based on the conformations interactions (conformation recognition), even at an AD-1/DSPC molar ratio as high as 8:2, the interfacial stabilization of the AD-1/DSPC system was fairly strong due to hydrophobic interactions. A higher loading capacity of DSPC might be possible, as it is associated with a more flexible geometrical environment, which allows these supramolecular structures to accept larger increases in drug loading upon steric binding.
Collapse
Affiliation(s)
- Tian Yin
- School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Chinese Materia Media, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuxiu Cao
- School of Chinese Materia Media, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaolin Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-based Drug Design and Discovery, Shenyang Pharmaceutical University, ministry of Education, Shenyang 110016, China
| | - Caihong Shi
- School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|