1
|
Gantseva AR, Gantseva ER, Sveshnikova AN, Panteleev MA, Kovalenko TA. Kinetic analysis of prothrombinase assembly and substrate delivery mechanisms. J Theor Biol 2024; 594:111925. [PMID: 39142600 DOI: 10.1016/j.jtbi.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations. We observed the inhibitory effect of large FVa concentrations and this effect was phospholipid concentration-dependent. We predicted that efficient FII activation occurred via formation of the ternary complex, in which FVa, FXa and FII were in the membrane-bound state. Prothrombin delivery was mostly membrane-dependent, but delivery from solution was predominant under conditions of phospholipid deficiency or FXa/FVa excess. Likewise, FXa delivery from solution was predominant in the case of FVa excess, but high FII did not switch the FXa delivery to the solution-dependent one. Additionally, the FXa delivery pathway did not depend on the phospholipid concentration, being the membrane-dependent one even in case of the phospholipid deficiency. These results suggest a flexible mechanism of prothrombinase functioning which utilizes different complex formation and even inhibitory mechanisms depending on conditions.
Collapse
Affiliation(s)
- A R Gantseva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast 141701, Russia
| | - E R Gantseva
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia
| | - T A Kovalenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia.
| |
Collapse
|
2
|
Soloveva PA, Podoplelova NA, Panteleev MA. Binding of coagulation factor IXa to procoagulant platelets revisited: Low affinity and interactions with other factors. Biochem Biophys Res Commun 2024; 720:150099. [PMID: 38749192 DOI: 10.1016/j.bbrc.2024.150099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Binding of activated factor IX (fIXa) to the phosphatidylserine-expressing procoagulant platelets is a critical step in blood coagulation, which is necessary for the membrane-dependent intrinsic tenase complex assembly and factor X activation. However, the nature and parameters of the fIXa binding sites on the procoagulant platelet surface remain unclear. We used flow cytometry to elucidate the quantitative details of the fluorescently labeled fIXa binding to gel-filtered activated platelets. FIXa bound to the procoagulant platelet subpopulation only, with the parameters (maximal number of binding sites at 58900 ± 3400, Kd at 1000 ± 170 nM) similar to binding observed with phospholipid vesicles. No specific high-affinity binding sites for fIXa were detected, and binding proceeded similarly for different methods of procoagulant platelet production (thrombin, thrombin receptor activation peptide, collagen-related peptide, their combinations, or calcium ionophore A23187). Factor VIII, known to form a high affinity complex with fIXa, enhanced fIXa binding to platelets. In contrast, only competition effects were observed for factor X, which binds fIXa with much lower affinity. Unexpectedly, fIXa itself, fIX, and prothrombin also dose-dependently enhance fIXa binding at concentrations below 1000 nM, suggesting the formation of membrane-bound fIXa dimers and fIXa-prothrombin complexes on platelets. These findings provide a novel perspective on the fIXa binding site on procoagulant platelets, which does not have any major differences from pure phospholipid-based model membranes, exhibits inherently low affinity (3-5 orders of magnitude below the physiologically relevant fIXa concentration) but is significantly enhanced by its cofactor VIII, and regulated by previously unknown membrane interactions.
Collapse
Affiliation(s)
- Polina A Soloveva
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nadezhda A Podoplelova
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, 117198, Russia.
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, 117198, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Balandina AN, Koltsova EM, Shibeko AM, Kuprash AD, Budkova VA, Demina IA, Ignatova AA, Fadeeva OA, Vijay R, Nair SC, Srivastava A, Shi Q, Ataullakhanov FI, Panteleev MA. Platelets provide robustness of spatial blood coagulation to the variation of initial conditions. Thromb Res 2023; 230:133-143. [PMID: 37717370 DOI: 10.1016/j.thromres.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Activated platelets provide phospholipid surface and secrete coagulation factors, enhancing blood clotting. We investigated the role of platelets in the regulation of blood coagulation spatial dynamics. We activated blood clotting with tissue factor-bearing (TF) surface in platelet-rich plasma (PRP) or platelet-free plasma (PFP). When blood coagulation was initiated by high TF density, clot growth rate (V) in PRP (2 × 105/μL platelets) was only 15 % greater than in PFP. Spatial distribution of thrombin in PRP had a peak-like shape in the area of the fibrin clot edge, while in PFP thrombin was distributed in the shape of descending plateau. Platelet inhibition with prostaglandin E1 or cytochalasin D made spatial thrombin distribution look like in the case of PFP. Inhibition of blood coagulation by natural endogenous inhibitor heparin was diminished in PRP, while the effect of the exogenous or artificial inhibitors (rivaroxaban, nitrophorin, hirudin) remained undisturbed in the presence of platelets. Ten times decrease of the TF surface density greatly depressed blood coagulation in PFP. In PRP only clotting initiation phase was, while the propagation phase remained intact. Coagulation factor deficiency greatly reduced amount of thrombin and decreased V in PFP rather than in PPR. Thus, platelets were redundant for clotting in normal plasma under physiological conditions but provided robustness of the coagulation system to the changes in initial conditions.
Collapse
Affiliation(s)
- Anna N Balandina
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.
| | - Ekaterina M Koltsova
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Alexey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Anna D Kuprash
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Valentina A Budkova
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia
| | - Irina A Demina
- Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | | | | | | | | | | | - Qiang Shi
- Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Fazoil I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia; Lomonosov Moscow State University, Moscow 119234, Russia; Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia; Lomonosov Moscow State University, Moscow 119234, Russia; Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
5
|
Polokhov D, Fedorova D, Ignatova A, Ponomarenko E, Rashevskaya E, Martyanov A, Podoplelova N, Aleksenko M, Mersiyanova I, Seregina E, Poletaev A, Truchina E, Raykina E, Plyasunova S, Novichkova G, Zharkov P, Panteleev M. Novel SLFN14 mutation associated with macrothrombocytopenia in a patient with severe haemorrhagic syndrome. Orphanet J Rare Dis 2023; 18:74. [PMID: 37041648 PMCID: PMC10091655 DOI: 10.1186/s13023-023-02675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Platelet-type bleeding disorder 20 (BDPLT20), as known as SLFN14-related thrombocytopenia, is a rare inherited thrombocytopenia (IT). Previously, only 5 heterozygous missense mutations in the SLFN14 gene have been reported. METHODS A comprehensive clinical and laboratory examination of a 17-year-old female patient with macrothrombocytopenia and severe mucocutaneous bleeding was performed. Examination was carried out using standardized questionnaires to assess bleeding, high-throughput sequencing (Next Generation Sequencing), optical and fluorescence microscopy, flow cytometry with activation and analysis of intracellular calcium signaling of platelets, light transmission aggregometry and thrombus growth in the flow chamber. RESULTS Analysis of the patient's genotype revealed a previously undescribed c.655 A > G (p.K219E) variant in the hotspot of the SLFN14 gene. Immunofluorescence and brightfield examination of platelets in the smear showed heterogeneity in cells size, including giant forms over 10 μm (normal size 1-5) in diameter, with vacuolization and diffuse distribution of β1-tubulin and CD63. Activated platelets showed impaired contraction and shedding/internalization of GPIb. GP IIb/IIIa clustering was increased at rest and attenuated upon activation. Intracellular signalling study revealed impaired calcium mobilization upon TRAP 35.97 nM (reference range 180 ± 44) and CRP-XL 10.08 nM (56 ± 30) stimulation. Aggregation with ADP, collagen, TRAP, arachidonic acid and epinephrine was impaired in light transmission aggregometry; agglutination with ristocetin persisted. In the flow chamber with a shear rate of 400 s-1 platelet adhesion to collagen and clot growth were impaired. CONCLUSION The revealed disorders of phenotype, cytoskeleton and intracellular signaling explain the nature of SLFN14 platelet dysfunction and the patient's severe hemorrhagic syndrome.
Collapse
Affiliation(s)
- Dmitrii Polokhov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Daria Fedorova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anastasiya Ignatova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Evgeniya Ponomarenko
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Rashevskaya
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Martyanov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nadezhda Podoplelova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Maxim Aleksenko
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Irina Mersiyanova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Seregina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Aleksandr Poletaev
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Ekaterina Truchina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Raykina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Plyasunova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Pavel Zharkov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Mikhail Panteleev
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Ignatova AA, Suntsova EV, Pshonkin AV, Martyanov AA, Ponomarenko EA, Polokhov DM, Fedorova DV, Voronin KA, Kotskaya NN, Trubina NM, Krasilnikova MV, Uzueva SS, Serkova IV, Ovsyannikova GS, Romanova KI, Hachatryan LA, Kalinina II, Matveev VE, Korsantiya MN, Smetanina NS, Evseev DA, Sadovskaya MN, Antonova KS, Khoreva AL, Zharkov PA, Shcherbina A, Sveshnikova AN, Maschan AA, Novichkova GA, Panteleev MA. Platelet function and bleeding at different phases of childhood immune thrombocytopenia. Sci Rep 2021; 11:9401. [PMID: 33931737 PMCID: PMC8087794 DOI: 10.1038/s41598-021-88900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is believed to be associated with platelet function defects. However, their mechanisms are poorly understood, in particular with regard to differences between ITP phases, patient age, and therapy. We investigated platelet function and bleeding in children with either persistent or chronic ITP, with or without romiplostim therapy. The study included 151 children with ITP, of whom 56 had disease duration less than 12 months (grouped together as acute/persistent) and 95 were chronic. Samples of 57 healthy children were used as controls, while 5 patients with leukemia, 5 with aplastic anemia, 4 with MYH9-associated thrombocytopenia, and 7 with Wiskott-Aldrich syndrome were used as non-ITP thrombocytopenia controls. Whole blood flow cytometry revealed that platelets in both acute/persistent and chronic ITP were increased in size compared with healthy donors. They were also pre-activated as assessed by PAC1, CD62p, cytosolic calcium, and procoagulant platelet levels. This pattern was not observed in other childhood thrombocytopenias. Pre-activation by CD62p was higher in the bleeding group in the chronic ITP cohort only. Romiplostim treatment decreased size and pre-activation of the patient platelets, but not calcium. Our data suggest that increased size, pre-activation, and cytosolic calcium are common for all ITP platelets, but their association with bleeding could depend on the disease phase.
Collapse
Affiliation(s)
- Anastasia A Ignatova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia
| | - Elena V Suntsova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Alexey V Pshonkin
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Alexey A Martyanov
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Institute for Biochemical Physics (IBCP), Russian Academy of Sciences (RAS), Moscow, Russia
| | - Evgeniya A Ponomarenko
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry M Polokhov
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Daria V Fedorova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Kirill A Voronin
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Natalia N Kotskaya
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Natalia M Trubina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Marina V Krasilnikova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Selima Sh Uzueva
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Irina V Serkova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Galina S Ovsyannikova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Ksenia I Romanova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Lili A Hachatryan
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Irina I Kalinina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Viktor E Matveev
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Maya N Korsantiya
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Natalia S Smetanina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Dmitry A Evseev
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Maria N Sadovskaya
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Kristina S Antonova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Anna L Khoreva
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Pavel A Zharkov
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Anna Shcherbina
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Anastasia N Sveshnikova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksey A Maschan
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Galina A Novichkova
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997
| | - Mikhail A Panteleev
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Russian Ministry of Healthcare, 1 Samory Mashela Str, Moscow, Russia, 117997. .,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia. .,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
7
|
Nechipurenko DY, Shibeko AM, Sveshnikova AN, Panteleev MA. In Silico Hemostasis Modeling and Prediction. Hamostaseologie 2020; 40:524-535. [PMID: 32916753 DOI: 10.1055/a-1213-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Computational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient "virtual thrombus formation," and what one can already get from the existing models.
Collapse
Affiliation(s)
- Dmitry Y Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
8
|
Nechipurenko DY, Receveur N, Yakimenko AO, Shepelyuk TO, Yakusheva AA, Kerimov RR, Obydennyy SI, Eckly A, Léon C, Gachet C, Grishchuk EL, Ataullakhanov FI, Mangin PH, Panteleev MA. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler Thromb Vasc Biol 2019; 39:37-47. [DOI: 10.1161/atvbaha.118.311390] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive.
Approach and Results—
Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride–induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin (
MYH9
)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of
MYH9
-knockout mice, confirming a major role of thrombus contraction in this phenomenon.
Conclusions—
Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.
Collapse
Affiliation(s)
- Dmitry Y. Nechipurenko
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Nicolas Receveur
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Alena O. Yakimenko
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Taisiya O. Shepelyuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Russia (T.O.S.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Alexandra A. Yakusheva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Roman R. Kerimov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
| | - Sergei I. Obydennyy
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Anita Eckly
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Catherine Léon
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Christian Gachet
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.L.G.)
| | - Fazoil I. Ataullakhanov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| | - Pierre H. Mangin
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Mikhail A. Panteleev
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| |
Collapse
|
9
|
Ignatova AA, Ponomarenko EA, Polokhov DM, Suntsova EV, Zharkov PA, Fedorova DV, Balashova EN, Rudneva AE, Ptushkin VV, Nikitin EA, Shcherbina A, Maschan AA, Novichkova GA, Panteleev MA. Flow cytometry for pediatric platelets. Platelets 2018; 30:428-437. [PMID: 30285517 DOI: 10.1080/09537104.2018.1513473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of platelets to carry out their hemostatic function can be impaired in a wide range of inherited and acquired conditions: trauma, surgery, inflammation, pre-term birth, sepsis, hematological malignancies, solid tumors, chemotherapy, autoimmune disorders, and many others. Evaluation of this impairment is vitally important for research and clinical purposes. This problem is particularly pronounced in pediatric patients, where these conditions occur frequently, while blood volume and the choice of blood collection methods could be limited. Here we describe a simple flow cytometry-based screening method of comprehensive whole blood platelet function testing that was validated for a range of pediatric and adult samples (n = 31) in the hematology hospital setting including but not limited to: classic inherited platelet function disorders (Glanzmann's thrombasthenia; Bernard-Soulier, Wiscott-Aldrich, and Hermasky-Pudlak syndromes, MYH9-dependent thrombocytopenia), healthy and pre-term newborns, acute and chronic immune thrombocytopenia, chronic lympholeukemia, effects of therapy on platelet function, etc. The method output includes levels of forward and side scatter, levels of major adhesion and aggregation glycoproteins Ib and IIb-IIIa, active integrins' level based on PAC-1 binding, major alpha-granule component P-selectin, dense granule function based on mepacrine uptake and release, and procoagulant activity quantified as a percentage of annexin V-positive platelets. This analysis is performed for both resting and dual-agonist-stimulated platelets. Preanalytical and analytical variables are provided and discussed. Parameter distribution within the healthy donor population for adults (n = 72) and children (n = 17) is analyzed.
Collapse
Affiliation(s)
- Anastasia A Ignatova
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Evgeniya A Ponomarenko
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation.,b Faculty of Biology, Moscow State University named after M.V. Lomonosov , Moscow , Russian Federation
| | - Dmitry M Polokhov
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Elena V Suntsova
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Pavel A Zharkov
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Daria V Fedorova
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Ekaterina N Balashova
- d Neonatal Intensive Care and Resuscitation Unit , National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Anastasia E Rudneva
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Vadim V Ptushkin
- e Hematological Center , City Clinical Hospital named after S.P. Botkin , Moscow , Russia
| | - Evgeniy A Nikitin
- e Hematological Center , City Clinical Hospital named after S.P. Botkin , Moscow , Russia
| | - Anna Shcherbina
- f Institute of Hematology, Immunology and Cell Technologies , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Alexei A Maschan
- f Institute of Hematology, Immunology and Cell Technologies , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Galina A Novichkova
- g Medical administration , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Mikhail A Panteleev
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation.,b Faculty of Biology, Moscow State University named after M.V. Lomonosov , Moscow , Russian Federation.,h Faculty of Biological and Medical Physics , Moscow Institute of Physics and Technology , Dolgoprudny , Russian Federation.,i Laboratory of Molecular Mechanisms of Hemostasis , Center for Theoretical Problems of Physicochemical Pharmacology , Moscow , Russian Federation
| |
Collapse
|
10
|
Susree M, Panteleev MA, Anand M. Coated platelets introduce significant delay in onset of peak thrombin production: Theoretical predictions. J Theor Biol 2018; 453:108-116. [PMID: 29782929 DOI: 10.1016/j.jtbi.2018.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Platelets play a crucial role in the initiation, progress, termination as well as regulation of blood coagulation. Recent studies have confirmed that not all but only a small percentage of thrombin-activated platelets ("coated" platelets) exhibit procoagulant properties (namely the expression of phosphatidylserine binding sites) required for the acceleration and progress of coagulation. A mechanistic model is developed for in vitro coagulation whose key features are distinct equations for coated platelets, thrombin dose-dependence for coated platelets, and competitive binding of coagulation factors to platelet membrane. Model predictions show significant delay in the onset of peak Va production, and peak thrombin production when dose-dependence is incorporated instead of a fixed theoretical maximum percentage of coated platelets. Further, peak thrombin concentration is significantly overestimated when either fractional presence of coated platelets is ignored (by 299.4%) or when dose-dependence on thrombin is ignored (by 24.7%).
Collapse
Affiliation(s)
- M Susree
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana, India
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Lomonosov Moscow State University, Moscow, Russia
| | - M Anand
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana, India.
| |
Collapse
|
11
|
Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27:57-95. [PMID: 29550179 DOI: 10.1016/j.plrev.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
Hemostasis is a complex physiological mechanism that functions to maintain vascular integrity under any conditions. Its primary components are blood platelets and a coagulation network that interact to form the hemostatic plug, a combination of cell aggregate and gelatinous fibrin clot that stops bleeding upon vascular injury. Disorders of hemostasis result in bleeding or thrombosis, and are the major immediate cause of mortality and morbidity in the world. Regulation of hemostasis and thrombosis is immensely complex, as it depends on blood cell adhesion and mechanics, hydrodynamics and mass transport of various species, huge signal transduction networks in platelets, as well as spatiotemporal regulation of the blood coagulation network. Mathematical and computational modeling has been increasingly used to gain insight into this complexity over the last 30 years, but the limitations of the existing models remain profound. Here we review state-of-the-art-methods for computational modeling of thrombosis with the specific focus on the analysis of unresolved challenges. They include: a) fundamental issues related to physics of platelet aggregates and fibrin gels; b) computational challenges and limitations for solution of the models that combine cell adhesion, hydrodynamics and chemistry; c) biological mysteries and unknown parameters of processes; d) biophysical complexities of the spatiotemporal networks' regulation. Both relatively classical approaches and innovative computational techniques for their solution are considered; the subjects discussed with relation to thrombosis modeling include coarse-graining, continuum versus particle-based modeling, multiscale models, hybrid models, parameter estimation and others. Fundamental understanding gained from theoretical models are highlighted and a description of future prospects in the field and the nearest possible aims are given.
Collapse
|
12
|
Platelet Aggregation in Direct Oral Factor Xa Inhibitors–treated Patients With Atrial Fibrillation: A Pilot Study. J Cardiovasc Pharmacol 2017; 70:263-266. [DOI: 10.1097/fjc.0000000000000516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kovalenko TA, Panteleev MA, Sveshnikova AN. The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917020105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Sveshnikova AN, Balatskiy AV, Demianova AS, Shepelyuk TO, Shakhidzhanov SS, Balatskaya MN, Pichugin AV, Ataullakhanov FI, Panteleev MA. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost 2016; 14:2045-2057. [PMID: 27513817 DOI: 10.1111/jth.13442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/16/2023]
Abstract
Essentials Roles of the two thrombin receptors in platelet signaling are poorly understood. Computational systems biology modeling was used together with continuous flow cytometry. Dual-receptor system has wide-range sensitivity to thrombin and optimal response dynamics. Procoagulant platelet formation is determined by donor-specific activities of the two receptors. SUMMARY Background Activation of human platelets with thrombin proceeds via two protease-activated receptors (PARs), PAR1 and PAR4, that have identical main intracellular signaling responses. Although there is evidence that they have different cleavage/inactivation kinetics (and some secondary variations in signaling), the reason for such redundancy is not clear. Methods We developed a multicompartmental stochastic computational systems biology model of dual-receptor thrombin signaling in platelets to gain insight into the mechanisms and roles of PAR1 and PAR4 functioning. Experiments employing continuous flow cytometry of washed human platelets were used to validate the model and test its predictions. Activity of PAR receptors in donors was evaluated by mRNA measurement and by polymorphism sequencing. Results Although PAR1 activation produced rapid and short-lived response, signaling via PAR4 developed slowly and propagated in time. Response of the dual-receptor system was both rapid and prolonged in time. Inclusion of PAR1/PAR4 heterodimer formation promoted PAR4 signaling in the medium range of thrombin concentration (about 10 nm), with little contribution at high and low thrombin. Different dynamics and dose-dependence of procoagulant platelet formation in healthy donors was associated with individual variations in PAR1 and PAR4 activities and particularly by the Ala120Thr polymorphism in the F2RL3 gene encoding PAR4. Conclusions The dual-receptor combination is critical to produce a response combining three critical advantages: sensitivity to thrombin concentration, rapid onset and steady propagation; specific features of the protease-activated receptors do not allow combination of all three in a single receptor.
Collapse
Affiliation(s)
- A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Therapeutic Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Balatskiy
- Medical Scientific and Educational Center, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A S Demianova
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - T O Shepelyuk
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - M N Balatskaya
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A V Pichugin
- Institute of Immunology FMBA of Russia, Moscow, Russia
| | - F I Ataullakhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia.
| |
Collapse
|
15
|
Obydennyy SI, Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost 2016; 14:1867-81. [PMID: 27343487 DOI: 10.1111/jth.13395] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials The sequence and logic of events leading to platelet procoagulant activity are poorly understood. Confocal time-lapse microscopy was used to investigate activation of single adherent platelets. Platelet transition to the procoagulant state followed cytosolic calcium oscillations. Mitochondria did not collapse simultaneously and membrane potential loss could be reversible. SUMMARY Background Activated platelets form two subpopulations, one of which is able to efficiently aggregate, and another that externalizes phosphatidylserine (PS) and thus accelerates membrane-dependent reactions of blood coagulation. The latter, procoagulant subpopulation is characterized by a high cytosolic calcium level and the loss of inner mitochondrial membrane potential, and there are conflicting opinions on their roles in its formation. Methods We used confocal microscopy to investigate the dynamics of subpopulation formation by imaging single, fibrinogen-bound platelets with individual mitochondria in them upon loading with calcium-sensitive and mitochondrial potential-sensitive dyes. Stimulation was performed with thrombin or the protease-activated receptor (PAR) 1 agonist SFLLRN. Stochastic simulations with a computational systems biology model of PAR1 calcium signaling were employed for analysis. Results Platelet activation resulted in a series of cytosolic calcium spikes and mitochondrial calcium uptake in all platelets. The frequency of spikes decreased with time for SFLLRN stimulation, but remained high for a long period of time for thrombin. In some platelets, uptake of calcium by mitochondria led to the mitochondrial permeability transition pore opening and inner mitochondrial membrane potential loss, which could be either reversible or irreversible. The latter resulted in an increase in the cytosolic calcium level and PS exposure. These platelets had higher cytosolic calcium levels before activation, and their mitochondria collapsed not simultaneously but one after another. Conclusions These results support a model of procoagulant subpopulation development following a series of stochastic cytosolic calcium spikes that are accumulated by mitochondria, leading to a collapse, and suggest important roles of individual platelet reactivity and signal exchange between different mitochondria of a platelet.
Collapse
Affiliation(s)
- S I Obydennyy
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - A N Sveshnikova
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Therapeutic Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - F I Ataullakhanov
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - M A Panteleev
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia.
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
16
|
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016; 128:1745-55. [PMID: 27432876 DOI: 10.1182/blood-2016-02-696898] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 μm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.
Collapse
|