1
|
Peters MK, Astafyeva Y, Han Y, Macdonald JFH, Indenbirken D, Nakel J, Virdi S, Westhoff G, Streit WR, Krohn I. Novel marine metalloprotease-new approaches for inhibition of biofilm formation of Stenotrophomonas maltophilia. Appl Microbiol Biotechnol 2023; 107:7119-7134. [PMID: 37755512 PMCID: PMC10638167 DOI: 10.1007/s00253-023-12781-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Many marine organisms produce bioactive molecules with unique characteristics to survive in their ecological niches. These enzymes can be applied in biotechnological processes and in the medical sector to replace aggressive chemicals that are harmful to the environment. Especially in the human health sector, there is a need for new approaches to fight against pathogens like Stenotrophomonas maltophilia which forms thick biofilms on artificial joints or catheters and causes serious diseases. Our approach was to use enrichment cultures of five marine resources that underwent sequence-based screenings in combination with deep omics analyses in order to identify enzymes with antibiofilm characteristics. Especially the supernatant of the enrichment culture of a stony coral caused a 40% reduction of S. maltophilia biofilm formation. In the presence of the supernatant, our transcriptome dataset showed a clear stress response (upregulation of transcripts for metal resistance, antitoxins, transporter, and iron acquisition) to the treatment. Further investigation of the enrichment culture metagenome and proteome indicated a series of potential antimicrobial enzymes. We found an impressive group of metalloproteases in the proteome of the supernatant that is responsible for the detected anti-biofilm effect against S. maltophilia. KEY POINTS: • Omics-based discovery of novel marine-derived antimicrobials for human health management by inhibition of S. maltophilia • Up to 40% reduction of S. maltophilia biofilm formation by the use of marine-derived samples • Metalloprotease candidates prevent biofilm formation of S. maltophilia K279a by up to 20.
Collapse
Affiliation(s)
- Marie Kristin Peters
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Jacqueline Nakel
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Sanamjeet Virdi
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Guido Westhoff
- Tierpark Hagenbeck, Gemeinnützige Gesellschaft mbH, Lokstedter Grenzstraße 2, 22527, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
2
|
Lv P, Shang Y, Zhang Y, Wang W, Liu Y, Su D, Wang W, Li C, Ma C, Yang C. Structural basis for the arsenite binding and translocation of Acr3 antiporter with NhaA folding pattern. FASEB J 2022; 36:e22659. [PMID: 36394534 DOI: 10.1096/fj.202201280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The arsenical resistance-3 (ACR3) family constitutes the most common pathway that confers high-level resistance to toxic metalloids in various microorganisms and lower plants. Based on the structural model constructed by AlphaFold2, the Acr3 antiporter from Bacillus subtilis (Acr3Bs ) exhibits a typical NhaA structure fold, with two discontinuous helices of transmembrane (TM) segments, TM4 and TM9, interacting with each other and forming an X-shaped structure. As the structural information available for these important arsenite-efflux pumps is limited, we investigated the evolutionary conservation among 300 homolog sequences and identified three conserved motifs in both the discontinuous helices and TM5. Through site-directed mutagenesis, microscale thermophoresis (MST), and fluorescence resonance energy transfer (FRET) analyses, the identified Motif C in TM9 was found to be a critical element for substrate binding, in which N292 and E295 are involved in substrate coordination, while R118 in TM4 and E322 in TM10 is responsible for structural stabilization. In addition, the highly conserved residues on Motif B of TM5 are potentially key factors in the protonation/deprotonation process. These consensus motifs and residues are essential for metalloid compound translocation of Acr3 antiporters, by framing the core domain and the typical X-shaped of NhaA fold.
Collapse
Affiliation(s)
- Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yan Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Ye Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Wenkai Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yuanxiang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Dandan Su
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Wei Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunfang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| |
Collapse
|
3
|
Lee J, Levin DE. Differential metabolism of arsenicals regulates Fps1-mediated arsenite transport. J Cell Biol 2022; 221:212996. [PMID: 35139143 PMCID: PMC8932518 DOI: 10.1083/jcb.202109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Arsenic is an environmental toxin that exists mainly as pentavalent arsenate and trivalent arsenite. Both forms activate the yeast SAPK Hog1 but with different consequences. We describe a mechanism by which cells distinguish between these arsenicals through one-step metabolism to differentially regulate the bidirectional glycerol channel Fps1, an adventitious port for arsenite. Cells exposed to arsenate reduce it to thiol-reactive arsenite, which modifies a set of cysteine residues in target proteins, whereas cells exposed to arsenite metabolize it to methylarsenite, which modifies an additional set of cysteine residues. Hog1 becomes arsenylated, which prevents it from closing Fps1. However, this block is overcome in cells exposed to arsenite through methylarsenylation of Acr3, an arsenite efflux pump that we found also regulates Fps1 directly. This adaptation allows cells to restrict arsenite entry through Fps1 and also allows its exit when produced from arsenate exposure. These results have broad implications for understanding how SAPKs activated by diverse stressors can drive stress-specific outputs.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA.,Department of Microbiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
4
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
5
|
Partial proteolysis improves the identification of the extracellular segments of transmembrane proteins by surface biotinylation. Sci Rep 2020; 10:8880. [PMID: 32483232 PMCID: PMC7264363 DOI: 10.1038/s41598-020-65831-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 01/11/2023] Open
Abstract
Transmembrane proteins (TMP) play a crucial role in several physiological processes. Despite their importance and diversity, only a few TMP structures have been determined by high-resolution protein structure characterization methods so far. Due to the low number of determined TMP structures, the parallel development of various bioinformatics and experimental methods was necessary for their topological characterization. The combination of these methods is a powerful approach in the determination of TMP topology as in the Constrained Consensus TOPology prediction. To support the prediction, we previously developed a high-throughput topology characterization method based on primary amino group-labelling that is still limited in identifying all TMPs and their extracellular segments on the surface of a particular cell type. In order to generate more topology information, a new step, a partial proteolysis of the cell surface has been introduced to our method. This step results in new primary amino groups in the proteins that can be biotinylated with a membrane-impermeable agent while the cells still remain intact. Pre-digestion also promotes the emergence of modified peptides that are more suitable for MS/MS analysis. The modified sites can be utilized as extracellular constraints in topology predictions and may contribute to the refined topology of these proteins.
Collapse
|
6
|
Wawrzycka D, Sadlak J, Maciaszczyk-Dziubinska E, Wysocki R. Rsp5-dependent endocytosis and degradation of the arsenite transporter Acr3 requires its N-terminal acidic tail as an endocytic sorting signal and arrestin-related ubiquitin-ligase adaptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:916-925. [PMID: 30776335 DOI: 10.1016/j.bbamem.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
Abstract
The yeast plasma membrane transporter Acr3 mediates efflux of toxic arsenite and antimonite. Here, we investigated the mechanisms of Acr3 turnover. We found that after arrival and residence at the plasma membrane, Acr3 is subjected to internalization followed by proteolysis in the vacuole. Endocytic degradation of Acr3 is promoted by the ubiquitin ligase Rsp5 and requires polyubiquitination of Acr3 at multiple lysine residues via lysine 63-linked ubiquitin chains. The turnover of Acr3 also depends on two arrestin-related proteins, Art3/Aly2 and Art4/Rod1, that enable recruitment of Rsp5 to its targets. Finally, we found that a short acidic patch located in the N-terminal tail of Acr3 is needed for its ubiquitination and internalization. We propose that this motif serves as an endocytic signal that facilitates binding of the arrestin-Rsp5 complexes to the Acr3 cargo.
Collapse
Affiliation(s)
- Donata Wawrzycka
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Joanna Sadlak
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | | | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|