1
|
Golonka I, Łukasiewicz IW, Sebastiańczyk A, Greber KE, Sawicki W, Musiał W. The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid. Int J Mol Sci 2024; 25:12484. [PMID: 39684196 DOI: 10.3390/ijms252312484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Acne vulgaris is one of the most common dermatological diseases and is strongly connected with the pathological growth of the Cutibacterium acnes. More than half of the cultures of this bacterium are resistant to antibiotics, resulting in the proposal of the use of antibacterial peptides as an alternative to traditional antibiotics. Ascorbic acid (AA) and its antioxidant properties may ally in acne therapy. The aim of this study was to determine the influence of the selected antibacterial peptides in the presence of ascorbic acid and 3-O-ethyl-ascorbic acid (EAA) on the properties of the monolayer formed by phosphatidylinositol. Studies of the properties of the phosphatidylinositol monolayer were carried out using the Langmuir-Wilhelmy balance. The recorded compression isotherms, hysteresis loops, and surface pressure values recorded at specific time intervals were evaluated to assess the influence of ascorbic acid and its derivatives in the presence of antimicrobial peptides on the stability and organization of phosphatidylinositol monolayers. The addition of AA to the subphase caused a faster phase transition at over 60 Å2/molecule and significantly reduced the plateau surface pressure by about 20% in most of the systems tested. The studied monolayers were found to be in the expanded liquid state (40.23-49.95 [mN/m]) or in the transition between the expanded and condensed liquid phase (51.47-60.98 [mN/m]). Compression and decompression isotherms indicated the highest flexibility of the systems at 20 °C and 25 °C. The surface pressure versus time dependence indicated the stability of the phosphatidylinositol monolayer with 3-O-ethyl-ascorbic acid and antimicrobial peptides up to 35 °C.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Izabela W Łukasiewicz
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Aleksandra Sebastiańczyk
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Katarzyna E Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
2
|
Li J, Lan T, Guo Q, Zhang C, Lu X, Hu X, Shen X, Zhang Y. Mitochondria-Targeted Natural Antioxidant Nanosystem for Diabetic Vascular Calcification Therapy. Biomacromolecules 2024; 25:4329-4343. [PMID: 38833553 DOI: 10.1021/acs.biomac.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The development of nanotherapy targeting mitochondria to alleviate oxidative stress is a critical therapeutic strategy for vascular calcification (VC) in diabetes. In this study, we engineered mitochondria-targeted nanodrugs (T4O@TPP/PEG-PLGA) utilizing terpinen-4-ol (T4O) as a natural antioxidant and mitochondrial protector, PEG-PLGA as the nanocarrier, and triphenylphosphine (TPP) as the mitochondrial targeting ligand. In vitro assessments demonstrated enhanced cellular uptake of T4O@TPP/PEG-PLGA, with effective mitochondrial targeting. This nanodrug successfully reduced oxidative stress induced by high glucose levels in vascular smooth muscle cells. In vivo studies showed prolonged retention of the nanomaterials in the thoracic aorta for up to 24 h. Importantly, experiments in diabetic VC models underscored the potent antioxidant properties of T4O@TPP/PEG-PLGA, as evidenced by its ability to mitigate VC and restore mitochondrial morphology. These results suggest that these nanodrugs could be a promising strategy for managing diabetic VC.
Collapse
Affiliation(s)
- Jinjin Li
- The Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Tianyu Lan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Chuang Zhang
- The Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, Guizhou, China
| |
Collapse
|
3
|
Abdel-Razek AG, Abo-Elwafa GA, Al-Amrousi EF, Badr AN, Hassanein MMM, Qian Y, Siger A, Grygier A, Radziejewska-Kubzdela E, Rudzińska M. Effect of Refining and Fractionation Processes on Minor Components, Fatty Acids, Antioxidant and Antimicrobial Activities of Shea Butter. Foods 2023; 12:foods12081626. [PMID: 37107421 PMCID: PMC10137687 DOI: 10.3390/foods12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Shea butter is becoming increasingly popular in foods, cosmetics and pharmaceutical products. This work aims to study the effect of the refining process on the quality and stability of fractionated and mixed shea butters. Crude shea butter, refined shea stearin, olein and their mixture (1:1 w/w) were analyzed for fatty acids, triacylglycerol composition, peroxide value (PV), free fatty acids (FFA), phenolic (TPC), flavonoid (TFC), unsaponifiable matter (USM), tocopherol and phytosterol content. Additionally, the oxidative stability, radical scavenging activity (RSA), antibacterial and antifungal activities were evaluated. The two main fatty acids in the shea butter samples were stearic and oleic. The refined shea stearin showed lower PV, FFA, USM, TPC, TFC, RSA, tocopherol and sterol content than crude shea butter. A higher EC50 was observed, but antibacterial activity was much lower. The refined olein fraction was characterized by lower PV, FFA and TFC in comparison with crude shea butter, but USM, TPC, RSA, EC50, tocopherol and sterol content was unchanged. The antibacterial activity was higher, but the antifungal activity was lower than those of crude shea butter. When both fractions were mixed, their fatty acid and triacylglycerol composition were similar to those of crude shea butter, but other parameters were different.
Collapse
Affiliation(s)
- Adel G Abdel-Razek
- Department of Fats and Oils, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ghada A Abo-Elwafa
- Department of Fats and Oils, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Eman F Al-Amrousi
- Department of Fats and Oils, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - Ying Qian
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Aleksander Siger
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Anna Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | | | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| |
Collapse
|
4
|
Okazaki K, Sumitani H, Takahashi K, Isegawa Y. Mode of Antifungal Action of Daito- Gettou ( Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods 2023; 12:foods12061298. [PMID: 36981224 PMCID: PMC10048414 DOI: 10.3390/foods12061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Plant-derived essential oils (EOs) are used in medicines, disinfectants, and aromatherapy products. Information on the antifungal activity of EO of Alpinia zerumbet var. exelsa (known as Daito-gettou) found in Kitadaito Island, Okinawa, is limited. Therefore, we aimed to evaluate the antifungal activity of EOs obtained via steam distillation of leaves of Daito-gettou, which is a hybrid of A. zerumbet and A. uraiensis. Daito-gettou EO showed antifungal activity (minimum inhibitory concentration = 0.4%) against Aspergillus brasiliensis NBRC 9455, which was comparable to that of A. zerumbet found in the Okinawa main island. Gas chromatography/mass spectrometry revealed that the main components of Daito-gettou EOs are γ-terpinene, terpinen-4-ol, 1,8-cineole, 3-carene, and p-cymene. Terpinen-4-ol content (MIC = 0.075%) was 17.24%, suggesting that the antifungal activity of Daito-gettou EO was mainly attributable to this component. Daito-gettou EO and terpinen-4-ol inhibited mycelial growth. Moreover, calorimetric observations of fungal growth in the presence of Daito-gettou EO showed a characteristic pattern with no change in the initial growth rate and only a delay in growth. As this pattern is similar to that of amphotericin B, it implies that the action mode of Daito-gettou EO and terpinen-4-ol may be fungicidal. Further studies on the molecular mechanisms of action are needed for validation.
Collapse
Affiliation(s)
- Kiyo Okazaki
- Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Furukawa, Ojin-cho, Tokushima 771-1192, Tokushima, Japan
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya 663-8558, Hyogo, Japan
| | | | - Katsutada Takahashi
- Laboratory of Biophysical Chemistry, The Keihanna Academy of Science and Culture, Kyoto 619-0237, Kyoto, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya 663-8558, Hyogo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
5
|
Filatov VA, Kulyak OY, Kalenikova EI. Chemical Composition and Antimicrobial Potential of a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Pharmaceuticals (Basel) 2023; 16:ph16030328. [PMID: 36986428 PMCID: PMC10053605 DOI: 10.3390/ph16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Seborrheic dermatitis (SD) is the most prevalent dermatological disease, occurring in up to 50% of newborns, children, and adults around the world. The antibacterial and antifungal resistance contributed to the search for new natural substances and the development of a novel substance based on Melaleuca alternifolia (M. alternifolia) leaf oil (TTO), 1,8-cineole (eucalyptol), and α-(-)-bisabolol. Thus, this work aimed to determine the chemical composition of the novel plant-based substance and to evaluate its antimicrobial activity against standard microorganisms involved in the pathogenesis of SD. Moreover, the chemical composition of the substance was analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), Micrococcus luteus (M. luteus), and Candida albicans (C. albicans) were used for antimicrobial and antifungal assays by means of the broth microdilution method to determine the minimal inhibitory concentration (MIC). Finally, the substance’s ability to inhibit Malassezia furfur (M. furfur) was evaluated. Eighteen compounds from different chemical groups were identified by GC/MS. The major biologically active compounds of the substance were terpinen-4-ol (20.88%), 1,8-cineole (22.28%), (-)-α-bisabolol (25.73%), and o-cymene (8.16%). The results showed that the substance has a synergistic antimicrobial and antifungal activity, while S. epidermidis and C. albicans strains were the most susceptible. Furthermore, the substance inhibited M. furfur, which is a main pathogen involved in the pathogenesis of SD and clinical manifestations. It can be concluded that the novel plant-based substance has a promising potential against M. furfur and scalp commensal bacteria and may be helpful for the development of new drugs for treatment of dandruff and SD.
Collapse
Affiliation(s)
- Viktor A. Filatov
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- SkyLab AG, 1066 Lausanne, Switzerland
- Correspondence:
| | - Olesya Yu. Kulyak
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia
| | - Elena I. Kalenikova
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
| |
Collapse
|
6
|
Malaspina P, Papaianni M, Ranesi M, Polito F, Danna C, Aicardi P, Cornara L, Woo SL, De Feo V. Eucalyptus cinerea and E. nicholii by-Products as Source of Bioactive Compounds for Agricultural Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:2777. [PMID: 36297802 PMCID: PMC9609402 DOI: 10.3390/plants11202777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The cultivation of different species of Eucalyptus has recently expanded in Liguria (Italy) due to the growing demand of the North European floricultural market. Eucalyptus tree branches are cut and selected for their quality, resulting in large amounts of waste biomass to be disposed of. The aim of our study was to evaluate the phytotoxic and antimicrobial activities of essential oils (EOs) from pruning wastes of E. cinerea (EC) and E. nicholii (EN), for potential applications in agriculture. Phytochemical analyses showed eucalyptol (1,8-cineole) as the major component in both EOs, but the EO yield of EN was higher than that of EC, in agreement with a significantly higher oil gland density on EN leaves. EOs from both species showed phytotoxicity on both weeds tested, but no significant inhibition on horticultural crop seed germination, except for Raphanus sativus. The EO from EC showed the strongest antibacterial activity, while the EO from EN showed the strongest antifungal activity. Concluding, EOs from Eucalyptus pruning may be used as possible alternatives to synthetic herbicides and pesticides, acting as antimicrobial and antifungal agents, thus representing a safe strategy for crop management programs.
Collapse
Affiliation(s)
- Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Marta Ranesi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Cristina Danna
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | | | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Wei C, Li H, Cui G, Ma C, Deng R, Zou Z, Liu Z. Efficient separation of Cinnamomum camphora leaf essential oil and in vitro evaluation of its antifungal activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Lv C, Hao L, Cui X, Yi F, Su C. Study on the Composition and Physiological Activity of the Essential Oils and Extracts of Cinnamomum camphora Fruit. Chem Biodivers 2021; 18:e2100201. [PMID: 34423561 DOI: 10.1002/cbdv.202100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Supercritical carbon dioxide (SC-CO2 ), hydrodistillation (HDO), ethanol extraction (EE), and petroleum ether extraction (PE) were used to extract the essential oil and extracts of Cinnamomum camphora fruit in this study. Gas chromatography-mass spectrometry was used to identify the volatile components of essential oils and extracts, and 63 compounds were identified. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay and Ferric reducing ability of plasma (FRAP) assays and the inhibition experiment of bacteria and fungi (Staphylococcus aureus (S. aureus), Hay bacillus (H. bacillus), Escherichia coli (E. coli), Aspergillus niger (A. niger), Candida albicans (C. albicans)) showed these essential oils and extracts indicated antioxidant and antibacterial activities. S. aureus was the most sensitive to the essential oil (MIC=0.08 mg/ml). Combined with the Brine Shrimp Lethality Test (BSLT) experiment, HDO (LD50 =68.21 μg/ml) was considered to have the most potential natural preservative. Subsequently, the inhibitory mechanism of HDO on bacteria and fungi was explored through extracellular conductivity and SEM, and the possibility of HDO to preserve the freshness of bananas was verified through banana shelf-life experiments. The results suggested these essential oils and extracts of Cinnamomum camphora fruit indicated effectively inhibit the growth of microorganisms on the surface of bananas, extend the shelf-life, and have the potential to become a natural antiseptic ingredient.
Collapse
Affiliation(s)
- Chenyuan Lv
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Linyu Hao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Xinang Cui
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Chang Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| |
Collapse
|
9
|
Camphor and Eucalyptol-Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int J Mol Sci 2021; 22:ijms22020483. [PMID: 33418931 PMCID: PMC7825113 DOI: 10.3390/ijms22020483] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125-0.35 mg/mL while eucalyptol was active in the range of 2-23 mg/mL. The results showed camphor's potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.
Collapse
|
10
|
Perczyk P, Wójcik A, Wydro P, Broniatowski M. The role of phospholipid composition and ergosterol presence in the adaptation of fungal membranes to harsh environmental conditions-membrane modeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183136. [PMID: 31751523 DOI: 10.1016/j.bbamem.2019.183136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023]
Abstract
Soil fungi play an important role in the environment decomposing dead organic matter and degrading persistent organic pollutants (POP). The presence of hydrophobic POP in the soil and membrane-lytic substances excreted by competing microorganism to the soil solution is the constant threat to these organisms. To survive in the harsh environment and counteract these hazards the fungal cells have to strictly control the composition of the lipids in their cellular membranes. However, in the case of fungal membranes the correlation between their composition and physical properties is not fully understood. In our studies we applied Langmuir monolayers formed by phospholipids typical to fungal membranes and ergosterol as versatile model membranes. These membranes were characterized by the Langmuir technique, Brewster Angle Microscopy and Grazing Incidence X-ray Diffraction, as well as were exposed to the action of phospholipase A2 treated as a model membrane-lytic protein. We started our studies from the equimolar mixture of phosphatidylethanolamine with phosphatidylcholine and doped this matrix with phosphatidylserine (PS) or phosphatidylinositol (PI). It turned out that the membranes with PS were much more condensed at the mesoscale and periodically organized at the molecular level. Starting from these models we derived two families of model fungal membranes adding to these phospholipid matrices ergosterol. It turned out that the level of ergosterol content is of crucial importance for the model membrane structure and its durability. Changing the ergosterol mole ratio from 0 to 0.5 we defined and described in detail four different 2D crystalline phases.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Aneta Wójcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
Xiao Z, Kang Y, Hou W, Niu Y, Kou X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int J Biol Macromol 2019; 137:132-138. [PMID: 31252018 DOI: 10.1016/j.ijbiomac.2019.06.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Octenyl succinic anhydride (OSA)-modified starch and maltodextrins (MDs) are important carbohydrate polymers as wall materials. However, few studies have shown whether these two wall materials affect the composition of core materials. In this work, we investigated the effects of OSA-modified starch and MD on the release property of essential oils. Results showed that among the seven characteristic aroma components (CACs) of rose essential oil (REO), the esters released the fastest, followed by the alcohols, while the release of the phenols was the slowest. Environmental factors such as temperature and relative humidities (RHs) had significant influences on the release kinetics of CACs in REO. This work provides new insights into the use of OSA-modified starch and MDs as wall materials for encapsulating complex and bioactive components.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenjing Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|