1
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. Mol Biol Cell 2024; 35:ar152. [PMID: 39504468 DOI: 10.1091/mbc.e24-05-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
2
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. iScience 2024; 27:110989. [PMID: 39759075 PMCID: PMC11700639 DOI: 10.1016/j.isci.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral Myelin Protein 22 (PMP22) and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here, we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (hereditary neuropathy with pressure palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ ∼ PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher P. Ptak
- Carver College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley C. Winistorfer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E. Shy
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zimmer SE, Kowalczyk AP. The desmosome as a dynamic membrane domain. Curr Opin Cell Biol 2024; 90:102403. [PMID: 39079221 DOI: 10.1016/j.ceb.2024.102403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
6
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
7
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590936. [PMID: 38712246 PMCID: PMC11071526 DOI: 10.1101/2024.04.24.590936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1 TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1 TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
|
9
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Wang J, Cheng X, Mei X, Wu H, Yu Q, Xiao M. The effect of Par3 on the cellular junctions and biological functions of odontoblast-lineage cells. Odontology 2024; 112:125-137. [PMID: 37493885 DOI: 10.1007/s10266-023-00838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 07/27/2023]
Abstract
Perfect intercellular junctions are key for odontoblast barrier function. However, whether Partitioning defective-3 (Par3) is expressed in odontoblasts and its potential effects on odontoblast junctions are unknown. Herein, we investigated the effect of Par3 on cellular junctions and the biological behavior of odontoblast-lineage cells (OLCs). Whole-transcriptome sequencing was used to analyze the effects of Par3 on OLCs and the underlying molecular mechanism. Par3 was detected under physiological and inflammatory conditions in OLCs. To investigate the regulatory effect of Par3 on junctions between mouse OLCs, the effects of Par3 downregulation on the proliferation, migration, cycle and apoptosis of OLCs were detected by 5-ethyl-2'-deoxyuridine (EdU) and Transwell assays and flow cytometry. Western blotting and alizarin red S and alkaline phosphatase (ALP) staining were used to observe the effect of Par3 downregulation on OLC mineralization. Whole-transcriptome sequencing was used to investigate the biological role of Par3 in OLCs and potential molecular mechanisms. Par3 was located along the odontoblast layer in the rat pulp tissue and in the cytoplasm of OLCs. Par3 expression was downregulated under inflammatory conditions. The OLC junctions were discontinuous, and total Zona occluden-1 (ZO-1) expression and expression of ZO-1 at the membrane in OLCs were reduced after Par3 silencing (P < 0.05). Expression of a junction-related protein (ZO-1) was downregulated after the downregulation of Par3 (P < 0.05), and ZO-1 moved from the cell membrane to the cytoplasm. OLC proliferation and migration were enhanced, but apoptosis and mineralization were inhibited in shPar3-transfected cells (P < 0.05). Sequencing identified 2996 differentially expressed genes (DEGs), which were mainly enriched in the response to stimuli and binding. Downregulation of Par3 could overactivate the PI3k-AKT pathway by promoting AKT phosphorylation (P < 0.05). Downregulation of Par3 may disrupt junctions between OLCs by affecting ZO-1 expression and distribution and promote OLC proliferation and migration but inhibit OLC mineralization. Par3 may interact with 14-3-3 proteins for PI3K-AKT pathway activation to affect OLC junctions and function.
Collapse
Affiliation(s)
- Jueyu Wang
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Xiaogang Cheng
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Xiaohan Mei
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Haoze Wu
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Qing Yu
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Min Xiao
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China.
| |
Collapse
|
11
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Liang J, Hu F, Mao L, Qiu Y, Jiang F, Wang Q, Abulikemu K, Hong Y, Ge X, Kang X. Interleukin-37 inhibits desmoglein-3 endocytosis and keratinocyte dissociation via upregulation of Caveolin-1 and inhibition of the STAT3 pathway. J Eur Acad Dermatol Venereol 2023; 37:1920-1927. [PMID: 37262304 DOI: 10.1111/jdv.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a potentially fatal autoimmune bullous disease primarily caused by acantholysis of keratinocytes attributed to pathogenic desmoglein-3 (Dsg3) autoantibodies. Interleukin-37 (IL-37) reportedly plays important roles in a variety of autoimmune diseases, but its role in PV is not clear. OBJECTIVES To investigate whether IL-37 plays a role in the occurrence and progression of PV. METHODS HaCaT keratinocytes were stimulated with anti-Dsg3 antibody to establish an in vitro PV model, which was defined as anti-Dsg3 group. Cells incubated with medium without anti-Dsg3 treatment were used as control. IL-37 was cultured with these cells infected with or without lentiviral vector shRNA-Caveolin-1 (sh-Cav-1-LV). Cell dissociation assay and immunocytofluorescence were performed to assess keratinocyte dissociation, keratin retraction and Dsg3 endocytosis. Real-time PCR was used to detect the mRNA level of Cav-1, and western blot was used to determine the protein expression of Cav-1, Dsg3, STAT3 and phosphorylated-STAT3 (p-STAT3). RESULTS The anti-Dsg3 group showed more cell debris, increased keratin retraction, increased Dsg3 endocytosis, reduced Cav-1 expression and co-localization than the control group, while IL-37 treatment neutralized all of these changes. Interestingly, Cav-1 knockdown supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization. The protein expression of p-STAT3 was increased in keratinocytes of the PV model but decreased by IL-37. Re-activation of the STAT3 pathway by colivelin supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization, along with upregulation of Cav-1 and Dsg3. CONCLUSIONS IL-37 inhibited keratinocyte dissociation and Dsg3 endocytosis in an in vitro PV model through the upregulating Cav-1 and inhibiting STAT3 pathway.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fengxia Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lidan Mao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yun Qiu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fanhe Jiang
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
| | - Qian Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kailibinuer Abulikemu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yongzhen Hong
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xinyu Ge
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
13
|
Zeng J, Sun Y, Man Y, Tang H, Xie L, He M. Validation the role of desmocollin-2 in osteosarcoma based on single cell and bulk RNA seq and experimental analyses. J Cancer 2023; 14:2619-2632. [PMID: 37779876 PMCID: PMC10539388 DOI: 10.7150/jca.87411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background: The aetiology of osteosarcoma (OS) remains unclear. Desmocollin-2 (DSC2) mediates intercellular adhesion and is involved in tumour progression. Therefore, we aim to investigate the potential role of DSC2 in OS. Methods: We analyzed the expression, prognostic value and immune infiltration of DSC2 in OS via single cell and bulk RNA seq data. Besides, the expression and function of DSC2 in OS were further verified by in vitro experiment. Results: We preliminarily determined that DSC2 was high expressed in OS, which was a risk factor for survival and had a strong relationship with immune cell infiltration. What's more, in vitro experiments also demonstrated that DSC2 was high expressed in OS cells, and silencing DSC2 would suppress proliferation, migration and invasion of OS cells. Conclusions: DSC2 may serve as an oncogene, which exerts a crucial role in tumor progression, predicting prognosis and immune cell infiltration in OS.
Collapse
Affiliation(s)
- Jiaxing Zeng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Traumatic Surgery & Microsurgery & Hand Surgery, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, 530021, Guangxi, China
| | - Yu Sun
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yunan Man
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haijun Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Xie
- Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Maolin He
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
14
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Jiang S, Miao Z. High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: emerging mechanisms and dietary intervention perspective. Am J Transl Res 2023; 15:653-677. [PMID: 36915785 PMCID: PMC10006746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023]
Abstract
The incidence of ulcerative colitis (UC) is increasing worldwide, but its pathogenesis remains largely unclear. The intestinal mucosa is a barrier that maintains the stability of the body's internal environment, and dysfunction of this barrier leads to the occurrence and aggravation of UC. A high-fat diet (HFD) contains more animal fat and low fiber, and accumulating evidence has shown that long-term intake of an HFD is associated with UC. The mechanism linking an HFD with intestinal mucosal barrier disruption is multifactorial, and it typically involves microbiota dysbiosis and altered metabolism of fatty acids, bile acids, and tryptophan. Dysbiosis-induced metabolic changes can enhance intestinal permeability through multiple pathways. These changes modulate the programmed death of intestinal epithelial cells, inhibit the secretion of goblet cells and Paneth cells, and impair intercellular interactions. Gut metabolites can also induce intestinal immune imbalance by stimulating multiple proinflammatory signaling pathways and decreasing the effect of anti-inflammatory immune cells. In this review, we critically analyze the molecular mechanisms by which an HFD disrupts the intestinal mucosal barrier (IMB) and contributes to the development of UC. We also discuss the application and future direction of dietary intervention in the treatment of the IMB and prevention of UC.
Collapse
Affiliation(s)
- Shijing Jiang
- First Clinical Medical College, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine Zhangjiagang, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Hegazy M, Koetsier JL, Huffine AL, Broussard JA, Godsel BM, Cohen-Barak E, Sprecher E, Wolfgeher DJ, Kron SJ, Godsel LM, Green KJ. Epidermal stratification requires retromer-mediated desmoglein-1 recycling. Dev Cell 2022; 57:2683-2698.e8. [PMID: 36495876 PMCID: PMC9973369 DOI: 10.1016/j.devcel.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amber L Huffine
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua A Broussard
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Brendan M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eran Cohen-Barak
- Department of Dermatology, Emek Medical Center, Afula, Israel; Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Qian H, Beltran AS. Mesoscience in cell biology and cancer research. CANCER INNOVATION 2022; 1:271-284. [PMID: 38089088 PMCID: PMC10686186 DOI: 10.1002/cai2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2024]
Abstract
Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit-scale and system-scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.
Collapse
Affiliation(s)
- Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Adriana Sujey Beltran
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
18
|
Chung GHC, Lorvellec M, Gissen P, Pichaud F, Burden JJ, Stefan CJ. The ultrastructural organization of endoplasmic reticulum-plasma membrane contacts is conserved in epithelial cells. Mol Biol Cell 2022; 33:ar113. [PMID: 35947498 PMCID: PMC9635291 DOI: 10.1091/mbc.e21-11-0534-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.
Collapse
Affiliation(s)
- Gary Hong Chun Chung
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maëlle Lorvellec
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Christopher J. Stefan
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Zakrzewicz A, Würth C, Beckert B, Feldhoff S, Vanderheyden K, Foss S, Andersen JT, de Haard H, Verheesen P, Bobkov V, Tikkanen R. Stabilization of Keratinocyte Monolayer Integrity in the Presence of Anti-Desmoglein-3 Antibodies through FcRn Blockade with Efgartigimod: Novel Treatment Paradigm for Pemphigus? Cells 2022; 11:cells11060942. [PMID: 35326398 PMCID: PMC8946243 DOI: 10.3390/cells11060942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
Pemphigus vulgaris is an autoimmune blistering disease of the epidermis, caused by autoantibodies against desmosomal proteins, mainly desmogleins 1 and 3, which induce an impairment of desmosomal adhesion and blister formation. Recent findings have shown that inhibition of immunoglobulin G binding on the neonatal Fc receptor, FcRn, results in reduced autoantibody recycling and shortens their half-life, providing a valid treatment option for PV. We have here analyzed the role of FcRn in human keratinocytes treated with antibodies isolated from pemphigus vulgaris patient or with recombinant anti-desmoglein-3 antibodies that induce pathogenic changes in desmosomes, such as loss of monolayer integrity, aberrant desmoglein-3 localization and degradation of desmoglein-3. We show that blocking IgG binding on FcRn by efgartigimod, a recombinant Fc fragment undergoing clinical studies for pemphigus, stabilizes the keratinocyte monolayer, whereas the loss of desmoglein-3 is not prevented by efgartigimod. Our data show that FcRn may play a direct role in the pathogenesis of pemphigus at the level of the autoantibody target cells, the epidermal keratinocytes. Our data suggest that in keratinocytes, FcRn may have functions different from its known function in IgG recycling. Therefore, stabilization of keratinocyte adhesion by FcRn blocking entities may provide a novel treatment paradigm for pemphigus.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Celina Würth
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Benedikt Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Katrien Vanderheyden
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Stian Foss
- Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway; (S.F.); (J.T.A.)
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway; (S.F.); (J.T.A.)
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Hans de Haard
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Peter Verheesen
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Vladimir Bobkov
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
- Correspondence:
| |
Collapse
|
20
|
Yeruva S, Waschke J. Structure and regulation of desmosomes in intercalated discs: Lessons from epithelia. J Anat 2022; 242:81-90. [PMID: 35128661 PMCID: PMC9773171 DOI: 10.1111/joa.13634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
For electromechanical coupling of cardiomyocytes, intercalated discs (ICDs) are pivotal as highly specialized intercellular contact areas. ICD consists of adhesive contacts, such as desmosomes and adherens junctions (AJs) that are partially intermingled and thereby form an area composita to provide mechanical strength, as well as gap junctions (GJ) and sodium channels for excitation propagation. In contrast, in epithelia, mixed junctions with features of desmosomes and AJs are regarded as transitory primarily during the formation of desmosomes. The anatomy of desmosomes is defined by a typical ultrastructure with dense intracellular plaques anchoring the cadherin-type adhesion molecules to the intermediate filament cytoskeleton. Desmosomal diseases characterized by impaired adhesive and signalling functions of desmosomal contacts lead to arrhythmogenic cardiomyopathy when affecting cardiomyocytes and cause pemphigus when manifesting in keratinocytes or present as cardiocutaneous syndromes when both cell types are targeted by the disease, which underscores the high biomedical relevance of these cell contacts. Therefore, comparative analyses regarding the structure and regulation of desmosomal contacts in cardiomyocytes and epithelial cells are helpful to better understand disease pathogenesis. In this brief review, we describe the structural properties of ICD compared to epithelial desmosomes and suggest that mechanisms regulating adhesion may at least in part be comparable. Also, we discuss whether phenomena such as hyperadhesion or the bidirectional regulation of desmosomes to serve as signalling hubs in epithelial cells may also be relevant for ICD.
Collapse
Affiliation(s)
- Sunil Yeruva
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| | - Jens Waschke
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| |
Collapse
|
21
|
Zimmer SE, Takeichi T, Conway DE, Kubo A, Suga Y, Akiyama M, Kowalczyk AP. Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. J Invest Dermatol 2022; 142:323-332.e8. [PMID: 34352264 PMCID: PMC9109890 DOI: 10.1016/j.jid.2021.07.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1PPK-TMD) and SAM syndrome (DSG1SAM-TMD), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1TMD mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1SAM-TMD maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1PPK-TMD lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1SAM-TMD acts dominant negatively, whereas DSG1PPK-TMD is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Cellular & Molecular Physiology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| |
Collapse
|
22
|
Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal Cadherins in Health and Disease. ANNUAL REVIEW OF PATHOLOGY 2022; 17:47-72. [PMID: 34425055 PMCID: PMC8792335 DOI: 10.1146/annurev-pathol-042320-092912] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sophia A. Svoboda
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,Department of Dermatology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
23
|
Herve JC. The vertebrate epithelial apical junctional complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183409. [PMID: 32653529 DOI: 10.1016/j.bbamem.2020.183409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|