1
|
Tóth Hervay N, Eliaš D, Černáková L, Jacko J, Habová M, Chovancová N, Gbelská Y. Enhancement of ROS Production by Catechin Is a Primary Effect of Increased Azole Efficacy in Nakaseomyces glabratus ( Candida glabrata) Cells Lacking the ERG6 Gene. Pathogens 2024; 13:834. [PMID: 39452706 PMCID: PMC11510055 DOI: 10.3390/pathogens13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Fungal infections have become an important public health problem. Currently, there are only three available classes of antifungals for the treatment of invasive infections. Two of them, azoles and polyenes, target the synthesis of ergosterol or bind to sterols. A promising strategy to improve current therapies is the use of natural compounds in combinational therapies with the existing antifungals. In this work, we analyzed the changes in the susceptibility of the mutant strain of Nakaseomyces glabratus (Candida glabrata) lacking the ERG6 gene (encoding the sterol C-24 methyltransferase in ergosterol biosynthesis) in the presence of catechin and antifungal azoles. The reduced content of ergosterol in the Cgerg6Δ mutant resulted in the increased tolerance of the mutant cells to both azoles and polyenes. The combination of catechin with fluconazole or miconazole led to the growth inhibition of the azole-resistant Cgerg6Δ mutant strain. In the presence of catechin and miconazole, the Cgerg6Δ mutant fails to properly activate the expression of genes encoding the transcription factors CgYap1p and CgMsn4p, as well as the gene expression of CgCTA1, which are involved in oxidative stress response and lead to the intracellular accumulation of ROS. Finally, we show that catechin administration reduces mortality in a Galleria mellonella model infected with C. glabrata. Our work thus supports the use of catechin in combination therapies for fungal infections and shows that the CgERG6 gene could be a potential new drug target.
Collapse
Affiliation(s)
- Nora Tóth Hervay
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| | - Daniel Eliaš
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| | - Juraj Jacko
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynska Dolina, 842 48 Bratislava, Slovakia;
| | - Marcela Habová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| | - Natália Chovancová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| | - Yvetta Gbelská
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia (Y.G.)
| |
Collapse
|
2
|
Ma C, Xie Y, Huang X, Zhang L, Julian McClements D, Zou L, Liu W. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food Chem 2024; 437:137913. [PMID: 37939421 DOI: 10.1016/j.foodchem.2023.137913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel phospholipid-based nanovesicle (PBN) was developed to encapsulate (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea, to mask its bitter taste and expand its application in food products. The PBN was formed using W/O emulsion-transfer methods and showed a multilayer membrane nanovesicle structure (around 200 nm) observed with TEM. The PBN possessed a high encapsulation efficiency (92.1%) for EGCG. The bitterness of EGCG was significantly reduced to 1/12 after encapsulation. Fourier transform infrared spectroscopy (FTIR) indicated the EGCG mainly interacted with the upper chain/glycerol/head group region of the lipid bilayerin PBN. Quartz crystal microbalance with dissipation (QCM-D) showed the addition of γ-cyclodextrin in PBN enhanced EGCG's adsorption with phospholipids and allowed for its good sustained release. Encapsulating EGCG in PBN inhibited its complexation with mucin, reducing bitterness and astringency. This provides a new method to improve EGCG's flavor, potentially expanding its application in the food industry.
Collapse
Affiliation(s)
- Chenlu Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041 Jiangxi, China
| | - Xin Huang
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang 330046 Jiangxi, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Ramalho MJ, Torres ID, Loureiro JA, Lima J, Pereira MC. Transferrin-Conjugated PLGA Nanoparticles for Co-Delivery of Temozolomide and Bortezomib to Glioblastoma Cells. ACS APPLIED NANO MATERIALS 2023; 6:14191-14203. [PMID: 37588263 PMCID: PMC10426337 DOI: 10.1021/acsanm.3c02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma (GBM) represents almost half of primary brain tumors, and its standard treatment with the alkylating agent temozolomide (TMZ) is not curative. Treatment failure is partially related to intrinsic resistance mechanisms mediated by the O6-methylguanine-DNA methyltransferase (MGMT) protein, frequently overexpressed in GBM patients. Clinical trials have shown that the anticancer agent bortezomib (BTZ) can increase TMZ's therapeutic efficacy in GBM patients by downregulating MGMT expression. However, the clinical application of this therapeutic strategy has been stalled due to the high toxicity of the combined therapy. The co-delivery of TMZ and BTZ through nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) is proposed in this work, aiming to explore their synergistic effect while decreasing the drug's toxicity. The developed NPs were optimized by central composite design (CCD), then further conjugated with transferrin (Tf) to enhance their GBM targeting ability by targeting the blood-brain barrier (BBB) and the cancer cells. The obtained NPs exhibited suitable GBM cell delivery features (sizes lower than 200 nm, low polydispersity, and negative surface charge) and a controlled and sustained release for 20 days. The uptake and antiproliferative effect of the developed NPs were evaluated in in vitro human GBM models. The obtained results disclosed that the NPs are rapidly taken up by the GBM cells, promoting synergistic drug effects in inhibiting tumor cell survival and proliferation. This cytotoxicity was associated with significant cellular morphological changes. Additionally, the biocompatibility of unloaded NPs was evaluated in healthy brain cells, demonstrating the safety of the nanocarrier. These findings prove that co-delivery of BTZ and TMZ in Tf-conjugated PLGA NPs is a promising approach to treat GBM, overcoming the limitations of current therapeutic strategies, such as drug resistance and increased side effects.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês David Torres
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-10 135 Porto, Portugal
- Ipatimup—Instituto
de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho
45, 4200-135, Porto, Portugal
- Faculty
of Medicine of Porto University, Alameda
Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Recinella L, Libero ML, Citi V, Chiavaroli A, Martelli A, Foligni R, Mannozzi C, Acquaviva A, Di Simone S, Calderone V, Orlando G, Ferrante C, Veschi S, Piro A, Menghini L, Brunetti L, Leone S. Anti-Inflammatory and Vasorelaxant Effects Induced by an Aqueous Aged Black Garlic Extract Supplemented with Vitamins D, C, and B12 on Cardiovascular System. Foods 2023; 12:foods12071558. [PMID: 37048379 PMCID: PMC10094181 DOI: 10.3390/foods12071558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple studies demonstrated biological activities of aged black garlic, including anti-inflammatory, antioxidant, and cardioprotective effects. We aimed to investigate the protective effects of an aged black garlic water extract (ABGE) alone or in association with multivitamins consisting of combined Vitamins D, C, and B12, on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS). Moreover, we studied the hydrogen sulphide (H2S) releasing properties and the membrane hyperpolarization effect of the Formulation composed by ABGE and multivitamins, using Human Aortic Smooth Muscle Cells (HASMCs). ABGE, vitamins D and C, and the Formulation suppressed LPS-induced gene expression of cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, nuclear factor-kB (NF-kB), and inducible nitric oxide synthase (iNOS) on mouse heart specimens. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin. The Formulation also increased fluorescence values compared to the vehicle, and it caused a significant membrane hyperpolarization of HASMCs compared to ABGE. To conclude, our present findings showed that ABGE, alone and in association with multivitamins, exhibited protective effects on mouse heart. Moreover, the Formulation increased intracellular H2S formation, further suggesting its potential use on cardiovascular disease.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Roberta Foligni
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60121 Ancona, Italy
| | - Cinzia Mannozzi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60121 Ancona, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
- Veridia Italia Srl, Via Piano di Sacco, 65013 Città Sant'Angelo, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Anna Piro
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| |
Collapse
|
5
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Šturm L, Prislan I, González-Ortega R, Mrak P, Snoj T, Anderluh G, Poklar Ulrih N. Interactions of (-)-epigallocatechin-3-gallate with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183999. [PMID: 35820494 DOI: 10.1016/j.bbamem.2022.183999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.
Collapse
Affiliation(s)
- Luka Šturm
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rodrigo González-Ortega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Andrade S, Loureiro JA, Pereira MC. Caffeic acid for the prevention and treatment of Alzheimer's disease: The effect of lipid membranes on the inhibition of aggregation and disruption of Aβ fibrils. Int J Biol Macromol 2021; 190:853-861. [PMID: 34480909 DOI: 10.1016/j.ijbiomac.2021.08.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The onset of Alzheimer's disease (AD) is triggered by the aggregation of amyloid β (Aβ) peptides which leads to the formation of fibrils. Molecules that are able to inhibit fibrillation and/or disrupt fibrils have aroused interest for AD therapy. Fibrillation is a complex process highly dependent on the surrounding environment. One of the most relevant factors affecting Aβ aggregation is the presence of cellular membranes. Here, the ability of caffeic acid (CA) in preventing the Aβ1-42 aggregation and disaggregating mature fibrils was evaluated in a membrane-like environment and in a bulk solution for comparison. To this end, liposomes were used as in vitro models of neuronal membranes. CA exhibited strong activity in inhibiting the fibrillation of Aβ1-42 in the aqueous medium, which remained in the presence of liposomes. Furthermore, CA disrupted instantly preformed fibrils in the aqueous medium. However, the CA's disaggregating activity was disturbed by the presence of lipid membranes. Instead of being immediate, the CA's disaggregating activity increased over time. The moderate affinity of CA for the lipid bilayer may explain the distinct fibrils disaggregation profiles. These findings emphasize the therapeutic potential of CA in preventing and treating AD, thus justifying further investigations in animal models.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
8
|
Andrade S, Loureiro JA, Pereira MDC. Influence of in vitro neuronal membranes on the anti-amyloidogenic activity of gallic acid: Implication for the therapy of Alzheimer's disease. Arch Biochem Biophys 2021; 711:109022. [PMID: 34461085 DOI: 10.1016/j.abb.2021.109022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Molecules inhibiting the amyloid beta (Aβ) peptide aggregation and/or disaggregating mature fibrils are a promising approach for the Alzheimer's disease (AD) therapy, as the Aβ fibrillation is one of the key triggers of the disease. Gallic acid (GA) is a phenolic acid with anti-amyloidogenic activity against Aβ in buffered solutions. However, there is still no evidence of these properties in vivo. Given the rate of failures of AD drug development, there is a huge demand of replicating the in vivo environment in in vitro studies, thus allowing to stop earlier the study of molecules with no effect in vivo. Thus, this study aims to evaluate the effect of in vitro neuronal membranes on the GA's ability in preventing Aβ1-42 aggregation and disrupting preformed fibrils. To this end, liposomes were employed to mimic the cell membrane environment. The results reveal that the lipid membranes did not affect the GA's ability in inhibiting Aβ1-42 fibrillation. However, in vitro neuronal membranes modulate the GA-induced Aβ fibrils disaggregation, which may be related with the moderate affinity of the compound for the lipid membrane. Even so, GA presented strong anti-amyloidogenic properties in the cell membrane-like environment. This work highlights the promising value of GA on preventing and treating AD, thus justifying its study in animal models.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
9
|
Chiavaroli A, Balaha M, Acquaviva A, Ferrante C, Cataldi A, Menghini L, Rapino M, Orlando G, Brunetti L, Leone S, Recinella L, di Giacomo V. Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts. Molecules 2021; 26:molecules26206216. [PMID: 34684793 PMCID: PMC8540556 DOI: 10.3390/molecules26206216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d’Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL−1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5–500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by RT-PCR. The extract reverted the cytotoxicity exerted by the oxidative stimulus at all the experimental times in a dose-dependent manner, whereas the catechin was able to revert the oxidative stress-induced depletion of dopamine 48 h and 72 h after the stimulus. The extract and the catechin were also effective in preventing the downregulation of BDNF and the concomitant upregulation of COX-2 gene expression. In accordance, PGE2 release was augmented by the oxidative stress conditions and reverted by the administration of the water extract from grace pomace and catechin, which were equally effective. These results suggest that the neuroprotection induced by the extract could be ascribed, albeit partially, to its catechin content.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Marwa Balaha
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmaceutical Chemistry, University of Kafrelsheikh, Kafrelsheikh 33516, Egypt
| | - Alessandra Acquaviva
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Hou L, Sun X, Pan L, Gu K. Effects of Phytosterol Butyrate Ester on the Characteristics of Soybean Phosphatidylcholine Liposomes. J Oleo Sci 2021; 70:1295-1306. [PMID: 34373401 DOI: 10.5650/jos.ess21033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nutritional and structural properties of phytosterols (PS)/phytosterol esters (PEs) facilitate their use as substitutes for cholesterol in liposome encapsulation systems designed for oral drugs and health products. The purpose of this study was to determine the effect of phytosterol butyrate ester (PBE) on the properties of liposomes. PBE was encapsulated within liposomes (approximately 60 nm) prepared using soybean phosphatidylcholine using the thin-film hydration method. There was no significant change in the average particle diameter and zeta potential of these liposomal vesicles corresponding to the increasing amounts of encapsulated PBE. The incorporation of PBE increased the polydispersity index (PDI) independent of concentration. Additionally, we observed that the storage stability of PBE liposomes with uniform particle size and approximately spherical shape vesicle was better at low concentration. The results of Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy showed that PBE was positioned at the water interface, which increased the order of hydrophobic alkyl chains in the lipid membranes. The incorporation of PBE led to an increase in the trans conformation of hydrophobic alkyl chain and consequently, the thermal stability of liposomes, which was confirmed by differential scanning calorimetry (DSC). The results of powder X-ray diffraction (XRD) analysis confirmed that PBE was present in an amorphous form in the liposomes. Additionally, the incorporation of PBE reduced the micropolarity of the lipid membrane. Thus, when preparing liposomes using thin-film hydration, the presence of PBE affected the characteristics of liposomes.
Collapse
Affiliation(s)
- Lifen Hou
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| | - Xiangyang Sun
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy
| | - Li Pan
- College of Food Science and Technology, Henan University of Technology
| | - Keren Gu
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| |
Collapse
|
11
|
Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A, Vedekhina T, Manuvera V, Zubkova O, Eremeev A, Shustova E, Pozmogova G, Lioznov D, Ismukhametov A, Lazarev V, Lagarkova M. EGCG as an anti-SARS-CoV-2 agent: Preventive versus therapeutic potential against original and mutant virus. Biochimie 2021; 191:27-32. [PMID: 34389380 PMCID: PMC8353982 DOI: 10.1016/j.biochi.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/30/2023]
Abstract
In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.
Collapse
Affiliation(s)
- Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991, Moscow, Russia; A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, 119071, Russia
| | - Anna Varizhuk
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141701, Russia
| | - Liubov Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Poselok Instituta Poliomiyelita 8, 108819, Moscow, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Nakhimovsky av. 45, 117418, Moscow, Russia
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, Professora Popova str., 15/17, 197376, Sankt-Peterburg, Russia
| | - Olga Lebedeva
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Andrey Komissarov
- Smorodintsev Research Institute of Influenza, Professora Popova str., 15/17, 197376, Sankt-Peterburg, Russia
| | - Tatjana Vedekhina
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia
| | - Valentin Manuvera
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141701, Russia
| | - Olga Zubkova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia
| | - Artem Eremeev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Elena Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Poselok Instituta Poliomiyelita 8, 108819, Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, Professora Popova str., 15/17, 197376, Sankt-Peterburg, Russia
| | - Aydar Ismukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Poselok Instituta Poliomiyelita 8, 108819, Moscow, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Nakhimovsky av. 45, 117418, Moscow, Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141701, Russia.
| | - Maria Lagarkova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, 119435, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia.
| |
Collapse
|
12
|
Andrade S, Loureiro JA, Pereira MC. Vitamin B12 Inhibits Aβ Fibrillation and Disaggregates Preformed Fibrils in the Presence of Synthetic Neuronal Membranes. ACS Chem Neurosci 2021; 12:2491-2502. [PMID: 34133880 DOI: 10.1021/acschemneuro.1c00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aggregation of amyloid β (Aβ) peptide with subsequent formation of fibrils which deposit in senile plaques is considered one of the key triggers of Alzheimer's disease (AD). Molecules targeting the inhibition of Aβ fibrillation and/or the disruption of Aβ fibrils are thus promising approaches for the medical prevention and treatment of AD. However, amyloid formation is a complex process strongly influenced by the cellular environment, such as cell membranes, which may affect the effectiveness of therapeutic molecules. In this study, the effect of the vitamin B12 (VB12) on the formation and disaggregation of Aβ1-42 fibrils was investigated in the presence of artificial neuronal membranes mimicked by liposomes. Evidence showed that VB12 slows down the Aβ fibrillization and reduces the content of fibrils in aqueous solution. Moreover, the vitamin exhibited a strong ability to disrupt preformed fibrils. However, the presence of lipid vesicles compromised the VB12's antiamyloidogenic properties due to the competitive interaction of the vitamin with the lipid membrane and the Aβ peptide. Even so, VB12 was effective in inhibiting the fibril formation and disaggregating fibrils in the lipid membrane environment. Thereby, these results indicate that VB12 could be a promising molecule both for the prevention and cure of AD, thus warranting its study in animal models.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
15
|
Andrade S, Loureiro JA, Pereira MC. The Role of Amyloid β-Biomembrane Interactions in the Pathogenesis of Alzheimer's Disease: Insights from Liposomes as Membrane Models. Chemphyschem 2021; 22:1547-1565. [PMID: 34086399 DOI: 10.1002/cphc.202100124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The aggregation and deposition of amyloid β (Aβ) peptide onto neuronal cells, with consequent cellular membrane perturbation, are central to the pathogenesis of Alzheimer's disease (AD). Substantial evidence reveals that biological membranes play a key role in this process. Thus, elucidating the mechanisms by which Aβ interacts with biomembranes and becomes neurotoxic is fundamental to developing effective therapies for this devastating progressive disease. However, the structural basis behind such interactions is not fully understood, largely due to the complexity of natural membranes. In this context, lipid biomembrane models provide a simplified way to mimic the characteristics and composition of membranes. Aβ-biomembrane interactions have been extensively investigated applying artificial membrane models to elucidate the molecular mechanisms underlying the AD pathogenesis. This review summarizes the latest findings on this field using liposomes as biomembrane model, as they are considered the most promising 3D model. The current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
16
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. The biophysical interaction of ferulic acid with liposomes as biological membrane model: The effect of the lipid bilayer composition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|