1
|
Monat J, Altieri LG, Enrique N, Sedán D, Andrinolo D, Milesi V, Martín P. Direct Inhibition of BK Channels by Cannabidiol, One of the Principal Therapeutic Cannabinoids Derived from Cannabis sativa. JOURNAL OF NATURAL PRODUCTS 2024; 87:1368-1375. [PMID: 38708937 DOI: 10.1021/acs.jnatprod.3c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cannabidiol (CBD), one of the main Cannabis sativa bioactive compounds, is utilized in the treatment of major epileptic syndromes. Its efficacy can be attributed to a multimodal mechanism of action that includes, as potential targets, several types of ion channels. In the brain, CBD reduces the firing frequency in rat hippocampal neurons, partly prolonging the duration of action potentials, suggesting a potential blockade of voltage-operated K+ channels. We postulate that this effect might involve the inhibition of the large-conductance voltage- and Ca2+-operated K+ channel (BK channel), which plays a role in the neuronal action potential's repolarization. Thus, we assessed the impact of CBD on the BK channel activity, heterologously expressed in HEK293 cells. Our findings, using the patch-clamp technique, revealed that CBD inhibits BK channel currents in a concentration-dependent manner with an IC50 of 280 nM. The inhibition is through a direct interaction, reducing both the unitary conductance and voltage-dependent activation of the channel. Additionally, the cannabinoid significantly delays channel activation kinetics, indicating stabilization of the closed state. These effects could explain the changes induced by CBD in action potential shape and duration, and they may contribute to the observed anticonvulsant activity of this cannabinoid.
Collapse
Affiliation(s)
- Juliana Monat
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Lucía González Altieri
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Daniela Sedán
- Centro de Investigaciones en Medioambiente (CIM), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard. 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Darío Andrinolo
- Centro de Investigaciones en Medioambiente (CIM), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard. 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Llanos MA, Enrique N, Sbaraglini ML, Garofalo FM, Talevi A, Gavernet L, Martín P. Structure-Based Virtual Screening Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J Chem Inf Model 2022; 62:3008-3022. [PMID: 35696534 DOI: 10.1021/acs.jcim.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel, known to be involved in the regulation of many important physiological and pathological processes. In the last few years, it has been proposed as a promising target to develop novel anticonvulsant compounds. However, thermoregulatory effects associated with the channel inhibition have hampered the path for TRPV1 antagonists to become marketed drugs. In this regard, we conducted a structure-based virtual screening campaign to find potential TRPV1 modulators among approved drugs, which are known to be safe and thermally neutral. To this end, different docking models were developed and validated by assessing their pose and score prediction powers. Novobiocin, montelukast, and cinnarizine were selected from the screening as promising candidates for experimental testing and all of them exhibited nanomolar inhibitory activity. Moreover, the in vivo profiles showed promising results in at least one of the three models of seizures tested.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Federico M Garofalo
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| |
Collapse
|
3
|
Frampton DJA, Choudhury K, Nikesjö J, Delemotte L, Liin SI. Subtype-specific responses of hKv7.4 and hKv7.5 channels to polyunsaturated fatty acids reveal an unconventional modulatory site and mechanism. eLife 2022; 11:77672. [PMID: 35642964 PMCID: PMC9159753 DOI: 10.7554/elife.77672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The KV7.4 and KV7.5 subtypes of voltage-gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate KV7.4 and KV7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human KV7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hKV7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V50 shifts. In contrast, PUFAs inhibit activation of hKV7.4 by shifting V50 toward more positive voltages. No effect on V50 of hKV7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hKV7.5 channel's response to PUFAs is analogous to the one previously observed in hKV7.1-7.3 channels, whereas the hKV7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hKV7.4 by PUFAs.
Collapse
Affiliation(s)
- Damon J A Frampton
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Liu Y, Cheng J, Xia Y, Li X, Liu Y, Liu PF. Response mechanism of gut microbiome and metabolism of European seabass (Dicentrarchus labrax) to temperature stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151786. [PMID: 34942265 DOI: 10.1016/j.scitotenv.2021.151786] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 05/10/2023]
Abstract
In animals, the gut microbiome is vital to growth, and changes in the composition of these microbial communities may affect growth and adaptability to the environment. Temperature is another important factor that influences the healthy growth of animals. To date, the mechanism by which juvenile European seabass (Dicentrarchus labrax) and their symbiotic flora adapt to changes in environmental temperature is not well understood. Therefore, we evaluated the effect of temperature on the gut microbiota and metabolism of European seabass juveniles. We used 16S rRNA gene amplicon sequencing and non-targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics to study the gut microbes of European seabass after 60 days of rearing of water temperature at 10 °C (T1), 15 °C (T2) and 20 °C (T3). At the phylum level, the abundance of the gut microbiota did not differ significantly among the three groups after 60 days of cultivation. At the genus level, however, the abundance of Faecalibacterium, Filifactor, Butyricicoccus, and Erysipelotrichaceae UCG-006 in the intestines differed significantly among the temperature groups. Compared with T2, the relative abundance of Filifactor in T1 was significantly increased, while Faecalibacterium was significantly decreased, while the relative abundance of Butyricicoccus and Erysipelotrichaceae UCG-006 in T3 was significantly increased. The LC-MS/MS analysis revealed 107 metabolites in the 10 °C group and 68 metabolites in the 20 °C group that differed significantly from those in the intestines of fish in the 15 °C control group. These metabolites are closely related to several metabolic pathways, including amino acid metabolism, glucose and lipid metabolism, and the tricarboxylic acid cycle. Correlation analysis of the Intestine microbiota, metabolic pathways, and metabolites identified metabolic pathways and metabolites that were strongly related to the observed significant differences in the microbiome among the temperature groups. These results show that temperature can induce significant changes in the gut microbiota and metabolism of European seabass juveniles, and that significant changes in metabolites may be mediated through the interaction of the microbiome and metabolic pathways.
Collapse
Affiliation(s)
- Yanyun Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China
| | - Jianxin Cheng
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohao Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Ying Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
5
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|