1
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Lata K, Anderluh G, Chattopadhyay K. Entangling roles of cholesterol-dependent interaction and cholesterol-mediated lipid phase heterogeneity in regulating listeriolysin O pore-formation. Biochem J 2024; 481:1349-1377. [PMID: 39268843 DOI: 10.1042/bcj20240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Cholesterol-dependent cytolysins (CDCs) are the distinct class of β-barrel pore-forming toxins (β-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane β-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19 1000 Ljubljana, Slovenia
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Ibrahim A, Saleem N, Naseer F, Ahmed S, Munawar N, Nawaz R. From cytokines to chemokines: Understanding inflammatory signaling in bacterial meningitis. Mol Immunol 2024; 173:117-126. [PMID: 39116800 DOI: 10.1016/j.molimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Bacterial meningitis is a serious central nervous system (CNS) infection, claiming millions of human lives annually around the globe. The deadly infection involves severe inflammation of the protective sheath of the brain, i.e., meninges, and sometimes also consists of the brain tissue, called meningoencephalitis. Several inflammatory pathways involved in the pathogenesis of meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus suis, etc. are mentioned in the scientific literature. Many in-vitro and in-vivo analyses have shown that after the disruption of the blood-brain barrier (BBB), these pathogens trigger several inflammatory pathways including Toll-Like Receptor (TLR) signaling in response to Pathogen-Associated Molecular Patterns (PAMPs), Nucleotide oligomerization domain (NOD)-like receptor-mediated signaling, pneumolysin related signaling, NF-κB signaling and many other pathways that lead to pro-inflammatory cascade and subsequent cytokine release including interleukine (IL)-1β, tumor necrosis factor(TNF)-α, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) along with other mediators, leading to neuroinflammation. The activation of another protein complex, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, also takes place resulting in the maturation and release of IL-1β and IL-18, hence potentiating neuroinflammation. This review aims to outline the inflammatory signaling pathways associated with the pathogenesis of bacterial meningitis leading to extensive pathological changes in neurons, astrocytes, oligodendrocytes, and other central nervous system cells.
Collapse
Affiliation(s)
- Ahsan Ibrahim
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan; Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Science-in-brief: The 6th Havemeyer Workshop on Rhodococcus equi-A decade-long journey in advancing research into a major equine pathogen (2012-2023). Equine Vet J 2024; 56:838-841. [PMID: 39113177 DOI: 10.1111/evj.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024]
|
6
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Guo P, Li Z, Cai T, Guo D, Yang B, Zhang C, Shan Z, Wang X, Peng X, Liu G, Shi C, Alharbi M, Alasmari AF. Inhibitory effect and mechanism of oregano essential oil on Listeria monocytogenes cells, toxins and biofilms. Microb Pathog 2024; 194:106801. [PMID: 39025378 DOI: 10.1016/j.micpath.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.
Collapse
Affiliation(s)
- Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China.
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Rohilla A, Kumar V, Ahire JJ. Unveiling the persistent threat: recent insights into Listeria monocytogenes adaptation, biofilm formation, and pathogenicity in foodborne infections. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1428-1438. [PMID: 38966782 PMCID: PMC11219595 DOI: 10.1007/s13197-023-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 07/06/2024]
Abstract
Listeriosis is a severe disease caused by the foodborne pathogen Listeria monocytogenes, posing a significant risk to vulnerable populations such as the elderly, pregnant women, and newborns. While relatively uncommon, it has a high global mortality rate of 20-30%. Recent research indicates that smaller outbreaks of the more severe, invasive form of the disease occur more frequently than previously thought, despite the overall stable infection rates of L. monocytogenes over the past 10 years. The ability of L. monocytogenes to form biofilm structures on various surfaces in food production environments contributes to its persistence and challenges in eradication, potentially leading to contamination of food and food production facilities. To address these concerns, this review focuses on recent developments in epidemiology, risk evaluations, and molecular mechanisms of L. monocytogenes survival in adverse conditions and environmental adaptation. Additionally, it covers new insights into strain variability, pathogenicity, mutations, and host vulnerability, emphasizing the important events framework that elucidates the biochemical pathways from ingestion to infection. Understanding the adaptation approaches of L. monocytogenes to environmental stress factors is crucial for the development of effective and affordable pathogen control techniques in the food industry, ensuring the safety of food production.
Collapse
Affiliation(s)
- Alka Rohilla
- Institute of Biology Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028 India
| | - Jayesh J. Ahire
- Dr. Reddy’s Laboratories Limited, Ameerpet, Hyderabad, 500016 India
| |
Collapse
|
9
|
Guk K, Yi S, Kim H, Kim S, Lim EK, Kang T, Jung J. PoreGlow: A split green fluorescent protein-based system for rapid detection of Listeria monocytogenes. Food Chem 2024; 438:138043. [PMID: 37992606 DOI: 10.1016/j.foodchem.2023.138043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 μg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.
Collapse
Affiliation(s)
- Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Prislusky MI, Lam JG, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The Septin Cytoskeleton is Required for Plasma Membrane Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548547. [PMID: 37503091 PMCID: PMC10369955 DOI: 10.1101/2023.07.12.548547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mammalian cells are frequently exposed to mechanical and biochemical stressors resulting in plasma membrane injuries. Repair mechanisms reseal the plasma membrane to restore homeostasis and prevent cell death. In the present work, a silencing RNA screen was performed to uncover plasma membrane repair mechanisms of cells exposed to a pore-forming toxin (listeriolysin O). This screen identified molecules previously known to repair the injured plasma membrane such as annexin A2 (ANXA2) as well as novel plasma membrane repair candidate proteins. Of the novel candidates, we focused on septin 7 (SEPT7) because the septins are an important family of conserved eukaryotic cytoskeletal proteins. Using diverse experimental approaches, we established for the first time that SEPT7 plays a general role in plasma membrane repair of cells perforated by pore-forming toxins and mechanical wounding. Remarkably, upon cell injury, the septin cytoskeleton is extensively redistributed in a Ca 2+ -dependent fashion, a hallmark of plasma membrane repair machineries. The septins reorganize into subplasmalemmal domains arranged as knob and loop (or ring) structures containing F-actin, myosin II, and annexin A2 (ANXA2) and protrude from the cell surface. Importantly, the formation of these domains correlates with the plasma membrane repair efficiency. Super-resolution microscopy shows that septins and actin are arranged in intertwined filaments associated with ANXA2. Silencing SEPT7 expression prevented the formation of the F-actin/myosin II/ANXA2 domains, however, silencing expression of ANXA2 had no observable effect on their formation. These results highlight the key structural role of the septins in remodeling the plasma membrane and in the recruitment of the repair molecule ANXA2. Collectively, our data support a novel model in which the septin cytoskeleton acts as a scaffold to promote the formation of plasma membrane repair domains containing contractile F-actin and annexin A2.
Collapse
|
11
|
Arasu A, Prabha N, Devi D, Issac PK, Alarjani KM, Al Farraj DA, Aljeidi RA, Hussein DS, Mohan M, Tayyeb JZ, Guru A, Arockiaraj J. Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk-Borne Pathogen Listeria monocytogenes. J Microbiol 2023; 61:993-1011. [PMID: 38048022 DOI: 10.1007/s12275-023-00086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC-MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.
Collapse
Affiliation(s)
- Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Nagaram Prabha
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Durga Devi
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Reem A Aljeidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Dina S Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, 44115, USA
| | - Magesh Mohan
- Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, 23890, Jeddah, Saudi Arabia.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
12
|
Petrišič N, Adamek M, Kežar A, Hočevar SB, Žagar E, Anderluh G, Podobnik M. Structural basis for the unique molecular properties of broad-range phospholipase C from Listeria monocytogenes. Nat Commun 2023; 14:6474. [PMID: 37838694 PMCID: PMC10576769 DOI: 10.1038/s41467-023-42134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Listeriosis is one of the most serious foodborne diseases caused by the intracellular bacterium Listeria monocytogenes. Its two major virulence factors, broad-range phospholipase C (LmPC-PLC) and the pore-forming toxin listeriolysin O (LLO), enable the bacterium to spread in the host by destroying cell membranes. Here, we determine the crystal structure of LmPC-PLC and complement it with the functional analysis of this enzyme. This reveals that LmPC-PLC has evolved several structural features to regulate its activity, including the invariant position of the N-terminal tryptophan (W1), the structurally plastic active site, Zn2+-dependent activity, and the tendency to form oligomers with impaired enzymatic activity. We demonstrate that the enzymatic activity of LmPC-PLC can be specifically inhibited by its propeptide added in trans. Furthermore, we show that the phospholipase activity of LmPC-PLC facilitates the pore-forming activity of LLO and affects the morphology of LLO oligomerization on lipid membranes, revealing the multifaceted synergy of the two virulence factors.
Collapse
Affiliation(s)
- Nejc Petrišič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- PhD Program 'Biosciences', Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maksimiljan Adamek
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andreja Kežar
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Samo B Hočevar
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
14
|
Liu M, Lv Q, Xu J, Liu B, Zhou Y, Zhang S, Shen X, Wang L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem Pharmacol 2023; 209:115447. [PMID: 36746262 DOI: 10.1016/j.bcp.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As a common intracellular facultative anaerobic Gram-positive bacterium, Listeria monocytogenes (L. monocytogenes) exhibits strong resistance to extreme environments, such as low temperature and a wide range of pH values, causing contamination in food production and processing. Sortase A (SrtA) and listeriolysin O (LLO), two crucial virulence factors of L. monocytogenes, are widely recognized as potential targets for the development of anti-L. monocytogenes infection drugs. In this study, we found that genistin simultaneously inhibits the peptidase activity of SrtA and the hemolytic activity of LLO without affecting the growth of L. monocytogenes, alleviating concerns about developing resistance. Furthermore, we demonstrated that genistin reduces L. monocytogenes biofilm formation and invasion of human colorectal cancer (Caco-2) cells. Subsequent mechanistic studies revealed that genistin inhibited LLO-mediated Caco-2 cell damage by blocking LLO oligomerization. Fluorescence quenching assay revealed the potential binding mode of SrtA and LLO to genistin. Genistin might bind to the active pocket of SrtA through residues Leu33, Asn29, and Met40, interacting with D1 domain of LLO involved in oligomerization and pore formation through residues Asn259. Studies in infection models revealed that genistin reduces mortality and pathological damage in mice infected with L. monocytogenes. These results indicate that genistin is a promising anti-virulence agent that could be considered an alternative candidate for the treatment of L. monocytogenes infection.
Collapse
Affiliation(s)
- Minda Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Qianghua Lv
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, P.R.China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, P.R.China
| | - Jingwen Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baichen Liu
- The Second Bethune Clinical Medical College of Jilin University, Changchun 130012, Jilin, People's Republic of China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Siqi Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Xue Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Lin Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
15
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
16
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
17
|
Hansen P, Haubenthal T, Reiter C, Kniewel J, Bosse-Plois K, Niemann HH, von Bargen K, Haas A. Differential Effects of Rhodococcus equi Virulence-Associated Proteins on Macrophages and Artificial Lipid Membranes. Microbiol Spectr 2023; 11:e0341722. [PMID: 36786596 PMCID: PMC10100859 DOI: 10.1128/spectrum.03417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Virulence-associated protein A (VapA) of Rhodococcus equi is a pathogenicity factor required for the multiplication of virulent R. equi strains within spacious macrophage vacuoles. The production of VapA is characteristic for R. equi isolates from pneumonic foals. VapB and VapN proteins in R. equi isolates from infected pig (VapB) and cattle (VapN) have amino acid sequences very similar to VapA and consequently have been assumed to be its functional correlates. Using model membrane experiments, phagosome pH acidification analysis, lysosome size measurements, protein partitioning, and degradation assays, we provide support for the view that VapA and VapN promote intracellular multiplication of R. equi by neutralizing the pH of the R. equi-containing vacuole. VapB does not neutralize vacuole pH, is not as membrane active as VapA, and does not support intracellular multiplication. This study also shows that the size of the sometimes enormous R. equi-containing vacuoles or the partitioning of purified Vaps into organic phases are not features that have predictive value for virulence of R. equi, whereas the ability of Vaps to increase phagosome pH is coupled to virulence. IMPORTANCE Rhodococcus equi is a major cause of life-threatening pneumonia in foals and occasionally in immunocompromised persons. Virulence-associated protein A (VapA) promotes R. equi multiplication in lung macrophages, which are the major host cells during foal infection. In this study, we compare cellular, biochemical, and biophysical phenotypes associated with VapA to those of VapB (typically produced by isolates from pigs) or VapN (isolates from cattle). Our data support the hypothesis that only some Vaps support multiplication in macrophages by pH neutralization of the phagosomes that R. equi inhabit.
Collapse
Affiliation(s)
- Philipp Hansen
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | - Caroline Reiter
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Jana Kniewel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Zautner AE, Tersteegen A, Schiffner CJ, Ðilas M, Marquardt P, Riediger M, Delker AM, Mäde D, Kaasch AJ. Human Erysipelothrix rhusiopathiae infection via bath water – case report and genome announcement. Front Cell Infect Microbiol 2022; 12:981477. [PMID: 36353709 PMCID: PMC9637936 DOI: 10.3389/fcimb.2022.981477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a facultative anaerobic, environmentally stable, Gram-positive rod that causes swine and avian erysipelas as a zoonotic pathogen. In humans, the main manifestations described are circumscribed erysipeloid, generalized erysipeloid, and endocarditis. Here, we report a 46-year-old female patient who presented to the physician because of redness and marked functio laesa of the hand, in terms of a pain-related restricted range of motion, and was treated surgically. E. rhusopathiae was detected in tissue biopsy. The source of infection was considered to be a pond in which both swine and, later, her dog bathed. The genome of the isolate was completely sequenced and especially the presumptive virulence associated factors as well as the presumptive antimicrobial resistance genes, in particular a predicted homologue to the multiple sugar metabolism regulator (MsmR), several predicted two-component signal transduction systems, three predicted hemolysins, two predicted neuraminidases, three predicted hyaluronate lyases, the surface protective antigen SpaA, a subset of predicted enzymes that potentially confer resistance to reactive oxygen species (ROS), several predicted phospholipases that could play a role in the escape from phagolysosomes into host cell cytoplasm as well as a predicted vancomycin resistance locus (vex23-vncRS) and three predicted MATE efflux transporters were investigated in more detail.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- *Correspondence: Andreas E. Zautner,
| | - Aljoscha Tersteegen
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Conrad-Jakob Schiffner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Milica Ðilas
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Pauline Marquardt
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Matthias Riediger
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Anna Maria Delker
- Universitätsklinik für Plastische, Ästhetische und Handchirurgie Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Dietrich Mäde
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Halle (Saale), Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
19
|
Carboxyl group-modified myoglobin shows membrane-permeabilizing activity. Arch Biochem Biophys 2022; 728:109371. [DOI: 10.1016/j.abb.2022.109371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
|
20
|
Nonhemolytic Listeria monocytogenes-Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms 2022; 10:microorganisms10020483. [PMID: 35208937 PMCID: PMC8874635 DOI: 10.3390/microorganisms10020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that typically presents β-hemolytic activity. However, there are literature reports indicating that L. monocytogenes strains are sometimes nonhemolytic or their zones of hemolysis are perceivable only after removal of the colonies from the agar plate. Nonhemolytic L. monocytogenes are most commonly encountered in food products, but some have also been detected in clinical samples. Usually, atypical bacteria of this species belong to serotype 1/2a. Mutations of the prfA gene sequence are the most common reason for changed phenotype, and mutations of the hly gene are the second most common cause. There are also reports that the methodology used for detecting hemolysis may influence the results. Sheep or horse blood, although most commonly used in modern studies, may not allow for the production of clear hemolytic zones on blood agar, whereas other types of blood (guinea pig, rabbit, piglet, and human) are more suitable according to some studies. Furthermore, the standard blood agar plate technique is less sensitive than its modifications such as bilayer or top-layer (overlay) techniques. The microplate technique (employing erythrocyte suspensions) is probably the most informative when assessing listerial hemolysis and is the least susceptible to subjective interpretation.
Collapse
|
21
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|