1
|
Ho TH, Tran KG, Huynh LK, Nguyen TT. Fluoxetine Alters the Biophysics of DPPC and DPPG Bilayers through Phase-Dependent and Electrostatic Interactions. J Phys Chem B 2025; 129:1248-1259. [PMID: 39681524 DOI: 10.1021/acs.jpcb.4c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lipid membranes can control the permeability of a pharmaceutical drug, whereas the drug can induce changes in the structural and biophysical properties of the membranes. Understanding this interplay of drug-lipid membrane interactions can be of great importance in drug design. Here, we present a molecular dynamics study to provide insights into the interactions between the antidepressant fluoxetine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) bilayers. It was found that, due to the electrostatic interaction, the headgroup of the zwitterionic DPPC lipid is more stable than that of the negatively charged DPPG lipid, allowing the gel phase to persist even at the elevated temperature. At 25 °C, fluoxetine cannot penetrate into the gel-phase DPPC bilayer, while the electrostatic interaction between positively charged fluoxetine and negatively charged DPPG bilayer retains the drug within the lipid headgroup domain. When the temperature is increased to 45 °C, both neutral and charged forms of fluoxetine can partition into the DPPC and DPPG bilayers spontaneously. Analysis of the biophysical and structural changes in both DPPC and DPPG bilayers in the presence of fluoxetine revealed a phase-dependent effect. The binding of fluoxetine to the lipid bilayers limits the movement and orientation of the drug. These findings shed light on the interactions between a commonly prescribed antidepressant and lipid membranes, and such information can be beneficial to the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Tho H Ho
- Vietnam National University, Ho Chi Minh City, Vietnam 700000
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam 700000
| | - Khai G Tran
- Vietnam National University, Ho Chi Minh City, Vietnam 700000
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam 700000
| | - Lam K Huynh
- Vietnam National University, Ho Chi Minh City, Vietnam 700000
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam 700000
| | - Trang T Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam 700000
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam 700000
| |
Collapse
|
2
|
Ferreira TH, Maximiano P, Simões PN. Effect of fructooligosaccharides in full-hydrated lactic acid bacteria membrane models during thermal stress: A molecular simulation study. Food Res Int 2025; 200:115475. [PMID: 39779124 DOI: 10.1016/j.foodres.2024.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Fructooligosaccharides (FOS) are a promising choice for cryoprotection of lactic acid bacteria (LAB). However, the mechanism by which this protection takes place is not well understood. Molecular simulation is a key tool for gathering insights into complex physicochemical problems like this. Existing computational studies on this topic only deal with Gram-negative bacterial membranes and disaccharides, a picture which is far from real preservation conditions involving LAB. We have used all-atom molecular dynamics simulations at different temperatures to investigate the interaction between a FOS mixture and membranes whose composition is meant to mimic three LAB strains of industrial relevance. It was concluded that the presence of FOS helps to preserve the membrane by reducing phase transition hysteresis and attenuating changes in area per lipid, thickness and lipid order upon cooling. Furthermore, a migration of FOS molecules towards the bulk region in concurrence with the migration of water molecules towards the membrane surface was identified. These findings support the exclusion hypothesis, which has been proposed to explain the mechanism of sugar-membrane interaction.
Collapse
Affiliation(s)
- Tiago H Ferreira
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio de Lima, Coimbra 3030-790, Portugal
| | - Pedro Maximiano
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio de Lima, Coimbra 3030-790, Portugal
| | - Pedro N Simões
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio de Lima, Coimbra 3030-790, Portugal.
| |
Collapse
|
3
|
Ljubič M, Perdih A, Borišek J. All-Atom Simulations Reveal the Effect of Membrane Composition on the Signaling of the NKG2A/CD94/HLA-E Immune Receptor Complex. J Chem Inf Model 2024; 64:9374-9387. [PMID: 39621690 DOI: 10.1021/acs.jcim.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Understanding how membrane composition influences the dynamics and function of transmembrane proteins is crucial for the comprehensive elucidation of cellular signaling mechanisms and the development of targeted therapeutics. In this study, we employed all-atom molecular dynamics simulations to investigate the impact of different membrane compositions on the conformational dynamics of the NKG2A/CD94/HLA-E immune receptor complex, a key negative regulator of natural killer cell cytotoxic activity. Our results reveal significant variations in the behavior of the immune complex structure across five different membrane compositions, which include POPC, POPA, DPPC, and DLPC phospholipids, and a mixed POPC/cholesterol system. These variations are particularly evident in the intracellular domain of NKG2A, manifested as changes in mobility, tyrosine exposure, and interdomain communication. Additionally, we found that a large concentration of negative charge at the surface of the POPA-based membrane greatly increased the number of contacts with lipid molecules and significantly decreased the exposure of intracellular NKG2A ITIM regions to water molecules, thus likely halting the signal transduction process. Furthermore, the DPPC model with a membrane possessing a high transition temperature in a gel-like state became curved, affecting the exposure of one ITIM region. The decreased membrane thickness in the DPLC model caused a significant transmembrane domain tilt, altering the linker protrusion angle and potentially disrupting the hydrogen bonding network in the extracellular domain. Overall, our findings highlight the importance of considering membrane composition in the analysis of transmembrane protein dynamics and in the exploration of novel strategies for the external modulation of their signaling pathways.
Collapse
Affiliation(s)
- Martin Ljubič
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Knippenberg S, De K, Aisenbrey C, Bechinger B, Osella S. Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane. Cells 2024; 13:1232. [PMID: 39120265 PMCID: PMC11311969 DOI: 10.3390/cells13151232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
The widely used Laurdan probe has two conformers, resulting in different optical properties when embedded in a lipid bilayer membrane, as demonstrated by our previous simulations. Up to now, the two conformers' optical responses have, however, not been investigated when the temperature and the phase of the membrane change. Since Laurdan is known to be both a molecular rotor and a solvatochromic probe, it is subject to a profound interaction with both neighboring lipids and water molecules. In the current study, molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics calculations are performed for a DPPC membrane at eight temperatures between 270K and 320K, while the position, orientation, fluorescence lifetime and fluorescence anisotropy of the embedded probes are monitored. The importance of both conformers is proven through a stringent comparison with experiments, which corroborates the theoretical findings. It is seen that for Conf-I, the excited state lifetime is longer than the relaxation of the environment, while for Conf-II, the surroundings are not yet adapted when the probe returns to the ground state. Throughout the temperature range, the lifetime and anisotropy decay curves can be used to identify the different membrane phases. The current work might, therefore, be of importance for biomedical studies on diseases, which are associated with cell membrane transformations.
Collapse
Affiliation(s)
- Stefan Knippenberg
- Theory Lab, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Kathakali De
- Institut de Chimie de Strasbourg, University of Strasbourg/CNRS, UMR7177, rue Blaise Pascal, F-67008 Strasbourg, France; (K.D.)
| | - Christopher Aisenbrey
- Institut de Chimie de Strasbourg, University of Strasbourg/CNRS, UMR7177, rue Blaise Pascal, F-67008 Strasbourg, France; (K.D.)
| | - Burkhard Bechinger
- Institut de Chimie de Strasbourg, University of Strasbourg/CNRS, UMR7177, rue Blaise Pascal, F-67008 Strasbourg, France; (K.D.)
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Li Q, Li Y, Pu Q, Yang H, Du M, Li X, Li Y, Li X. Exposure estimation and neurotoxicity inhibition of dioxins in sensitive populations near domestic waste incineration plant through adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134066. [PMID: 38522193 DOI: 10.1016/j.jhazmat.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
6
|
Wu J, Cui Z, Su Y, Yu Y, Yue B, Hu J, Qu J, Tian D, Zhan X, Li J, Cai Y. Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130729. [PMID: 36621295 DOI: 10.1016/j.jhazmat.2023.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The massive discharge of oily wastewater and oil spills are causing serious pollution to water resources. It is urgent to require clean and efficient method of purifying oily emulsions. Although the separation membranes with selective wettability have been widely used in the efficient purification of oil/water emulsions. It is still very challenging to develop functional films that are environmentally friendly, fouling resistant, inexpensive, easy to prepare, easy to scale, and highly efficient. Cellulose nanocrystalline-based composite membranes (CCM) were prepared by surface-initiated atom transfer radical polymerization (SATRP) and vacuum self-assembly. The prepared CCM is superhydrophilic and superoleophobic underwater due to the hydrophilic nature of the modified cellulose-nanocrystalline and the micro-nano surface structure. The CCM shows high separation efficiency (> 99.9 %), high flux (16,692 L-1·m-2·h-1·bar-1) for surfactant-stabilized oil-in-water emulsions, good cycle stability and anti-fouling performance. This biomass-derived membrane is green, cheap, easy to manufacture, scalable, super-wettability, and durability, it promises to be an alternative to separation membranes in today's market.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuxuan Su
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bo Yue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, PR China.
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| |
Collapse
|
7
|
Davies M, Reyes-Figueroa AD, Gurtovenko AA, Frankel D, Karttunen M. Elucidating lipid conformations in the ripple phase: Machine learning reveals four lipid populations. Biophys J 2023; 122:442-450. [PMID: 36403088 PMCID: PMC9892614 DOI: 10.1016/j.bpj.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
A new mixed radial-angular, three-particle correlation function method in combination with unsupervised machine learning was applied to examine the emergence of the ripple phase in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers using data from atomistic molecular dynamics simulations of system sizes ranging from 128 to 4096 lipids. Based on the acyl tail conformations, the analysis revealed the presence of four distinct conformational populations of lipids in the ripple phases of the DPPC lipid bilayers. The expected gel-like (ordered; Lo) and fluid-like (disordered; Ld) lipids are found along with their splayed tail equivalents (Lo,s and Ld,s). These lipids differ, based on their gauche distribution and tail packing. The disordered (Ld) and disordered-splayed (Ld,s) lipids spatially cluster in the ripple in the groove side, that is, in an asymmetric manner across the bilayer leaflets. The ripple phase does not contain large numbers of Ld lipids; instead they only exist on the interface of the groove side of the undulation. The bulk of the groove side is a complex coexistence of Lo,Lo,s, and Ld,s lipids. The convex side of the undulation contains predominantly Lo lipids. Thus, the structure of the ripple phase is neither a simple coexistence of ordered and disordered lipids nor a coexistence of ordered interdigitating gel-like (Lo) and ordered-splayed (Lo,s) lipids, but instead a coexistence of an ordered phase and a complex mixed phase. Principal component analysis further confirmed the existence of the four lipid groups.
Collapse
Affiliation(s)
- Matthew Davies
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| | - A D Reyes-Figueroa
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada; Centro de Investigación en Matemáticas Unidad Monterrey, Apodaca, Nuevo León, México; Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Ciudad de México, Mexico
| | - Andrey A Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia; Faculty of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Daniel Frankel
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada; Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
8
|
Maleš P, Pem B, Petrov D, Jurašin DD, Bakarić D. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. SOFT MATTER 2022; 18:6703-6715. [PMID: 36017811 DOI: 10.1039/d2sm00878e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The elucidation of the thermal properties of phosphatidylcholine liposomes is often based on the analysis of the thermal capacity profiles of multilamellar liposomes (MLV), which may qualitatively disagree with those of unilamellar liposomes (LUV). Experiments and interpretation of LUV liposomes is further complicated by aggregation and lamellarization of lipid bilayers in a short time period, which makes it almost impossible to distinguish the signatures of the two types of bilayers. To characterize independently MLV and LUV of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the latter were prepared with the addition of small amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) which, due to the sterical hindrance and negative charge at a given pH value, cause LUV repellence and contribute to their stability. Differential scanning calorimetry curves and temperature-dependent UV/Vis spectra of the prepared MLV and LUV were measured. Multivariate analysis of spectrophotometric data determined the phase transition temperatures (pretransition at Tp and the main phase transition at Tm), and based on the changes in turbidities, the thickness of the lipid bilayer in LUV was determined. The obtained data suggested that the curvature change is a key distinguishing factor in MLV and LUV heat capacity profiles. By combining the experimental results and those obtained by MD simulations, the interfacial water layer was characterized and its contribution to the thermal properties of LUV was discussed.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|