1
|
Zhang Y, Ren Y, Wang B, Guo S, Wang S, Jin J, Yang L, Gao W. Purification, crystallization and preliminary crystallographic analysis of Chlamydophila pneumoniae AP endonuclease IV. Protein Expr Purif 2024; 219:106476. [PMID: 38521114 DOI: 10.1016/j.pep.2024.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Base excision is a crucial DNA repair process mediated by endonuclease IV in nucleotide excision. In Chlamydia pneumoniae, CpendoIV is the exclusive AP endonuclease IV, exhibiting DNA replication error-proofreading capabilities, making it a promising target for anti-chlamydial drug development. Predicting the structure of CpendoIV, molecular docking with DNA was performed, analyzing complex binding sites and protein surface electrostatic potential. Comparative structural studies were conducted with E. coli EndoIV and DNA complex containing AP sites.CpendoIV was cloned, expressed in E. coli, and purified via Ni-NTA chelation and size-exclusion chromatography. Low NaCl concentrations induced aggregation during purification, while high concentrations enhanced purity.CpendoIV recognizes and cleaving AP sites on dsDNA, and Zn2+ influences the activity. Crystallization was achieved under 8% (v/v) Tacsimate pH 5.2, 25% (w/v) polyethylene glycol 3350, and 1.91 Å resolution X-ray diffraction data was obtained at 100 K. This research is significant for provides a deeper understanding of CpendoIV involvement in the base excision repair process, offering insights into Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Yitong Zhang
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Yangjie Ren
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Ben Wang
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Shiyang Guo
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Siqi Wang
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Jinglin Jin
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Lihong Yang
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| | - Wei Gao
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Beijing, 100083, China.
| |
Collapse
|
2
|
Zhai J, Huang F, Yang Y, Liu X, Luan T, Deng J. Development of a Repair Enzyme Fluorescent Probe to Reveal the Intracellular DNA Damage Induced by Benzo[a]pyrene in Living Cells. Anal Chem 2023; 95:7788-7795. [PMID: 37130082 DOI: 10.1021/acs.analchem.3c01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 μM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fanglin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaoxin Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang WW, Zhou H, Xie JJ, Yi GS, He JH, Wang FP, Xiao X, Liu XP. Thermococcus Eurythermalis Endonuclease IV Can Cleave Various Apurinic/Apyrimidinic Site Analogues in ssDNA and dsDNA. Int J Mol Sci 2018; 20:ijms20010069. [PMID: 30586940 PMCID: PMC6341776 DOI: 10.3390/ijms20010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5' of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3'-exonuclease activity for removing 3'-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3'-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5' to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5'-terminus. The 3'-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3'-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Puri RV, Singh N, Gupta RK, Tyagi AK. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One 2013; 8:e71535. [PMID: 23936515 PMCID: PMC3731287 DOI: 10.1371/journal.pone.0071535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/29/2013] [Indexed: 11/23/2022] Open
Abstract
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.
Collapse
Affiliation(s)
- Rupangi Verma Puri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nisha Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites. Proc Natl Acad Sci U S A 2010; 107:19219-24. [PMID: 20974932 DOI: 10.1073/pnas.1013603107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX(Bs)) that, along with polymerization and 3'-5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'-5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX(Bs) enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.
Collapse
|
6
|
Kiyonari S, Tahara S, Shirai T, Iwai S, Ishino S, Ishino Y. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus. Nucleic Acids Res 2009; 37:6439-53. [PMID: 19734344 PMCID: PMC2770678 DOI: 10.1093/nar/gkp720] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected the physical interaction between P. furiosus AP endonuclease (PfuAPE) and proliferating cell nuclear antigen (PCNA; PfuPCNA) by a pull-down assay and a surface plasmon resonance analysis. Interestingly, the associated 3′–5′ exonuclease activity, but not the AP endonuclease activity, of PfuAPE was stimulated by PfuPCNA. Immunoprecipitation experiments using the P. furiosus cell extracts supported the interaction between PfuAPE and PfuPCNA in the cells. This is the first report describing the physical and functional interactions between an archaeal AP endonuclease and PCNA. We also detected the ternary complex of PfuPCNA, PfuAPE and Pfu uracil-DNA glycosylase. This complex probably functions to enhance the repair of uracil-containing DNA in P. furiosus cells.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Genetic Resources Technology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, BIRD-Japan Science and Technology Agency, Fukuoka-shi, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Hou J, Liu X, Zheng Y, Liu J. An efficient cloning of DNA fragments by a method based on uracil-DNA glycosylase and endonuclease IV. ACTA ACUST UNITED AC 2007; 70:1196-8. [PMID: 17765318 DOI: 10.1016/j.jbbm.2007.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/28/2007] [Accepted: 07/28/2007] [Indexed: 10/23/2022]
Abstract
We introduced a novel method to clone random DNA fragments independent of ligation reaction. The method involves the generation of long protruding ends on PCR amplification DNA. Both oligonucleotides used for the amplification of the vector DNA carried one uracil residue at the tenth position from the 5' end and this made the creation of the 3' protruding ends of linearized vector possible by uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). 76 groups of annealed oligonucleotides that had ten-nucleotides protruding at 3'-end, which were complementary to those at 3'-end of the linearized vector, were designed. The linearized vector and the annealed oligonucleotide were mixed together to transform E.coli directly without ligation reaction. The number of the clone that grew on the plates had been demonstrated to reach 1x10(5) transformants/microg and 96.1% of transformants harbored the cloned fragments. From the results of transformation, we can confirm that the efficiency of the creation of 3' protruding ends in our method is high and our cloning method is benefit to produce recombinants easily and efficiently.
Collapse
Affiliation(s)
- Jingli Hou
- College of Life Science & Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | |
Collapse
|