1
|
Lee HS, Lee HJ, Kim B, Kim SH, Cho DH, Jung HJ, Bhatia SK, Choi KY, Kim W, Lee J, Lee SH, Yang YH. Inhibition of Cyclopropane Fatty Acid Synthesis in the Membrane of Halophilic Halomonas socia CKY01 by Kanamycin. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Advances in the Structural Biology, Mechanism, and Physiology of Cyclopropane Fatty Acid Modifications of Bacterial Membranes. Microbiol Mol Biol Rev 2022; 86:e0001322. [PMID: 35435731 PMCID: PMC9199407 DOI: 10.1128/mmbr.00013-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclopropane fatty acid (CFA) synthase catalyzes a remarkable reaction. The
cis
double bonds of unsaturated fatty acyl chains of phospholipid bilayers are converted to cyclopropane rings by transfer of a methylene moiety from S-adenosyl-L-methionine (SAM).
Collapse
|
3
|
Galy R, Ballereau S, Génisson Y, Mourey L, Plaquevent JC, Maveyraud L. Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Pharmaceuticals (Basel) 2021; 14:ph14121282. [PMID: 34959681 PMCID: PMC8708032 DOI: 10.3390/ph14121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The mycolic acid biosynthetic pathway represents a promising source of pharmacological targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated modifications. Crystallographic screening of a library of fragments allowed the identification of seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the conformation of residues 147–154. These residues are disordered in apo-Hma but fold upon binding of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of the short η1-helix. One of the observed conformations would be incompatible with the presence of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric compounds were designed by fusing some of the bound fragments, and the relative binding affinities of initial fragments and evolved compounds were investigated using molecular dynamics simulation and generalised Born and Poisson–Boltzmann calculations coupled to the surface area continuum solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the structural plasticity of the unliganded protein. Our results indicate a significant improvement in the binding properties of the designed compounds, suggesting that they could be further optimised to inhibit Hma activity.
Collapse
Affiliation(s)
- Romain Galy
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Jean-Christophe Plaquevent
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
- Correspondence: ; Tel.: +33-561-17-54-35
| |
Collapse
|
4
|
de Almeida VL, Silva CG, Silva AF, Campana PRV, Foubert K, Lopes JCD, Pieters L. Aspidosperma species: A review of their chemistry and biological activities. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:125-140. [PMID: 30395977 DOI: 10.1016/j.jep.2018.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Aspidosperma are known popularly as "peroba, guatambu, carapanaúba, pau-pereiro" and "quina". The genus can be found in the Americas, mainly between Mexico and Argentina. Many species of Aspidosperma are used by the population in treating cardiovascular diseases, malaria, fever, diabetes and rheumatism. The phytochemical aspects of the species of the genus Aspidosperma have been studied extensively. The monoterpene indole alkaloids are the main secondary metabolites in Aspidosperma species, and about 250 of them have been isolated showing a considerable structural diversity. Several of them have showed some important pharmacological activities. Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat diabetes mellitus, hypercholesterolemia. The pharmacological activities of both species have been investigated and the biological properties described can be related to their isolated indole alkaloids. However, more pharmacological studies are needed in order to justify the use of these species in folk medicine. In this review, we present reports mainly focused on chemical and biological studies and their relationship with the ethnopharmacological use of both Aspidosperma species. AIM OF THE STUDY The aim of this review is to present their ethnopharmacological use as correlated to their biological activities as described for the extracts and isolated compounds from Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. In addition, some aspects related to the biosynthetic pathways are discussed, also NMR assignments and some synthesis information about indole alkaloids from both Aspidosperma species are included. MATERIAL AND METHODS The bibliographic search was made in theses and dissertations using some databases such as NDLTD (Networked Digital Library of Theses and Dissertations), OATD (Open Access Theses and Dissertations) and Google Scholar. More data were gathered from books, Brazilian journals and articles available on electronic databases such as, Google Scholar, PubChem, Scifinder, Web of Science, SciELO, PubMed and Science Direct. Additionally, the Google Patents and Espacenet Patent Search (EPO) were also consulted. The keywords Aspidosperma, A. subincanum, A. tomentosum, indole alkaloids were used in the research. The languages were restricted to Portuguese, English and Spanish and references were selected according to their relevance. RESULTS A. subincanum Mart. and A. tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat a few diseases. Extracts and isolated compounds of both species have shown antitumor and antimalarial activities. The antitumor activity of isolated compounds has been extensively studied. However, the antiplasmodial activity needs to be investigated further as well as the anti-inflammatory, anti-hyperlipidemic and anorexigenic activities. From A. subincanum twenty-one indole alkaloids were isolated and some of them have been extensively studied. From the leaves and bark of A. tomentosum four alkaloids and one flavonoid were isolated. Furthermore, CG-MS analysis of seeds, branches, leaves and arils identified nine indole alkaloids. Stemmadenine has been proposed as a precursor of indole alkaloids obtained from some species of Aspidosperma. Many of the biosynthetic steps have been characterized at the enzymatic level and appropriate genes have been identified, however, other steps have yet to be investigated and they are still controversial. Some isolated alkaloids from A. subincanum and A. tomentosum were identified only by mass spectrometry. In many cases, their NMR data was either not available or was incomplete. The described meta-analysis of the available NMR data revealed that the chemical shifts belonging to the indole ring might be used to characterize this class of alkaloids within complex matrices such as plant extracts. The biological activities and the structural complexity of these compounds have stimulated the interest of many groups into their synthesis. In this review, some information about the synthesis of indole alkaloids and their derivatives was presented. CONCLUSIONS A. subincanum and A. tomentosum are used by the population of Brazil to treat many diseases. A few biological activities described for the extracts and isolated compounds of both species are in agreement with the ethnopharmacological use for others species of Aspidosperma, such as, antimalarial, the treatment of diabetes and other illnesses. These species are sources of leading compounds which can be used for developing new drugs. In addition, other biological activities reported and suggested by ethnopharmacological data have yet to be investigated and could be an interesting area in the search for new bioactive compounds.
Collapse
Affiliation(s)
- Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Herbário PAMG, Departamento de Pesquisa, Empresa de Pesquisa Agropecuária de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Kenn Foubert
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Júlio César Dias Lopes
- Chemoinformatics group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luc Pieters
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Czerwiec Q, Idrissitaghki A, Imatoukene N, Nonus M, Thomasset B, Nicaud JM, Rossignol T. Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast 2019; 36:143-151. [PMID: 30677185 DOI: 10.1002/yea.3379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 11/11/2022] Open
Abstract
Cyclopropane fatty acids, which can be simply converted to methylated fatty acids, are good unusual fatty acid candidates for long-term resistance to oxidization and low-temperature fluidity useful for oleochemistry and biofuels. Cyclopropane fatty acids are present in low amounts in plants or bacteria. In order to develop a process for large-scale biolipid production, we expressed 10 cyclopropane fatty acid synthases from various organisms in the oleaginous yeast Yarrowia lipolytica, a model yeast for lipid metabolism and naturally capable of producing large amounts of lipids. The Escherichia coli cyclopropane fatty acid synthase expression in Y. lipolytica allows the production of two classes of cyclopropane fatty acids, a C17:0 cyclopropanated form and a C19:0 cyclopropanated form, whereas others produce only the C17:0 form. Expression optimization and fed-batch fermentation set-up enable us to reach a specific productivity of 0.032 g·L-1 ·hr-1 with a genetically modified strain containing cyclopropane fatty acid up to 45% of the total lipid content corresponding to a titre of 2.3 ± 0.2 g/L and a yield of 56.2 ± 4.4 mg/g.
Collapse
Affiliation(s)
- Quentin Czerwiec
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Abdelghani Idrissitaghki
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, Dodd RH, Guillou C, Bolbach G, Sachon E, Guianvarc'h D. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal Bioanal Chem 2017; 409:3767-3777. [PMID: 28389916 DOI: 10.1007/s00216-017-0319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/27/2022]
Abstract
Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.
Collapse
Affiliation(s)
- Karine Guitot
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Thierry Drujon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabienne Burlina
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandra Beaupierre
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Olivier Pamlard
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Robert H Dodd
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Gérard Bolbach
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France. .,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| |
Collapse
|
7
|
Li H, Cowie A, Johnson JA, Webster D, Martyniuk CJ, Gray CA. Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition. BMC Genomics 2016; 17:621. [PMID: 27514659 PMCID: PMC4981992 DOI: 10.1186/s12864-016-2949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of microbial infections is becoming increasingly challenging because of limited therapeutic options and the growing number of pathogenic strains that are resistant to current antibiotics. There is an urgent need to identify molecules with novel modes of action to facilitate the development of new and more effective therapeutic agents. The anti-mycobacterial activity of the C17 diyne natural products falcarinol and panaxydol has been described previously; however, their mode of action remains largely undetermined in microbes. Gene expression profiling was therefore used to determine the transcriptomic response of Mycobacterium smegmatis upon treatment with falcarinol and panaxydol to better characterize the mode of action of these C17 diynes. Results Our analyses identified 704 and 907 transcripts that were differentially expressed in M. smegmatis after treatment with falcarinol and panaxydol respectively. Principal component analysis suggested that the C17 diynes exhibit a mode of action that is distinct to commonly used antimycobacterial drugs. Functional enrichment analysis and pathway enrichment analysis revealed that cell processes such as ectoine biosynthesis and cyclopropane-fatty-acyl-phospholipid synthesis were responsive to falcarinol and panaxydol treatment at the transcriptome level in M. smegmatis. The modes of action of the two C17 diynes were also predicted through Prediction of Activity Spectra of Substances (PASS). Based upon convergence of these three independent analyses, we hypothesize that the C17 diynes inhibit fatty acid biosynthesis, specifically phospholipid synthesis, in mycobacteria. Conclusion Based on transcriptomic responses, it is suggested that the C17 diynes act differently than other anti-mycobacterial compounds in M. smegmatis, and do so by inhibiting phospholipid biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2949-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haoxin Li
- Department of Biological Sciences, University of New Brunswick, PO Box 5050, 100 Tucker Park Road, E2L 4L5, Saint John, NB, Canada
| | - Andrew Cowie
- Department of Biological Sciences, University of New Brunswick, PO Box 5050, 100 Tucker Park Road, E2L 4L5, Saint John, NB, Canada
| | - John A Johnson
- Department of Biological Sciences, University of New Brunswick, PO Box 5050, 100 Tucker Park Road, E2L 4L5, Saint John, NB, Canada
| | - Duncan Webster
- Department of Medicine, Division of Infectious Diseases, Saint John Regional Hospital, 400 University Ave, E2L 4L4, Saint John, NB, Canada
| | - Christopher J Martyniuk
- Department of Biological Sciences, University of New Brunswick, PO Box 5050, 100 Tucker Park Road, E2L 4L5, Saint John, NB, Canada.,Present address: Center for Environmental and Human Toxicology & Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, 1333 Center Drive, 32610-0144, Gainesville, FL, USA
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick, PO Box 5050, 100 Tucker Park Road, E2L 4L5, Saint John, NB, Canada. .,Department of Chemistry, University of New Brunswick, PO Box 4400, 30 Dineen Drive, E3B 5A3, Fredericton, NB, Canada.
| |
Collapse
|
8
|
L’Enfant M, Domon JM, Rayon C, Desnos T, Ralet MC, Bonnin E, Pelloux J, Pau-Roblot C. Substrate specificity of plant and fungi pectin methylesterases: Identification of novel inhibitors of PMEs. Int J Biol Macromol 2015; 81:681-91. [DOI: 10.1016/j.ijbiomac.2015.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
|
9
|
Cyclopropane fatty acid synthase from Oenococcus oeni: expression in Lactococcus lactis subsp. cremoris and biochemical characterization. Arch Microbiol 2015; 197:1063-74. [DOI: 10.1007/s00203-015-1143-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/09/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
10
|
E G, Drujon T, Correia I, Ploux O, Guianvarc'h D. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction. Biochimie 2013; 95:2336-44. [DOI: 10.1016/j.biochi.2013.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
|
11
|
Guangqi E, Lesage D, Ploux O. Insight into the reaction mechanism of the Escherichia coli cyclopropane fatty acid synthase: isotope exchange and kinetic isotope effects. Biochimie 2010; 92:1454-7. [PMID: 20538038 DOI: 10.1016/j.biochi.2010.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/31/2010] [Indexed: 11/28/2022]
Abstract
Cyclopropanation of unsaturated lipids is an intriguing enzymatic reaction and a potential therapeutic target in Mycobacterium tuberculosis. Cyclopropane fatty acid synthase from Escherichia coli is the only in vitro model available to date for mechanistic and inhibition studies. While the overall reaction mechanism of this enzymatic process is now well accepted, some mechanistic issues are still debated. Using homogeneous E. coli enzyme we have shown that, contrary to previous report based on in vivo experiments, there is no exchange of the cylopropane methylene protons with the solvent during catalysis, as probed by ultra high resolution mass spectrometry. Using [methyl-14C]-labeled and [methyl-³H₃]-S-adenosyl-L-methionine we have measured a significant intermolecular primary tritium kinetic isotope effect ((T)V/K(app)=1.8 ± 0.1) consistent with a partially rate determining deprotonation step. We conclude that both chemical steps of this enzymatic cyclopropanation, the methyl addition onto the double bond and the deprotonation step, are rate determining, a common situation in efficient enzymes.
Collapse
Affiliation(s)
- E Guangqi
- Laboratoire Charles Friedel, UMR-CNRS 7223, ENSCP ChimieParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
12
|
Redundant function of cmaA2 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated mycolates. J Bacteriol 2010; 192:3661-8. [PMID: 20472794 DOI: 10.1128/jb.00312-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope contains a wide variety of lipids and glycolipids, including mycolic acids, long-chain branched fatty acids that are decorated by cyclopropane rings. Genetic analysis of the mycolate methyltransferase family has been a powerful approach to assign functions to each of these enzymes but has failed to reveal the origin of cis cyclopropanation of the oxygenated mycolates. Here we examine potential redundancy between mycolic acid methyltransferases by generating and analyzing M. tuberculosis strains lacking mmaA2 and cmaA2, mmaA2 and cmaA1, or mmaA1 alone. M. tuberculosis lacking both cmaA2 and mmaA2 cannot cis cyclopropanate methoxymycolates or ketomycolates, phenotypes not shared by the mmaA2 and cmaA2 single mutants. In contrast, a combined loss of cmaA1 and mmaA2 had no effect on mycolic acid modification compared to results with a loss of mmaA2 alone. Deletion of mmaA1 from M. tuberculosis abolishes trans cyclopropanation without accumulation of trans-unsaturated oxygenated mycolates, placing MmaA1 in the biosynthetic pathway for trans-cyclopropanated oxygenated mycolates before CmaA2. These results define new functions for the mycolic acid methyltransferases of M. tuberculosis and indicate a substantial redundancy of function for MmaA2 and CmaA2, the latter of which can function as both a cis and trans cyclopropane synthase for the oxygenated mycolates.
Collapse
|
13
|
Vaubourgeix J, Bardou F, Boissier F, Julien S, Constant P, Ploux O, Daffé M, Quémard A, Mourey L. S-adenosyl-N-decyl-aminoethyl, a potent bisubstrate inhibitor of mycobacterium tuberculosis mycolic acid methyltransferases. J Biol Chem 2009; 284:19321-30. [PMID: 19439410 PMCID: PMC2740557 DOI: 10.1074/jbc.m809599200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/26/2009] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine-dependent methyltransferases (AdoMet-MTs) constitute a large family of enzymes specifically transferring a methyl group to a range of biologically active molecules. Mycobacterium tuberculosis produces a set of paralogous AdoMet-MTs responsible for introducing key chemical modifications at defined positions of mycolic acids, which are essential and specific components of the mycobacterial cell envelope. We investigated the inhibition of these mycolic acid methyltransferases (MA-MTs) by structural analogs of the AdoMet cofactor. We found that S-adenosyl-N-decyl-aminoethyl, a molecule in which the amino acid moiety of AdoMet is substituted by a lipid chain, inhibited MA-MTs from Mycobacterium smegmatis and M. tuberculosis strains, both in vitro and in vivo, with IC(50) values in the submicromolar range. By contrast, S-adenosylhomocysteine, the demethylated reaction product, and sinefungin, a general AdoMet-MT inhibitor, did not inhibit MA-MTs. The interaction between Hma (MmaA4), which is strictly required for the biosynthesis of oxygenated mycolic acids in M. tuberculosis, and the three cofactor analogs was investigated by x-ray crystallography. The high resolution crystal structures obtained illustrate the bisubstrate nature of S-adenosyl-N-decyl-aminoethyl and provide insight into its mode of action in the inhibition of MA-MTs. This study has potential implications for the design of new drugs effective against multidrug-resistant and persistent tubercle bacilli.
Collapse
Affiliation(s)
- Julien Vaubourgeix
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Fabienne Bardou
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Fanny Boissier
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Sylviane Julien
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Patricia Constant
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Olivier Ploux
- the Laboratoire de Biochimie des Micro-organismes: Enzymologie, Métabolisme, et Antibiotiques, Ecole Nationale Supérieure de Chimie de Paris, CNRS UMR 7573, F-75231 Paris, France
| | - Mamadou Daffé
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Annaïk Quémard
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| | - Lionel Mourey
- From CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse
- the Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, and
| |
Collapse
|