1
|
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol 2020; 11:580167. [PMID: 33281616 PMCID: PMC7689297 DOI: 10.3389/fphys.2020.580167] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acetate is a major end product of bacterial fermentation of fiber in the gut. Acetate, whether derived from the diet or from fermentation in the colon, has been implicated in a range of health benefits. Acetate is also generated in and released from various tissues including the intestine and liver, and is generated within all cells by deacetylation reactions. To be utilized, all acetate, regardless of the source, must be converted to acetyl coenzyme A (acetyl-CoA), which is carried out by enzymes known as acyl-CoA short-chain synthetases. Acyl-CoA short-chain synthetase-2 (ACSS2) is present in the cytosol and nuclei of many cell types, whereas ACSS1 is mitochondrial, with greatest expression in heart, skeletal muscle, and brown adipose tissue. In addition to acting to redistribute carbon systemically like a ketone body, acetate is becoming recognized as a cellular regulatory molecule with diverse functions beyond the formation of acetyl-CoA for energy derivation and lipogenesis. Acetate acts, in part, as a metabolic sensor linking nutrient balance and cellular stress responses with gene transcription and the regulation of protein function. ACSS2 is an important task-switching component of this sensory system wherein nutrient deprivation, hypoxia and other stressors shift ACSS2 from a lipogenic role in the cytoplasm to a regulatory role in the cell nucleus. Protein acetylation is a critical post-translational modification involved in regulating cell behavior, and alterations in protein acetylation status have been linked to multiple disease states, including cancer. Improving our fundamental understanding of the "acetylome" and how acetate is generated and utilized at the subcellular level in different cell types will provide much needed insight into normal and neoplastic cellular metabolism and the epigenetic regulation of phenotypic expression under different physiological stressors. This article is Part 1 of 2 - for Part 2 see doi: 10.3389/fphys.2020.580171.
Collapse
Affiliation(s)
- John R. Moffett
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Tsirulnikov K, Duarte S, Ray A, Datta N, Zarrinpar A, Hwang L, Faull K, Pushkin A, Kurtz I. Aminoacylase 3 Is a New Potential Marker and Therapeutic Target in Hepatocellular Carcinoma. J Cancer 2018; 9:1-12. [PMID: 29290764 PMCID: PMC5743706 DOI: 10.7150/jca.21747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
Ras proteins (HRas, KRas and NRas) are common oncogenes that require membrane association for activation. Previous approaches to block/inhibit Ras membrane association were unsuccessful for cancer treatment in human clinical studies. In the present study we utilized a new approach to decrease Ras membrane association in hepatocellular carcinoma (HCC) cell lines via inhibition of an enzyme aminoacylase 3 (AA3; EC 3.5.1.114). AA3 expression was significantly elevated in the livers of HCC patients and HCC cell lines. Treatment of HepG2 cells with AA3 inhibitors, and HepG2 and HuH7 with AA3 siRNA significantly decreased Ras membrane association and was toxic to these HCC cell lines. AA3 inhibitors also increased the levels of N-acetylfarnesylcysteine (NAFC) and N-acetylgeranylgeranylcysteine (NAGGC) in HepG2 and Huh7 cell lines. We hypothesized that AA3 deacetylates NAFC and NAGGC, and generated farnesylcysteine (FC) and geranylgeranylcysteine (GGC) that are used in HCC cells for the regeneration of farnesylpyrophosphate and geranylgeranylpyrophosphate providing the prenyl (farnesyl or geranylgeranyl) group for Ras prenylation required for Ras membrane association. This was confirmed experimentally where purified human AA3 was capable of efficiently deacetylating NAFC and NAGGC. Our findings suggest that AA3 inhibition may be an effective approach in the therapy of HCC and that elevated AA3 expression in HCC is potentially an important diagnostic marker.
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Division of Nephrology, Department of Medicine, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sergio Duarte
- Dumont-UCLA Transplant Center, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Anamika Ray
- Department of Surgery, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Current address: InnoSense LLC, Torrance, CA, USA
| | - Nakul Datta
- Department of Surgery, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ali Zarrinpar
- Department of Surgery, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Current address: Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alexander Pushkin
- Division of Nephrology, Department of Medicine, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, D. Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Long DA, Kolatsi-Joannou M, Price KL, Dessapt-Baradez C, Huang JL, Papakrivopoulou E, Hubank M, Korstanje R, Gnudi L, Woolf AS. Albuminuria is associated with too few glomeruli and too much testosterone. Kidney Int 2013; 83:1118-29. [PMID: 23447063 PMCID: PMC3674403 DOI: 10.1038/ki.2013.45] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Normally, the glomerular filtration barrier almost completely excludes circulating albumin from entering the urine. Genetic variation and both pre- and postnatal environmental factors may affect albuminuria in humans. Here we determine whether glomerular gene expression in mouse strains with naturally occurring variations in albuminuria would allow identification of proteins deregulated in relatively 'leaky' glomeruli. Albuminuria increased in female B6 to male B6 to female FVB/N to male FVB/N mice, whereas the number of glomeruli/kidney was the exact opposite. Testosterone administration led to increased albuminuria in female B6 but not female FVB/N mice. A common set of 39 genes, many expressed in podocytes, were significantly differentially expressed in each of the four comparisons: male versus female B6 mice, male versus female FVB/N mice, male FVB/N versus male B6 mice, and female FVB/N versus female B6 mice. The transcripts encoded proteins involved in oxidation/reduction reactions, ion transport, and enzymes involved in detoxification. These proteins may represent novel biomarkers and even therapeutic targets for early kidney and cardiovascular disease.
Collapse
Affiliation(s)
- David A Long
- Nephro-Urology Unit, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tsirulnikov K, Abuladze N, Vahi R, Hasnain H, Phillips M, Ryan CM, Atanasov I, Faull KF, Kurtz I, Pushkin A. Aminoacylase 3 binds to and cleaves the N-terminus of the hepatitis C virus core protein. FEBS Lett 2012; 586:3799-804. [PMID: 23010594 DOI: 10.1016/j.febslet.2012.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/13/2023]
Abstract
Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (K(d) ~10 μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP.
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsirulnikov K, Abuladze N, Bragin A, Faull K, Cascio D, Damoiseaux R, Schibler MJ, Pushkin A. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal. Toxicol Appl Pharmacol 2012; 263:303-14. [PMID: 22819785 DOI: 10.1016/j.taap.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/11/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Department of Medicine, University of California at Los Angeles, CA 90095-1689, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sun Y, Ou Y, Cheng M, Ruan Y, van der Hoorn FA. Binding of nickel to testicular glutamate-ammonia ligase inhibits its enzymatic activity. Mol Reprod Dev 2011; 78:104-15. [PMID: 21254280 DOI: 10.1002/mrd.21275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/21/2010] [Indexed: 01/06/2023]
Abstract
Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate-ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure.
Collapse
Affiliation(s)
- Yingbiao Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | | | | | | |
Collapse
|
8
|
Angel LA. Study of metal ion labeling of the conformational and charge states of lysozyme by ion mobility mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:207-215. [PMID: 21828412 DOI: 10.1255/ejms.1133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The efficiency of Zn(2+), Cu(2+), Ni(2+), Co(2+), Fe(2+) or Mn(2+) labeling of the conformational and charge states of lysozyme was studied in H(2)O solvent at pH 2.5-6.8. Labeling of lysozyme was conducted with 50 M, 100 M and 500 M excess of the metal ion, resulting in the number of metal ions attached to lysozyme increasing two-fold over this range. At pH 6.2-6.8, Zn(2+), Cu(2+), Ni(2+), Co(2+) and Mn(2+) labeled the highly folded 7+ conformer and the 8+ and 9+ partially unfolded conformers of lysozyme with the same number of metal ion tags, with only Fe(2+) exhibiting no labeling. Lysozyme conserved its charge after metal ion labeling which shows at each charge state the divalent metal ion is replacing two protons. As the pH is lowered to 4.7-5.0 and 2.5-2.9, the labeling of lysozyme by Zn(2+), Cu(2+), Ni(2+), Co(2+) or Mn(2+) decreased in efficiency due to increased competition from protons for the aspartate and glutamate binding sites. The metal ions preferentially labeled the highly folded 7+ and partially unfolded 8+ conformers, but labeling decreased as the charge of lysozyme increased. In contrast to the other metal ions, Fe(2+) exhibited labeling of lysozyme only at the lowest pH of 2.8. At higher pH, the oxidation of Fe(2+) and formation of hydroxy-bridged complexes probably make the Fe(2+) unreactive towards lysozyme.
Collapse
Affiliation(s)
- Laurence A Angel
- Texas A&M University-Commerce, Department of Chemistry, PO Box 3011, Commerce, TX 75429-3011, USA.
| |
Collapse
|
9
|
Abstract
Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.
Collapse
|