1
|
Thomas C, Green S, Kimball L, Schmidtke IR, Griffin M, Rothwell L, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: orthologues with homologous function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615541. [PMID: 39386538 PMCID: PMC11463350 DOI: 10.1101/2024.09.27.615541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. However, we identify differences in the amino acid composition within the key loop areas shown to drive characteristic Pol θ functions. Despite these differences zebrafish Pol θ still displays characteristics identify in human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Isaiah R Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | | | - Steven E Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| |
Collapse
|
2
|
Nelson-Rigg R, Fagan SP, Jaremko WJ, Pata JD. Pre-Steady-State Kinetic Characterization of an Antibiotic-Resistant Mutant of Staphylococcus aureus DNA Polymerase PolC. Antimicrob Agents Chemother 2023; 67:e0157122. [PMID: 37222615 PMCID: PMC10269047 DOI: 10.1128/aac.01571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
The emergence and spread of antibiotic resistance in bacterial pathogens are serious and ongoing threats to public health. Since chromosome replication is essential to cell growth and pathogenesis, the essential DNA polymerases in bacteria have long been targets of antimicrobial development, although none have yet advanced to the market. Here, we use transient-state kinetic methods to characterize the inhibition of the PolC replicative DNA polymerase from Staphylococcus aureus by 2-methoxyethyl-6-(3'-ethyl-4'-methylanilino)uracil (ME-EMAU), a member of the 6-anilinouracil compounds that specifically target PolC enzymes, which are found in low-GC content Gram-positive bacteria. We find that ME-EMAU binds to S. aureus PolC with a dissociation constant of 14 nM, more than 200-fold tighter than the previously reported inhibition constant, which was determined using steady-state kinetic methods. This tight binding is driven by a very slow off rate of 0.006 s-1. We also characterized the kinetics of nucleotide incorporation by PolC containing a mutation of phenylalanine 1261 to leucine (F1261L). The F1261L mutation decreases ME-EMAU binding affinity by at least 3,500-fold but also decreases the maximal rate of nucleotide incorporation by 11.5-fold. This suggests that bacteria acquiring this mutation would be likely to replicate slowly and be unable to out-compete wild-type strains in the absence of inhibitors, reducing the likelihood of the resistant bacteria propagating and spreading resistance.
Collapse
Affiliation(s)
- Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Sean P. Fagan
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William J. Jaremko
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
3
|
Kumari A, Yadav A, Lahiri I. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Biochemistry 2022; 61:2319-2333. [PMID: 36251801 DOI: 10.1021/acs.biochem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anjali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India.,Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
4
|
Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int J Mol Sci 2022; 23:ijms23126373. [PMID: 35742812 PMCID: PMC9224347 DOI: 10.3390/ijms23126373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.
Collapse
|
5
|
Evans GW, Craggs T, Kapanidis AN. The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation. J Mol Biol 2022; 434:167410. [PMID: 34929202 PMCID: PMC8783057 DOI: 10.1016/j.jmb.2021.167410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022]
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. https://twitter.com/geraintwe
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom; Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom. https://twitter.com/Craggs_Lab
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
6
|
The combined DNA and RNA synthetic capabilities of archaeal DNA primase facilitate primer hand-off to the replicative DNA polymerase. Nat Commun 2022; 13:433. [PMID: 35064114 PMCID: PMC8782868 DOI: 10.1038/s41467-022-28093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Replicative DNA polymerases cannot initiate DNA synthesis de novo and rely on dedicated RNA polymerases, primases, to generate a short primer. This primer is then extended by the DNA polymerase. In diverse archaeal species, the primase has long been known to have the ability to synthesize both RNA and DNA. However, the relevance of these dual nucleic acid synthetic modes for productive primer synthesis has remained enigmatic. In the current work, we reveal that the ability of primase to polymerize DNA serves dual roles in promoting the hand-off of the primer to the replicative DNA polymerase holoenzyme. First, it creates a 5′-RNA-DNA-3′ hybrid primer which serves as an optimal substrate for elongation by the replicative DNA polymerase. Second, it promotes primer release by primase. Furthermore, modeling and experimental data indicate that primase incorporates a deoxyribonucleotide stochastically during elongation and that this switches the primase into a dedicated DNA synthetic mode polymerase. DNA primases initiate a short primer before handing off to DNA polymerases to continue replication. Here the authors reveal a unique ability of archaeal primases to first synthesize RNA before stochastically incorporating a deoxyribonucleotide and further extending the primer as DNA.
Collapse
|
7
|
Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Nucleic Acids Res 2021; 49:8324-8338. [PMID: 34302475 PMCID: PMC8373059 DOI: 10.1093/nar/gkab613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.
Collapse
Affiliation(s)
- Sean P Fagan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tyler L Dangerfield
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
8
|
Coggins SA, Mahboubi B, Schinazi RF, Kim B. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery. J Biol Chem 2020; 295:13432-13443. [PMID: 32737197 PMCID: PMC7521635 DOI: 10.1074/jbc.rev120.013746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme kinetic analysis reveals a dynamic relationship between enzymes and their substrates. Overall enzyme activity can be controlled by both protein expression and various cellular regulatory systems. Interestingly, the availability and concentrations of intracellular substrates can constantly change, depending on conditions and cell types. Here, we review previously reported enzyme kinetic parameters of cellular and viral DNA and RNA polymerases with respect to cellular levels of their nucleotide substrates. This broad perspective exposes a remarkable co-evolution scenario of DNA polymerase enzyme kinetics with dNTP levels that can vastly change, depending on cell proliferation profiles. Similarly, RNA polymerases display much higher Km values than DNA polymerases, possibly due to millimolar range rNTP concentrations found in cells (compared with micromolar range dNTP levels). Polymerases are commonly targeted by nucleotide analog inhibitors for the treatments of various human diseases, such as cancers and viral pathogens. Because these inhibitors compete against natural cellular nucleotides, the efficacy of each inhibitor can be affected by varying cellular nucleotide levels in their target cells. Overall, both kinetic discrepancy between DNA and RNA polymerases and cellular concentration discrepancy between dNTPs and rNTPs present pharmacological and mechanistic considerations for therapeutic discovery.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Bijan Mahboubi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Hamm ML, Garcia AA, Gilbert R, Johri M, Ricart M, Sholes SL, Murray-Nerger LA, Wu EY. The importance of Ile716 toward the mutagenicity of 8-Oxo-2'-deoxyguanosine with Bacillus fragment DNA polymerase. DNA Repair (Amst) 2020; 89:102826. [PMID: 32113909 DOI: 10.1016/j.dnarep.2020.102826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
8-oxo-2'-deoxyguanosine (OdG) is a prominent DNA lesion that can direct the incorporation of dCTP or dATP during replication. As the latter reaction can lead to mutation, the ratio of dCTP/dATP incorporation can significantly affect the mutagenic potential of OdG. Previous work with the A-family polymerase BF and seven analogues of OdG identified a major groove amino acid, Ile716, which likely influences the dCTP/dATP incorporation ratio opposite OdG. To further probe the importance of this amino acid, dCTP and dATP incorporations opposite the same seven analogues were tested with two BF mutants, I716M and I716A. Results from these studies support the presence of clashing interactions between Ile716 and the C8-oxygen and C2-amine during dCTP and dATP incorporations, respectively. Crystallographic analysis suggests that residue 716 alters the conformation of the template base prior to insertion into the active site, thereby affecting enzymatic efficiency. These results are also consistent with previous work with A-family polymerases, which indicate they have tight, rigid active sites that are sensitive to template perturbations.
Collapse
Affiliation(s)
- Michelle L Hamm
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States.
| | - Anarosa A Garcia
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Rachel Gilbert
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Manavi Johri
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Miranda Ricart
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Samantha L Sholes
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States
| | - Laura A Murray-Nerger
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States.
| |
Collapse
|
10
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
11
|
Coggins SA, Holler JM, Kimata JT, Kim DH, Schinazi RF, Kim B. Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation. Virology 2019; 537:36-44. [PMID: 31442614 DOI: 10.1016/j.virol.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Unlike HIV-1, HIV-2 and some SIV strains replicate at high dNTP concentrations even in macrophages due to their accessory proteins, Vpx or Vpr, that target SAMHD1 dNTPase for proteasomal degradation. We previously reported that HIV-1 reverse transcriptase (RT) efficiently synthesizes DNA even at low dNTP concentrations because HIV-1 RT displays faster pre-steady state kpol values than SAMHD1 counteracting lentiviral RTs. Here, since the kpol step consists of two sequential sub-steps post dNTP binding, conformational change and chemistry, we investigated which of the two sub-steps RTs from SAMHD1 non-counteracting viruses accelerate in order to complete reverse transcription in the limited dNTP pools found in macrophages. Our study demonstrates that RTs of SAMHD1 non-counteracting lentiviruses have a faster conformational change rate during dNTP incorporation, supporting that these lentiviruses may have evolved to harbor RTs that can efficiently execute the conformational change step in order to circumvent SAMHD1 restriction and dNTP depletion in macrophages.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica M Holler
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030, Texas, USA
| | - Dong-Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea; Children's Healthcare of Atlanta, Atlanta, 30322, USA.
| |
Collapse
|
12
|
Xu W, Zhao W, Morehouse N, Tree MO, Zhao L. Divalent Cations Alter the Rate-Limiting Step of PrimPol-Catalyzed DNA Elongation. J Mol Biol 2019; 431:673-686. [PMID: 30633872 DOI: 10.1016/j.jmb.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Abstract
PrimPol is the most recently discovered human DNA polymerase/primase and plays an emerging role in nuclear and mitochondrial genomic maintenance. As a member of archaeo-eukaryotic primase superfamily enzymes, PrimPol possesses DNA polymerase and primase activities that are important for replication fork progression in vitro and in cellulo. The enzymatic activities of PrimPol are critically dependent on the nucleotidyl-transfer reaction to incorporate deoxyribonucleotides successively; however, our knowledge concerning the kinetic mechanism of the reaction remains incomplete. Using enzyme kinetic analyses and computer simulations, we dissected the mechanism by which PrimPol transfers a nucleotide to a primer-template DNA, which comprises DNA binding, conformational transition, nucleotide binding, phosphoester bond formation, and dissociation steps. We obtained the rate constants of the steps by steady-state and pre-steady-state kinetic analyses and simulations. Our data demonstrate that the rate-limiting step of PrimPol-catalyzed DNA elongation depends on the metal cofactor involved. In the presence of Mn2+, a conformational transition step from non-productive to productive PrimPol:DNA complexes limits the enzymatic turnover, whereas in the presence of Mg2+, the chemical step becomes rate limiting. As evidenced from our kinetic and simulation data, PrimPol maintains the same kinetic mechanism under either millimolar or physiological micromolar Mn2+ concentration. Our study revealed the underlying mechanism by which PrimPol catalyzes nucleotide incorporation with two common metal cofactors and provides a kinetic basis for further understanding the regulatory mechanism of this functionally diverse primase-polymerase.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Wenxin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Nana Morehouse
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O Tree
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
13
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
14
|
Yeager A, Humphries K, Farmer E, Cline G, Miller BR. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics. J Chem Inf Model 2018; 58:338-349. [PMID: 29280634 DOI: 10.1021/acs.jcim.7b00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.
Collapse
Affiliation(s)
- Andrew Yeager
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Kathryn Humphries
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Ellen Farmer
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Gene Cline
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| |
Collapse
|
15
|
Nikoomanzar A, Dunn MR, Chaput JC. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases. Anal Chem 2017; 89:12622-12625. [DOI: 10.1021/acs.analchem.7b03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Nikoomanzar
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Matthew R. Dunn
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
16
|
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 2017; 8:15075. [PMID: 28462924 PMCID: PMC5418573 DOI: 10.1038/ncomms15075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis. The current model for B-family DNA polymerases in archaea is one of single-subunit enzymes in contrast to the multi-subunit complexes in eukaryotes. Here the authors show that PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.
Collapse
|
17
|
Abstract
Extracting kinetic parameters from DNA polymerase-catalyzed processive polymerization data using traditional initial-rate analysis has proven to be problematic for multiple reasons. The first substrate, DNA template, is a heterogeneous polymer and binds tightly to DNA polymerase. Further, the affinity and speed of incorporation of the second substrate, deoxynucleoside triphosphate (dNTP), vary greatly depending on the nature of the templating base and surrounding sequence. Here, we present a mathematical model consisting of the DNA template-binding step and a Michaelis-Menten-type nucleotide incorporation step acting on a DNA template with a finite length. The model was numerically integrated and globally fitted to experimental reaction time courses. The time courses were determined by monitoring the processive synthesis of oligonucleotides of lengths between 50 and 120 nucleotides by DNA polymerase I (Klenow fragment exo-) using the fluorophore PicoGreen. For processive polymerization, we were able to estimate an enzyme-template association rate k1 of 7.4 μM-1 s-1, a disassociation rate k-1 of 0.07 s-1, and a Kd of 10 nM, and the steady-state parameters for correct dNTP incorporation give kcat values of 2.5-3.3 s-1 and Km values of 0.51-0.86 μM. From the analysis of time courses measured between 5 and 25 °C, an activation energy for kcat of 82 kJ mol-1 was calculated, and it was found that up to 73% of Klenow fragment becomes inactivated or involved in unproductive binding at lower temperatures. Finally, a solvent deuterium kinetic isotope effect (KIE) of 3.0-3.2 was observed under processive synthesis conditions, which suggests that either the intrinsic KIE is unusually high, at least 30-40, or previous findings, showing that the phosphoryl transfer step occurs rapidly and is flanked by two slow conformational changes, need to be re-evaluated. We suggest that the numerical integration of rate equations provides a high level of flexibility and generally produces superior results compared to those of initial-rate analysis in the study of DNA polymerase kinetics and, by extension, other complex enzyme systems.
Collapse
Affiliation(s)
- Julius Rentergent
- Manchester Institute of Biotechnology, University of Manchester , Manchester M1 7DN, U.K
| | - Max D Driscoll
- Manchester Institute of Biotechnology, University of Manchester , Manchester M1 7DN, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester , Manchester M1 7DN, U.K
| |
Collapse
|
18
|
Choi JY, Patra A, Yeom M, Lee YS, Zhang Q, Egli M, Guengerich FP. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι. J Biol Chem 2016; 291:21063-21073. [PMID: 27555320 DOI: 10.1074/jbc.m116.748285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/13/2022] Open
Abstract
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+ The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Amritaj Patra
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Mina Yeom
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Young-Sam Lee
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Qianqian Zhang
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Martin Egli
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - F Peter Guengerich
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| |
Collapse
|
19
|
Abstract
The RNA-dependent RNA polymerases from positive-strand RNA viruses, such as picornaviruses and flaviviruses, close their active sites for catalysis via a unique NTP-induced conformational change in the palm domain. Combined with a fully prepositioned templating nucleotide, this mechanism is error-prone and results in a distribution of random mutations in the viral progeny often described as a quasi-species. Here we examine the extent to which noncognate NTPs competitively inhibit single-cycle elongation by coxsackievirus B3 3D(pol), a polymerase that generates three to four mutations per 10 kb of RNA synthesized during viral infection. Using an RNA with a templating guanosine combined with 2-aminopurine fluorescence as a reporter for elongation, we find that the cognate CTP has a Km of 24 μM and the three noncognate nucleotides competitively inhibit the reaction with Kic values of 500 μM for GTP, 1300 μM for ATP, and 3000 μM for UTP. Unexpectedly, ATP also acted as an uncompetitive inhibitor with a Kiu of 1800 μM, resulting in allosteric modulation of 3D(pol) that slowed the polymerase elongation rate ≈4-fold. ATP uncompetitive inhibition required the β- and γ-phosphates, and its extent was significantly diminished in two previously characterized low-fidelity polymerases. This led to further mutational analysis and the identification of a putative allosteric binding site below the NTP entry channel at the interface of conserved motifs A and D, although cocrystallization failed to reveal any density for bound ATP in this pocket. The potential role of an ATP allosteric effect during the virus life cycle is discussed.
Collapse
Affiliation(s)
- Jonathan P. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Gül OT, Pugliese KM, Choi Y, Sims PC, Pan D, Rajapakse AJ, Weiss GA, Collins PG. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. BIOSENSORS-BASEL 2016; 6:bios6030029. [PMID: 27348011 PMCID: PMC5039648 DOI: 10.3390/bios6030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Collapse
Affiliation(s)
- O Tolga Gül
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, Polatlı Faculty of Science and Arts, Gazi University, Polatlı 06900, Turkey
| | - Kaitlin M Pugliese
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | - Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, North Dakota State University, Fargo, ND 58108, USA
| | - Patrick C Sims
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Deng Pan
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Arith J Rajapakse
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697, USA.
| | - Philip G Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Moscato B, Swain M, Loria JP. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Biochemistry 2016; 55:382-95. [PMID: 26678253 PMCID: PMC8259413 DOI: 10.1021/acs.biochem.5b01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerase β (Pol β) repairs single-nucleotide gapped DNA (sngDNA) by enzymatic incorporation of the Watson-Crick partner nucleotide at the gapped position opposite the templating nucleotide. The process by which the matching nucleotide is incorporated into a sngDNA sequence has been relatively well-characterized, but the process of discrimination from nucleotide misincorporation remains unclear. We report here NMR spectroscopic characterization of full-length, uniformly labeled Pol β in apo, sngDNA-bound binary, and ternary complexes containing matching and mismatching nucleotide. Our data indicate that, while binding of the correct nucleotide to the binary complex induces chemical shift changes consistent with the process of enzyme closure, the ternary Pol β complex containing a mismatching nucleotide exhibits no such changes and appears to remain in an open, unstable, binary-like conformation. Our findings support an induced-fit mechanism for polymerases in which a closed ternary complex can only be achieved in the presence of matching nucleotide.
Collapse
Affiliation(s)
- Beth Moscato
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Monalisa Swain
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Sharma KK, Przybilla F, Restle T, Godet J, Mély Y. FRET-based assay to screen inhibitors of HIV-1 reverse transcriptase and nucleocapsid protein. Nucleic Acids Res 2016; 44:e74. [PMID: 26762982 PMCID: PMC4856972 DOI: 10.1093/nar/gkv1532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
During HIV-1 reverse transcription, the single-stranded RNA genome is converted into proviral double stranded DNA by Reverse Transcriptase (RT) within a reverse transcription complex composed of the genomic RNA and a number of HIV-1 encoded proteins, including the nucleocapsid protein NCp7. Here, we developed a one-step and one-pot RT polymerization assay. In this in vitro assay, RT polymerization is monitored in real-time by Förster resonance energy transfer (FRET) using a commercially available doubly-labeled primer/template DNA. The assay can monitor and quantify RT polymerization activity as well as its promotion by NCp7. Z-factor values as high as 0.89 were obtained, indicating that the assay is suitable for high-throughput drug screening. Using Nevirapine and AZT as prototypical RT inhibitors, reliable IC50 values were obtained from the changes in the RT polymerization kinetics. Interestingly, the assay can also detect NCp7 inhibitors, making it suitable for high-throughput screening of drugs targeting RT, NCp7 or simultaneously, both proteins.
Collapse
Affiliation(s)
- Kamal K Sharma
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Frédéric Przybilla
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Tobias Restle
- Institute für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France Département d'Information Médicale et de Biostatistiques, Hôpitaux Universitaires de Strasbourg, 1, pl de l'Hôpital, 67400 Strasbourg, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
23
|
Greenough L, Schermerhorn KM, Mazzola L, Bybee J, Rivizzigno D, Cantin E, Slatko BE, Gardner AF. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes. Nucleic Acids Res 2015; 44:e15. [PMID: 26365239 PMCID: PMC4737176 DOI: 10.1093/nar/gkv899] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/28/2015] [Indexed: 01/26/2023] Open
Abstract
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.
Collapse
Affiliation(s)
| | | | | | - Joanna Bybee
- From New England Biolabs, Inc., Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|
24
|
Miller BR, Beese LS, Parish CA, Wu EY. The Closing Mechanism of DNA Polymerase I at Atomic Resolution. Structure 2015. [PMID: 26211612 DOI: 10.1016/j.str.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.
Collapse
Affiliation(s)
- Bill R Miller
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Sci Rep 2015; 5:12066. [PMID: 26174478 PMCID: PMC4502528 DOI: 10.1038/srep12066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022] Open
Abstract
The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.
Collapse
|
26
|
Yeom T, Lee J, Lee S, Kang S, Kim KR, Han B, Lee HS, Jo K. Mass spectrometric investigation of the role of the linking polypeptide chain in DNA polymerase I. Analyst 2015; 139:2432-9. [PMID: 24695614 DOI: 10.1039/c4an00107a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerase I offers great promise for a wide range of biotechnological applications due to its capability to add labeled nucleotides into double-stranded large DNA molecules by using both polymerase and nuclease domains. Accordingly, it is crucially important to thoroughly characterize this enzyme for further developments. Although the enzyme has been thus far characterized using mainly traditional analytical instruments, here we utilized an advanced and convenient means of mass spectrometry to elucidate enzymatic functions and mechanisms by measuring DNA oligomers generated by polymerase and nuclease reactions. Our analysis revealed several novel enzymatic features, including the observation that polymerase readily dissociates from the DNA molecules containing a wide single-stranded section. From this finding, we reasoned a serious situation of DNA break because polymerase domains cannot efficiently repair the wide single-stranded section, which is susceptible to DNA breaks. Furthermore, we deduced a plausible explanation for a paradoxical question as to why two domains of polymerase and 5'-nuclease are linked by a small and flexible polypeptide in polymerase I. The polypeptide link seems to prevent a 5'-nuclease from causing DNA breaks by locating a polymerase domain closely for immediate repair reaction. Here we present experimental evidence to prove our hypothesis via a set of mass spectrometric analyses as well as single DNA molecule observation and bacterial cell growth assay. Consequently, mass spectrometric analysis for DNA polymerase I provides a meaningful biological insight that a polypeptide link can be a molecular leash to control an aggressive domain in order to prevent unmanageable damages.
Collapse
Affiliation(s)
- Taeho Yeom
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 121-742, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Evans GW, Hohlbein J, Craggs T, Aigrain L, Kapanidis AN. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res 2015; 43:5998-6008. [PMID: 26013816 PMCID: PMC4499156 DOI: 10.1093/nar/gkv547] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Johannes Hohlbein
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Louise Aigrain
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
28
|
DNA sequencing using polymerase substrate-binding kinetics. Nat Commun 2015; 6:5936. [PMID: 25612848 PMCID: PMC4354037 DOI: 10.1038/ncomms6936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023] Open
Abstract
Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. Next-generation sequencing technologies vary in performance, which is often measured by metrics such as sequencing speed, accuracy and read length. Here, the authors present a new sequencing by synthesis method that monitors polymerase binding to DNA, and suggest that this method has the potential to generate longer and faster reads.
Collapse
|
29
|
Zhao L, Pence MG, Eoff RL, Yuan S, Fercu CA, Guengerich FP. Elucidation of kinetic mechanisms of human translesion DNA polymerase κ using tryptophan mutants. FEBS J 2014; 281:4394-410. [PMID: 25065501 PMCID: PMC4182141 DOI: 10.1111/febs.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023]
Abstract
To investigate the conformational dynamics of human DNA polymerase κ (hpol κ), we generated two mutants, Y50W (N-clasp region) and Y408W (linker between the thumb and little finger domains), using a Trp-null mutant (W214Y/W392H) of the hpol κ catalytic core enzyme. These mutants retained catalytic activity and similar patterns of selectivity for bypassing the DNA adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine, as indicated by the results of steady-state and pre-steady-state kinetic experiments. Stopped-flow kinetic assays with hpol κ Y50W and T408W revealed a decrease in Trp fluorescence with the template G:dCTP pair but not for any mispairs. This decrease in fluorescence was not rate-limiting and is considered to be related to a conformational change necessary for correct nucleotidyl transfer. When a free 3'-hydroxyl was present on the primer, the Trp fluorescence returned to the baseline level at a rate similar to the observed kcat , suggesting that this change occurs during or after nucleotidyl transfer. However, polymerization rates (kpol ) of extended-product formation were fast, indicating that the slow fluorescence step follows phosphodiester bond formation and is rate-limiting. Pyrophosphate formation and release were fast and are likely to precede the slower relaxation step. The available kinetic data were used to fit a simplified minimal model. The extracted rate constants confirmed that the conformational change after phosphodiester bond formation was rate-limiting for hpol κ catalysis with the template G:dCTP pair.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Matthew G. Pence
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Shuai Yuan
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Catinca A. Fercu
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| |
Collapse
|
30
|
Abstract
Fluorescent dyes that bind DNA have been demonstrated as a useful alternative to radionucleotides for the quantification of DNA and the in vitro measurement of the activity of DNA polymerases and nucleases. However, this approach is generally used in a semi‐quantitative way to determine relative rates of reaction. In this report, we demonstrate a method for the simultaneous quantification of DNA in both its single‐strand and double‐strand forms using the dye PicoGreen. This approach is used in a steady‐state assay of DNA polymerase Klenow fragment exo−, where we determine kcat and Km values for the DNA polymerase that are in excellent agreement with literature values.
Collapse
Affiliation(s)
- Max D. Driscoll
- Manchester Institute of Biotechnology and Faculty of Life SciencesUniversity of ManchesterUK
| | - Julius Rentergent
- Manchester Institute of Biotechnology and Faculty of Life SciencesUniversity of ManchesterUK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life SciencesUniversity of ManchesterUK
- Correspondence
S. Hay, Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Greater Manchester M1 7DN, UK
Fax: +44 0 161 306 5201
Tel: +44 0 161 306 5141
E‐mail:
| |
Collapse
|
31
|
Manjari SR, Pata JD, Banavali NK. Cytosine unstacking and strand slippage at an insertion-deletion mutation sequence in an overhang-containing DNA duplex. Biochemistry 2014; 53:3807-16. [PMID: 24854722 PMCID: PMC4063443 DOI: 10.1021/bi500189g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Base unstacking in template strands,
when accompanied by strand
slippage, can result in deletion mutations during strand extension
by nucleic acid polymerases. In a GCCC mutation hot-spot sequence,
which was previously identified to have a 50% probability of causing
such mutations during DNA replication by a Y-family polymerase, a
single-base deletion mutation could result from such unstacking of
any one of its three template cytosines. In this study, the intrinsic
energetic differences in unstacking among these three cytosines in
a solvated DNA duplex overhang model were examined using umbrella
sampling molecular dynamics simulations. The free energy profiles
obtained show that cytosine unstacking grows progressively more unfavorable
as one moves inside the duplex from the 5′-end of the overhang
template strand. Spontaneous strand slippage occurs in response to
such base unstacking in the direction of both the major and minor
grooves for all three cytosines. Unrestrained simulations run from
three distinct strand-slipped states and one non-strand-slipped state
suggest that a more duplexlike environment can help stabilize strand
slippage. The possible underlying reasons and biological implications
of these observations are discussed in the context of nucleic acid
replication active site dynamics.
Collapse
Affiliation(s)
- Swati R Manjari
- Laboratory of Computational and Structural Biology, Division of Genetics, Biggs Laboratory, Wadsworth Center, New York State Department of Health , Empire State Plaza, PO Box 509 , Albany, New York 12201-0509, United States
| | | | | |
Collapse
|
32
|
Brenlla A, Markiewicz RP, Rueda D, Romano LJ. Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Nucleic Acids Res 2013; 42:2555-63. [PMID: 24270793 PMCID: PMC3936744 DOI: 10.1093/nar/gkt1149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.
Collapse
Affiliation(s)
- Alfonso Brenlla
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK and Single Molecule Imaging, MRC Clinical Sciences Center, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
33
|
|
34
|
Nucleotide insertion initiated by van der Waals interaction during polymerase beta DNA replication. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Jacewicz A, Trzemecka A, Guja KE, Plochocka D, Yakubovskaya E, Bebenek A, Garcia-Diaz M. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site. PLoS One 2013; 8:e76700. [PMID: 24116139 PMCID: PMC3792054 DOI: 10.1371/journal.pone.0076700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the PolD714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced kpol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Trzemecka
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kip E. Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Danuta Plochocka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Anna Bebenek
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AB); (MGD)
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (AB); (MGD)
| |
Collapse
|
36
|
Gouge J, Rosario S, Romain F, Beguin P, Delarue M. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 2013; 425:4334-52. [PMID: 23856622 DOI: 10.1016/j.jmb.2013.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
37
|
Lahiri I, Mukherjee P, Pata JD. Kinetic characterization of exonuclease-deficient Staphylococcus aureus PolC, a C-family replicative DNA polymerase. PLoS One 2013; 8:e63489. [PMID: 23696828 PMCID: PMC3656037 DOI: 10.1371/journal.pone.0063489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
PolC is the C-family replicative polymerase in low G+C content Gram-positive bacteria. To date several structures of C-family polymerases have been reported, including a high resolution crystal structure of a ternary complex of PolC with DNA and incoming deoxynucleoside triphosphate (dNTP). However, kinetic information needed to understand the enzymatic mechanism of C-family polymerases is limited. For this study we have performed a detailed steady-state and pre-steady-state kinetic characterization of correct dNTP incorporation by PolC from the Gram-positive pathogen Staphylococcus aureus, using a construct lacking both the non-conserved N-terminal domain and the 3′–5′ exonuclease domain (Sau-PolC-ΔNΔExo). We find that Sau-PolC-ΔNΔExo has a very fast catalytic rate (kpol 330 s−1) but also dissociates from DNA rapidly (koff ∼150 s−1), which explains the low processivity of PolC in the absence of sliding clamp processivity factor. Although Sau-PolC-ΔNΔExo follows the overall enzymatic pathway defined for other polymerases, some significant differences exist. The most striking feature is that the nucleotidyl transfer reaction for Sau-PolC-ΔNΔExo is reversible and is in equilibrium with dNTP binding. Simulation of the reaction pathway suggests that rate of pyrophosphate release, or a conformational change required for pyrophosphate release, is much slower than rate of bond formation. The significance of these findings is discussed in the context of previous data showing that binding of the β-clamp processivity factor stimulates the intrinsic nucleotide incorporation rate of the C-family polymerases, in addition to increasing processivity.
Collapse
Affiliation(s)
- Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Olsen TJ, Choi Y, Sims PC, Gul OT, Corso BL, Dong C, Brown WA, Collins PG, Weiss GA. Electronic measurements of single-molecule processing by DNA polymerase I (Klenow fragment). J Am Chem Soc 2013; 135:7855-60. [PMID: 23631761 DOI: 10.1021/ja311603r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioconjugating single molecules of the Klenow fragment of DNA polymerase I into electronic nanocircuits allowed electrical recordings of enzymatic function and dynamic variability with the resolution of individual nucleotide incorporation events. Continuous recordings of DNA polymerase processing multiple homopolymeric DNA templates extended over 600 s and through >10,000 bond-forming events. An enzymatic processivity of 42 nucleotides for a template of the same length was directly observed. Statistical analysis determined key kinetic parameters for the enzyme's open and closed conformations. Consistent with these nanocircuit-based observations, the enzyme's closed complex forms a phosphodiester bond in a highly efficient process >99.8% of the time, with a mean duration of only 0.3 ms for all four dNTPs. The rate-limiting step for catalysis occurs during the enzyme's open state, but with a nearly 2-fold longer duration for dATP or dTTP incorporation than for dCTP or dGTP into complementary, homopolymeric DNA templates. Taken together, the results provide a wealth of new information complementing prior work on the mechanism and dynamics of DNA polymerase I.
Collapse
Affiliation(s)
- Tivoli J Olsen
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
40
|
Hamm ML, Crowley KA, Ghio M, Lindell MAM, McFadden EJ, Silberg JSL, Weaver AM. Biochemical Investigations into the Mutagenic Potential of 8-Oxo-2′-deoxyguanosine Using Nucleotide Analogues. Chem Res Toxicol 2012; 25:2577-88. [DOI: 10.1021/tx300365g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michelle L. Hamm
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Kelly A. Crowley
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Michael Ghio
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Maria A. M. Lindell
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Emily J. McFadden
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Jordan S. L. Silberg
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Amelia M. Weaver
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| |
Collapse
|
41
|
Betancor G, Garriga C, Puertas MC, Nevot M, Anta L, Blanco JL, Pérez-Elías MJ, de Mendoza C, Martínez MA, Martinez-Picado J, Menéndez-Arias L, Iribarren JA, Caballero E, Ribera E, Llibre JM, Clotet B, Jaén A, Dalmau D, Gatel JM, Peraire J, Vidal F, Vidal C, Riera M, Córdoba J, López Aldeguer J, Galindo MJ, Gutiérrez F, Álvarez M, García F, Pérez-Romero P, Viciana P, Leal M, Palomares JC, Pineda JA, Viciana I, Santos J, Rodríguez P, Gómez Sirvent JL, Gutiérrez C, Moreno S, Pérez-Olmeda M, Alcamí J, Rodríguez C, del Romero J, Cañizares A, Pedreira J, Miralles C, Ocampo A, Morano L, Aguilera A, Garrido C, Manuzza G, Poveda E, Soriano V. Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology 2012; 9:68. [PMID: 22889300 PMCID: PMC3468358 DOI: 10.1186/1742-4690-9-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Cağlayan M, Bilgin N. Temperature dependence of accuracy of DNA polymerase I from Geobacillus anatolicus. Biochimie 2012; 94:1968-73. [PMID: 22652043 DOI: 10.1016/j.biochi.2012.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
Abstract
Klenow-like DNA polymerase I fragment from Geobacillus anatolicus (GF) was cloned and purified. The accuracy of GF was measured in vitro at three different temperatures under single turnover conditions as well as using a forward mutation assay. In pre-steady-state kinetic measurements, when temperature was raised from 22 °C to 50 °C, the rate (k(pol)) for cognate dTTP and non-cognate dATP nucleotide incorporations increased six- and four-fold, respectively, whereas the K(d) for both nucleotide incorporations changed only slightly. As a result, the error frequency was remained constant (∼4 × 10(-4)) over this temperature range. The accuracy of GF was also measured using a forward mutation assay during a single cycle of DNA synthesis of the lacZα complementation gene in M13mp2 DNA. In this assay, which scores various types of replication errors, mutant frequency of GF was 5 × 10(-3) at 72 °C which is four-fold higher than that of 37 °C.
Collapse
Affiliation(s)
- Melike Cağlayan
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | | |
Collapse
|
44
|
Delaney S, Jarem DA, Volle CB, Yennie CJ. Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic Res 2012; 46:420-41. [PMID: 22239655 DOI: 10.3109/10715762.2011.653968] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the four native nucleosides, 2'-deoxyguanosine (dGuo) is most easily oxidized. Two lesions derived from dGuo are 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy)∙dGuo. Furthermore, while steady-state levels of 8-oxodGuo can be detected in genomic DNA, it is also known that 8-oxodGuo is more easily oxidized than dGuo. Thus, 8-oxodGuo is susceptible to further oxidation to form several hyperoxidized dGuo products. This review addresses the structural impact, the mutagenic and genotoxic potential, and biological implications of oxidatively damaged DNA, in particular 8-oxodGuo, Fapy∙dGuo, and the hyperoxidized dGuo products.
Collapse
Affiliation(s)
- Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
45
|
Holzberger B, Pszolla MG, Marx A, Möller HM. KlenTaq DNA polymerase adopts unique recognition states when encountering matched, mismatched, and abasic template sites: an NMR study. Chembiochem 2012; 13:635-9. [PMID: 22315195 DOI: 10.1002/cbic.201100802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Indexed: 01/10/2023]
Affiliation(s)
- Bastian Holzberger
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
46
|
Obeid S, Welte W, Diederichs K, Marx A. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase. J Biol Chem 2012; 287:14099-108. [PMID: 22318723 DOI: 10.1074/jbc.m111.334904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C. Here we provide structural insights into constraints of the active site during nucleotide selection opposite an abasic site. It appears that these confines govern the nucleotide selection mainly by interaction of the incoming nucleotide with Tyr-671. Depending on the nucleobase, the nucleotides are differently positioned opposite Tyr-671 resulting in different alignments of the functional groups that are required for bond formation. The distances between the α-phosphate and the 3'-primer terminus increases in the order A < G < T, which follows the order of incorporation efficiency. Additionally, a binary KlenTaq structure bound to DNA containing an abasic site indicates that binding of the nucleotide triggers a remarkable rearrangement of enzyme and DNA template. The ability to resolve the stacking arrangement might be dependent on the intrinsic properties of the respective nucleotide contributing to nucleotide selection. Furthermore, we studied the incorporation of a non-natural nucleotide opposite an abasic site. The nucleotide was often used in studying stacking effects in DNA polymerization. Here, no interaction with Tyr-761 as found for the natural nucleotides is observed, indicating a different reaction path for this non-natural nucleotide.
Collapse
Affiliation(s)
- Samra Obeid
- Department of Chemistry, University of Konstanz, Universita¨tsstrasse 10, D 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
47
|
Arana ME, Potapova O, Kunkel TA, Joyce CM. Kinetic analysis of the unique error signature of human DNA polymerase ν. Biochemistry 2011; 50:10126-35. [PMID: 22008035 DOI: 10.1021/bi201197p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
48
|
Hogg M, Rudnicki J, Midkiff J, Reha-Krantz L, Doublié S, Wallace SS. Kinetics of mismatch formation opposite lesions by the replicative DNA polymerase from bacteriophage RB69. Biochemistry 2010; 49:2317-25. [PMID: 20166748 DOI: 10.1021/bi901488d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k(pol)) were generally higher for the variant, the presence of a lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG.dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|