1
|
Sumangala N, Im SC, Valentín-Goyco J, Auchus RJ. Influence of cholesterol on kinetic parameters for human aromatase (P450 19A1) in phospholipid nanodiscs. J Inorg Biochem 2023; 247:112340. [PMID: 37544101 PMCID: PMC11260420 DOI: 10.1016/j.jinorgbio.2023.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19‑carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.
Collapse
Affiliation(s)
- Nirupama Sumangala
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States.
| |
Collapse
|
2
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
3
|
Zhu L, Zhao H, Wang Y, Yu C, Liu J, Li L, Li Z, Zhang J, Dai H, Wang J, Zhu L. Solubilization, purification, and ligand binding characterization of G protein-coupled receptor SMO in native membrane bilayer using styrene maleic acid copolymer. PeerJ 2022; 10:e13381. [PMID: 35529497 PMCID: PMC9074879 DOI: 10.7717/peerj.13381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Smoothened (SMO) protein is a member of the G protein-coupled receptor (GPCR) family that is involved in the Hedgehog (Hh) signaling pathway. It is a putative target for treating various cancers, including medulloblastoma and basal cell carcinoma (BCC). Characterizing membrane proteins such as SMO in their native state is highly beneficial for the development of effective pharmaceutical drugs, as their structures and functions are retained to the highest extent in this state. Therefore, although SMO protein is conventionally solubilized in detergent micelles, incorporating the protein in a lipid-based membrane mimic is still required. In this study, we used styrene maleic acid (SMA) copolymer that directly extracted membrane protein and surrounding lipids as well as formed the so-called polymer nanodiscs, to solubilize and purify the SMO transmembrane domain encapsulated by SMA-nanodiscs. The obtained SMA-nanodiscs showed high homogeneity and maintained the physiological activity of SMO protein, thereby enabling the measurement of the dissociation constant (Kd) for SMO ligands SMO-ligands Shh Signaling Antagonist V (SANT-1) and Smoothened Agonist (SAG) using ligand-based solution nuclear magnetic resonance spectroscopy. This work paves the way for investigating the structure, function, and drug development of SMO proteins in a native-like lipid environment.
Collapse
Affiliation(s)
- Lina Zhu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China,High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yizhuo Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,University of Science and Technology of China, Hefei, China
| | - Chuandi Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,University of Science and Technology of China, Hefei, China
| | - Juanjuan Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ling Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,University of Science and Technology of China, Hefei, China
| | - Zehua Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,University of Science and Technology of China, Hefei, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Junfeng Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China,High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,University of Science and Technology of China, Hefei, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
4
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Zhao L, Tao J, Huang Y, Zhu K, Du Y, Hao D, Liu H, Zhang R, Ma G. Tailored nanodisc immobilization for one-step purification and reconstitution of cytochrome P450: A tool for membrane proteins' hard cases. J Sep Sci 2021; 44:3429-3440. [PMID: 34313005 DOI: 10.1002/jssc.202100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
A novel nanodisc-based immobilization method was developed for high-efficient purification and reconstitution of cytochrome P450 in one step. Using membrane scaffold protein containing a histidine tag, charged-nanodiscs were prepared in the form of self-assembly of lipid-protein nanoparticles. Their properties including the particle diameter and its distribution and Zeta potential were controlled well by adjusting molar ratios of phospholipids to membrane scaffold protein. At an optimum lipid-to-membrane scaffold protein molar ratio of 60:1, uniformly regular-shaped and discoidal nanodiscs with an average particle diameter of 10 nm and Zeta potential of -19 mV were obtained. They can be well fractionated by size exclusion chromatography. Charged-nanodiscs were successfully immobilized onto Ni-chelating microspheres via histidine tags with a density of 6.6 mg membrane scaffold protein/mL gel. After being packed in a column, chromatography studies demonstrated that this nanodisc-immobilized chromatographic medium had a specific binding to cytochrome P450 in rat liver microsome. Nanodiscs containing cytochrome P450 can be furthermore eluted from the column with a diameter of about 87.0 nm and height of about 8.0 nm, respectively. The purity of cytochrome P450 after purification increased 25 folds strikingly. This nanodisc-immobilized chromatography method is promising for the one-step purification and reconstitution of membrane protein.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiaoli Tao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, P. R. China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Kai Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuxiang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, P. R. China
| | - Dongxia Hao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongying Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, P. R. China
| | - Rongyue Zhang
- Department of Applied Chemistry, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
6
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
8
|
Zárate-Pérez F, Hackett JC. Conformational selection is present in ligand binding to cytochrome P450 19A1 lipoprotein nanodiscs. J Inorg Biochem 2020; 209:111120. [PMID: 32464592 DOI: 10.1016/j.jinorgbio.2020.111120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
Cytochromes P450 (CYPs) display remarkable plasticity in their ability to bind substrates and catalyze a broad array of chemical reactions. Herein we evaluate binding of androstenedione, testosterone, and 7-hydroxyflavone to CYP19A1, also known as aromatase, in phospholipid nanodiscs by stopped-flow UV-vis spectroscopy. Exponential fitting of the kinetic traces supports the possibility of a multi-step binding mechanism. Subsequent global fitting of the data to the solutions of the coupled differential equations describing the fundamental mechanisms of induced fit and conformational selection, consistently support presence of the latter. To our knowledge, this is the first discrimination of conformational selection from induced fit for a mono-disperse CYP in a native-like membrane environment. In addition, 7-hydroxyflavone binds to CYP19A1 nanodiscs with comparable affinity to the substrates and induces an unusual spectral response likely attributable to hydrogen bonding to, rather than displacement of the heme-coordinated water molecule.
Collapse
Affiliation(s)
- Francisco Zárate-Pérez
- Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States of America
| | - John C Hackett
- Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States of America.
| |
Collapse
|
9
|
Abstract
The interactions between lipids and proteins are one of the most fundamental processes in living organisms, responsible for critical cellular events ranging from replication, cell division, signaling, and movement. Enabling the central coupling responsible for maintaining the functionality of the breadth of proteins, receptors, and enzymes that find their natural home in biological membranes, the fundamental mechanisms of recognition of protein for lipid, and vice versa, have been a focal point of biochemical and biophysical investigations for many decades. Complexes of lipids and proteins, such as the various lipoprotein factions, play central roles in the trafficking of important proteins, small molecules and metabolites and are often implicated in disease states. Recently an engineered lipoprotein particle, termed the nanodisc, a modified form of the human high density lipoprotein fraction, has served as a membrane mimetic for the investigation of membrane proteins and studies of lipid-protein interactions. In this review, we summarize the current knowledge regarding this self-assembling lipid-protein complex and provide examples for its utility in the investigation of a large number of biological systems.
Collapse
|
10
|
El Behery M, Fujimura M, Kimura T, Tsubaki M. Direct measurements of ferric reductase activity of human 101F6 and its enhancement upon reconstitution into phospholipid bilayer nanodisc. Biochem Biophys Rep 2020; 21:100730. [PMID: 32055716 PMCID: PMC7005374 DOI: 10.1016/j.bbrep.2020.100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
We studied human 101F6 protein to clarify its physiological function as a ferric reductase and its relationship to tumor suppression activity. We found for the first time that purified 101F6 both in detergent micelle state and in phospholipid bilayer nanodisc state has an authentic ferric reductase activity by single turnover kinetic analyses. The kinetic analysis on the ferrous heme oxidation of reduced 101F6 upon the addition of a ferric substrate, ferric ammonium citrate (FAC), showed concentration-dependent accelerations of its reaction with reasonable values of KM and Vmax. We further verified the authenticity of the ferric reductase activity of 101F6 using nitroso-PSAP as a Fe2+-specific colorimetric chelator. 101F6 in nanodisc state showed higher efficiency for FAC than in detergent micelle state. Human tumor suppressor 101F6 protein was reconstituted into nanodisc. 101F6 functions as a ferric reductase both in detergent micelle and in nanodisc. 101F6 in nanodisc showed higher efficiency in the reductase activity.
Collapse
Affiliation(s)
- Mohammed El Behery
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Mika Fujimura
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Motonari Tsubaki
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
11
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
12
|
Denisov IG, Grinkova YV, Nandigrami P, Shekhar M, Tajkhorshid E, Sligar SG. Allosteric Interactions in Human Cytochrome P450 CYP3A4: The Role of Phenylalanine 213. Biochemistry 2019; 58:1411-1422. [PMID: 30785734 DOI: 10.1021/acs.biochem.8b01268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of Phe213 in the allosteric mechanism of human cytochrome P450 CYP3A4 was studied using a combination of progesterone (PGS) and carbamazepine (CBZ) as probe substrates. We expressed, purified, and incorporated into POPC Nanodiscs three mutants, F213A, F213S, and F213Y, and compared them with wild-type (WT) CYP3A4 by monitoring spectral titration, the rate of NADPH oxidation, and steady-state product turnover rates with pure substrates and substrate mixtures. All mutants demonstrated higher activity with CBZ, lower activity with PGS, and a reduced level of activation of CBZ epoxidation by PGS, which was most pronounced in the F213A mutant. Using all-atom molecular dynamics simulations, we compared the dynamics of WT CYP3A4 and the F213A mutant incorporated into the lipid bilayer and the effect of the presence of the PGS molecule at the allosteric peripheral site and evaluated the critical role of Phe213 in mediating the heterotropic allosteric interactions in CYP3A4.
Collapse
|
13
|
Camp T, McLean M, Kato M, Cheruzel L, Sligar S. The hydrodynamic motion of Nanodiscs. Chem Phys Lipids 2019; 220:28-35. [PMID: 30802435 DOI: 10.1016/j.chemphyslip.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
Abstract
We present a fluorescence-based methodology for monitoring the rotational dynamics of Nanodiscs. Nanodiscs are nano-scale lipid bilayers surrounded by a helical membrane scaffold protein (MSP) that have found considerable use in studying the interactions between membrane proteins and their lipid bilayer environment. Using a long-lifetime Ruthenium label covalently attached to the Nanodiscs, we find that Nanodiscs of increasing diameter, made by varying the number of helical repeats in the MSP, display increasing rotational correlation times. We also model our system using both analytical equations that describe rotating spheroids and numerical calculations performed on atomic models of Nanodiscs. Using these methods, we observe a linear relationship between the experimentally determined rotational correlation times and those calculated from both analytical equations and numerical solutions. This work sets the stage for accurate, label-free quantification of protein-lipid interactions at the membrane surface.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mark McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Stephen Sligar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
14
|
Mustafa G, Nandekar PP, Camp TJ, Bruce NJ, Gregory MC, Sligar SG, Wade RC. Influence of Transmembrane Helix Mutations on Cytochrome P450-Membrane Interactions and Function. Biophys J 2019; 116:419-432. [PMID: 30658838 PMCID: PMC6369400 DOI: 10.1016/j.bpj.2018.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 (CYP) enzymes play an important role in the metabolism of drugs, steroids, fatty acids, and xenobiotics. Microsomal CYPs are anchored in the endoplasmic reticulum membrane by an N-terminal transmembrane (TM) helix that is connected to the globular catalytic domain by a flexible linker sequence. However, the structural and functional importance of the TM-helix is unclear because it has been shown that CYPs can still associate with the membrane and have enzymatic activity in reconstituted systems after truncation or modification of the N-terminal sequence. Here, we investigated the effect of mutations in the N-terminal TM-helix residues of two human steroidogenic enzymes, CYP 17A1 and CYP 19A1, that are major drug targets for cancer therapy. These mutations were originally introduced to increase the expression of the proteins in Escherichia coli. To investigate the effect of the mutations on protein-membrane interactions and function, we carried out coarse-grained and all-atom molecular dynamics simulations of the CYPs in a phospholipid bilayer. We confirmed the orientations of the globular domain in the membrane observed in the simulations by linear dichroism measurements in a Nanodisc. Whereas the behavior of CYP 19A1 was rather insensitive to truncation of the TM-helix, mutations in the TM-helix of CYP 17A1, especially W2A and E3L, led to a gradual drifting of the TM-helix out of the hydrophobic core of the membrane. This instability of the TM-helix could affect interactions with the allosteric redox partner, cytochrome b5, required for CYP 17A1's lyase activity. Furthermore, the simulations showed that the mutant TM-helix influenced the membrane interactions of the CYP 17A1 globular domain. In some simulations, the mutated TM-helix obstructed the substrate access tunnel from the membrane to the CYP active site, indicating a possible effect on enzyme function.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tyler J Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
15
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. Methods for Determination of Functional Activity of Cytochrome P450 Isoenzymes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Ravula T, Hardin NZ, Bai J, Im SC, Waskell L, Ramamoorthy A. Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs. Chem Commun (Camb) 2018; 54:9615-9618. [PMID: 30094448 DOI: 10.1039/c8cc04184a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there is a growing interest in using polymer lipid-nanodiscs, the polymer charge poses limitations for studies on membrane proteins. Here, we demonstrate the functional reconstitution of a large soluble-domain containing positively-charged ∼57 kDa cytochrome-P450 and negatively-charged ∼16 kDa cytochrome-b5 in lipid-nanodiscs, and the role of the polymer charge for high-resolution studies on membrane proteins.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, University of Michigan Ann Arbor, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
18
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. [Methods for determining of cytochrome P450 isozymes functional activity]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:149-168. [PMID: 29723145 DOI: 10.18097/pbmc20186402149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is dedicated to modern methods and technologies for determining of cytochrome P450 isozymes functional activity, such as absorbance and fluorescent spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), Raman, Mossbauer, and X-ray spectroscopy, surface plasmon resonance (SPR), atomic force microscopy (AFM). Methods of molecular genetic analysis were reviewed from personalized medicine point of view. The use of chromate-mass-spectrometric methods for cytochrome P450-dependent catalytic reactions' products was discussed. The review covers modern electrochemical systems based on cytochrome P450 isozymes for their catalytic activity analysis, their use in practice and further development perspectives for experimental pharmacology, biotechnology and translational medicine.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
19
|
Ravula T, Barnaba C, Mahajan M, Anantharamaiah GM, Im SC, Waskell L, Ramamoorthy A. Membrane environment drives cytochrome P450's spin transition and its interaction with cytochrome b 5. Chem Commun (Camb) 2018; 53:12798-12801. [PMID: 29143058 DOI: 10.1039/c7cc07520k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heme's spin-multiplicity is key in determining the enzymatic function of cytochrome P450 (cytP450). The origin of the low-spin state in ferric P450 is still under debate. Here, we report the first experimental demonstration of P450's membrane interaction altering its spin equilibrium which is accompanied by a stronger affinity for cytochrome b5. These results highlight the importance of lipid membrane for the function of P450.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
McLean MA, Gregory MC, Sligar SG. Nanodiscs: A Controlled Bilayer Surface for the Study of Membrane Proteins. Annu Rev Biophys 2018; 47:107-124. [PMID: 29494254 DOI: 10.1146/annurev-biophys-070816-033620] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of membrane proteins and receptors presents many challenges to researchers wishing to perform biophysical measurements to determine the structure, function, and mechanism of action of such components. In most cases, to be fully functional, proteins and receptors require the presence of a native phospholipid bilayer. In addition, many complex multiprotein assemblies involved in cellular communication require an integral membrane protein as well as a membrane surface for assembly and information transfer to soluble partners in a signaling cascade. Incorporation of membrane proteins into Nanodiscs renders the target soluble and provides a native bilayer environment with precisely controlled composition of lipids, cholesterol, and other components. Likewise, Nanodiscs provide a surface of defined area useful in revealing lipid specificity and affinities for the assembly of signaling complexes. In this review, we highlight several biophysical techniques made possible through the use of Nanodiscs.
Collapse
Affiliation(s)
- Mark A McLean
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| |
Collapse
|
21
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
22
|
Kang M, Cui H, Loverde SM. Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments. SOFT MATTER 2017; 13:7721-7730. [PMID: 28905963 PMCID: PMC5665727 DOI: 10.1039/c7sm00943g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peptide-based supramolecular filaments, in particular filaments self-assembled by drug amphiphiles (DAs), possess great potential in the field of drug delivery. These filaments possess one hundred percent drug loading, with a release mechanism that can be tuned based on the dissociation of the supramolecular filaments and the degradation of the DAs [Cheetham et al., J. Am. Chem. Soc., 2013, 135(8), 2907]. Recently, much attention has been drawn to the competing intermolecular interactions that drive the self-assembly of peptide-based amphiphiles into supramolecular filaments. Recently, we reported on long-time atomistic molecular dynamics simulations to characterize the structure and growth of chiral filaments by the self-assembly of a DA containing the aromatic anti-cancer drug camptothecin [Kang et al., Macromolecules, 2016, 49(3), 994]. We found that the π-π stacking of the aromatic drug governs the early stages of the self-assembly process, while also contributing towards the chirality of the self-assembled filament. Based on these all-atomistic simulations, we now build a chemically accurate coarse-grained model that can capture the structure and stability of these supramolecular filaments at long time-scales (microseconds). These coarse-grained models successfully recapitulate the growth of the molecular clusters (and their elongation trends) compared with previously reported atomistic simulations. Furthermore, the interfacial structure and the helicity of the filaments are conserved. Next, we focus on characterization of the disassembly process of a 0.675 μm DA filament at microsecond time-scales. These results provide very useful tools for the rational design of functional supramolecular filaments, in particular supramolecular filaments for drug delivery applications.
Collapse
Affiliation(s)
- Myungshim Kang
- Department of Chemistry, College of Staten Island, The City University of New York, NY 10314, USA.
| | | | | |
Collapse
|
23
|
Wade JH, Jones JD, Lenov IL, Riordan CM, Sligar SG, Bailey RC. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. LAB ON A CHIP 2017; 17:2951-2959. [PMID: 28767110 PMCID: PMC5589448 DOI: 10.1039/c7lc00601b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.
Collapse
Affiliation(s)
- James H Wade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
24
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
25
|
Ter Beek J, Kahle M, Ädelroth P. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1951-1961. [PMID: 28668220 DOI: 10.1016/j.bbamem.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/03/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O2-binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O2, and found that the pKa of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed.
Collapse
Affiliation(s)
- Josy Ter Beek
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
26
|
Barnaba C, Gentry K, Sumangala N, Ramamoorthy A. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. F1000Res 2017; 6:662. [PMID: 28529725 PMCID: PMC5428493 DOI: 10.12688/f1000research.11015.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome
b
5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gentry
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nirupama Sumangala
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Barnaba C, Martinez MJ, Taylor E, Barden AO, Brozik JA. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum. J Am Chem Soc 2017; 139:5420-5430. [PMID: 28347139 DOI: 10.1021/jacs.7b00663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Michael J Martinez
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Adam O Barden
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
28
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Rouck JE, Biggs BW, Kambalyal A, Arnold WR, De Mey M, Ajikumar PK, Das A. Heterologous expression and characterization of plant Taxadiene-5α-Hydroxylase (CYP725A4) in Escherichia coli. Protein Expr Purif 2017; 132:60-67. [PMID: 28109855 DOI: 10.1016/j.pep.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023]
Abstract
Taxadiene-5α-Hydroxylase (CYP725A4) is a membrane-bound plant cytochrome P450 that catalyzes the oxidation of taxadiene to taxadiene-5α-ol. This oxidation is a key step in the production of the valuable cancer therapeutic and natural plant product, taxol. In this work, we report the bacterial expression and purification of six different constructs of CYP725A4. All six of these constructs are N-terminally modified and three of them are fused to cytochrome P450 reductase to form a chimera construct. The construct with the highest yield of CYP725A4 protein was then selected for substrate binding and kinetic analysis. Taxadiene binding followed type-1 substrate patterns with an observed KD of 2.1 ± 0.4 μM. CYP725A4 was further incorporated into nanoscale lipid bilayers (nanodiscs) and taxadiene metabolism was measured. Taxadiene metabolism followed Michaelis-Menten kinetics with an observed Vmax of 30 ± 8 pmol/min/nmolCYP725A4 and a KM of 123 ± 52 μM. Additionally, molecular operating environment (MOE) modeling was performed in order to gain insight into the interactions of taxadiene with CYP725A4 active site. Taken together, we demonstrate the successful expression and purification of the functional membrane-bound plant CYP, CYP725A4, in E. coli.
Collapse
Affiliation(s)
- John Edward Rouck
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Bradley Walters Biggs
- Manus Biosynthesis, 1030 Massachusetts Avenue, Suite 300, Cambridge, MA 02138, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Amogh Kambalyal
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Marjan De Mey
- Centre for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000, Belgium
| | | | - Aditi Das
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
30
|
Optimization of lipodisk properties by modification of the extent and density of the PEG corona. J Colloid Interface Sci 2016; 484:86-96. [DOI: 10.1016/j.jcis.2016.08.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022]
|
31
|
McClary WD, Sumida JP, Scian M, Paço L, Atkins WM. Membrane Fluidity Modulates Thermal Stability and Ligand Binding of Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2016; 55:6258-6268. [PMID: 27782404 DOI: 10.1021/acs.biochem.6b00715] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytochrome P4503A4 (CYP3A4) is a peripheral membrane protein that plays a major role in enzymatic detoxification of many drugs and toxins. CYP3A4 has an integral membrane N-terminal helix and a localized patch comprised of the G' and F' helix regions that are embedded in the membrane, but the effects of membrane composition on CYP3A4 function are unknown. Here, circular dichroism and differential scanning calorimetry were used to compare the stability of CYP3A4 in lipid bilayer nanodiscs with varying ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These lipids differ in the acyl-chain length and their degree of unsaturation. The thermal denaturation of CYP3A4 in nanodiscs occurs in a temperature range distinct from that of the nanodisc denaturation so it can be monitored calorimetrically. Melting temperatures (Tm), heat capacities (ΔCp), and calorimetric enthalpies (ΔHcal) for denaturation of CYP3A4 each increased with an increasing fraction of DMPC, with a maximum at 50% DMPC, before decreasing at 75% DMPC. Addition of the inhibitor ketoconazole results in increased thermal stability, and larger ΔCp and ΔHcal values, with different sensitivities to lipid composition. Effects of lipid composition on ligand binding dynamics were also studied. Equilibrium binding affinities of both ketoconazole (KTZ) and testosterone (TST) were minimally affected by lipid composition. However, stopped-flow analyses indicate that the rates of KTZ binding reach a maximum in membranes containing 50% DMPC, whereas the rate of TST binding decreases continuously with an increasing DMPC concentration. These results indicate that CYP3A4 is highly sensitive to the acyl-chain composition of the lipids and fluidity of the membrane in which it is embedded.
Collapse
Affiliation(s)
- Wynton D McClary
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - John P Sumida
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Michele Scian
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Lorela Paço
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
32
|
Durairaj P, Hur JS, Yun H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact 2016; 15:125. [PMID: 27431996 PMCID: PMC4950769 DOI: 10.1186/s12934-016-0523-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/10/2016] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 (CYP) monooxygenases, the nature’s most versatile biological catalysts have unique ability to catalyse regio-, chemo-, and stereospecific oxidation of a wide range of substrates under mild reaction conditions, thereby addressing a significant challenge in chemocatalysis. Though CYP enzymes are ubiquitous in all biological kingdoms, the divergence of CYPs in fungal kingdom is manifold. The CYP enzymes play pivotal roles in various fungal metabolisms starting from housekeeping biochemical reactions, detoxification of chemicals, and adaptation to hostile surroundings. Considering the versatile catalytic potentials, fungal CYPs has gained wide range of attraction among researchers and various remarkable strategies have been accomplished to enhance their biocatalytic properties. Numerous fungal CYPs with multispecialty features have been identified and the number of characterized fungal CYPs is constantly increasing. Literature reveals ample reviews on mammalian, plant and bacterial CYPs, however, modest reports on fungal CYPs urges a comprehensive review highlighting their novel catalytic potentials and functional significances. In this review, we focus on the diversification and functional diversity of fungal CYPs and recapitulate their unique and versatile biocatalytic properties. As such, this review emphasizes the crucial issues of fungal CYP systems, and the factors influencing efficient biocatalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
33
|
Biggs BW, Rouck JE, Kambalyal A, Arnold W, Lim CG, De Mey M, O’Neil-Johnson M, Starks CM, Das A, Ajikumar PK. Orthogonal Assays Clarify the Oxidative Biochemistry of Taxol P450 CYP725A4. ACS Chem Biol 2016; 11:1445-51. [PMID: 26930136 DOI: 10.1021/acschembio.5b00968] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural product metabolic engineering potentially offers sustainable and affordable access to numerous valuable molecules. However, challenges in characterizing and assembling complex biosynthetic pathways have prevented more rapid progress in this field. The anticancer agent Taxol represents an excellent case study. Assembly of a biosynthetic pathway for Taxol has long been stalled at its first functionalization, putatively an oxygenation performed by the cytochrome P450 CYP725A4, due to confounding characterizations. Here, through combined in vivo (Escherichia coli), in vitro (lipid nanodisc), and metabolite stability assays, we verify the presence and likely cause of this enzyme's inherent promiscuity. Thereby, we remove the possibility that promiscuity simply existed as an artifact of previous metabolic engineering approaches. Further, spontaneous rearrangement and the stabilizing effect of a hydrophobic overlay suggest a potential role for nonenzymatic chemistry in Taxol's biosynthesis. Taken together, this work confirms taxadiene-5α-ol as a primary enzymatic product of CYP725A4 and provides direction for future Taxol metabolic and protein engineering efforts.
Collapse
Affiliation(s)
- Bradley Walters Biggs
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Department
of Chemical and Biological Engineering (Masters in Biotechnology Program), Northwestern University, Evanston, Illinois 60208, United States
| | - John Edward Rouck
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Amogh Kambalyal
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - William Arnold
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chin Giaw Lim
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| | - Marjan De Mey
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, B-9000, Ghent, Belgium
| | - Mark O’Neil-Johnson
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Courtney M. Starks
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Aditi Das
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Scott EE, Wolf CR, Otyepka M, Humphreys SC, Reed JR, Henderson CJ, McLaughlin LA, Paloncýová M, Navrátilová V, Berka K, Anzenbacher P, Dahal UP, Barnaba C, Brozik JA, Jones JP, Estrada DF, Laurence JS, Park JW, Backes WL. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metab Dispos 2016; 44:576-90. [PMID: 26851242 PMCID: PMC4810767 DOI: 10.1124/dmd.115.068569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 11/22/2022] Open
Abstract
This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function.
Collapse
Affiliation(s)
- Emily E Scott
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - C Roland Wolf
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Michal Otyepka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Sara C Humphreys
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James R Reed
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Colin J Henderson
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Lesley A McLaughlin
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Markéta Paloncýová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Veronika Navrátilová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Karel Berka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Pavel Anzenbacher
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Upendra P Dahal
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Carlo Barnaba
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James A Brozik
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jeffrey P Jones
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - D Fernando Estrada
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jennifer S Laurence
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Ji Won Park
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Wayne L Backes
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| |
Collapse
|
35
|
Barnaba C, Humphreys SC, Barden AO, Jones JP, Brozik JA. Substrate Dependent Native Luminescence from Cytochromes P450 3A4, 2C9, and P450cam. J Phys Chem B 2016; 120:3038-3047. [PMID: 26939024 DOI: 10.1021/acs.jpcb.5b11804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metalloporphyrin containing proteins, such as cytochrome P450, play a key role in biological systems. The spectroscopic properties of metalloporphyrins have been a subject of intense interest and intense debate for over 50 years. Iron-porphyrins are usually believed to be nonfluorescent. Herein we report that, contrary to this belief, cytochrome P450 heme groups luminesce with enough intensity to be of use in the characterization of these enzymes. To confirm that the emission is from the heme, we destroyed the heme by titration with cumene hydroperoxide and measured the changes in emission upon titration with compounds known to bind to the distal face of the heme in two human cytochrome P450 enzymes, known as CYP3A4 and CYP2C9. The titration curves gave spectral dissociation constants that were not significantly different from those reported using the Soret UV/vis absorbance changes. We have tentatively assigned the broad luminescence at ∼500 nm to a (1)ππ* → gs fluorescence and the structured luminescence above 600 nm to a (3)ππ* → gs phosphorescence. These assignments are not associated with the Q-band, and are in violation of Kasha's rule. To illustrate the utility of the emission, we measured spectral dissociation constants for testosterone binding to P450 3A4 in bilayers formed on glass coverslips, a measurement that would be very difficult to make using absorption spectroscopy. Complementary experiments were carried out with water-soluble P450cam.
Collapse
Affiliation(s)
- Carlo Barnaba
- Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA, USA, 99164-4630
| | - Sara C Humphreys
- Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA, USA, 99164-4630
| | - Adam O Barden
- Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA, USA, 99164-4630
| | - Jeffrey P Jones
- Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA, USA, 99164-4630
| | - James A Brozik
- Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA, USA, 99164-4630
| |
Collapse
|
36
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Zhang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rui Huang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rose Ackermann
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Lucy Waskell
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
37
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:4497-9. [PMID: 26924779 DOI: 10.1002/anie.201600073] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/22/2016] [Indexed: 11/05/2022]
Abstract
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox partner cytochrome b5 (cytb5 ) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane-bound complex in model membranes renders high-resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450-cytb5 complex in peptide-based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450-cytb5 complex in the nanodisc. This is the first successful demonstration of a protein-protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane-bound protein complexes.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rui Huang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rose Ackermann
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
38
|
Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, Kossiakoff AA. Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. Structure 2015; 24:300-9. [PMID: 26749445 DOI: 10.1016/j.str.2015.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023]
Abstract
A major challenge in membrane biophysics is to define the mechanistic linkages between a protein's conformational transitions and its function. We describe a novel approach to stabilize transient functional states of membrane proteins in native-like lipid environments allowing for their structural and biochemical characterization. This is accomplished by combining the power of antibody Fab-based phage display selection with the benefits of embedding membrane protein targets in lipid-filled nanodiscs. In addition to providing a stabilizing lipid environment, nanodiscs afford significant technical advantages over detergent-based formats. This enables the production of a rich pool of high-performance Fab binders that can be used as crystallization chaperones, as fiducial markers for single-particle cryoelectron microscopy, and as probes of different conformational states. Moreover, nanodisc-generated Fabs can be used to identify detergents that best mimic native membrane environments for use in biophysical studies.
Collapse
Affiliation(s)
- Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Roy J, Pondenis H, Fan TM, Das A. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs. Biochemistry 2015; 54:6299-302. [PMID: 26415091 DOI: 10.1021/acs.biochem.5b00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Holly Pondenis
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Timothy M Fan
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| |
Collapse
|
40
|
Cell Surface and Membrane Engineering: Emerging Technologies and Applications. J Funct Biomater 2015; 6:454-85. [PMID: 26096148 PMCID: PMC4493524 DOI: 10.3390/jfb6020454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/31/2022] Open
Abstract
Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.
Collapse
|
41
|
Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J 2015; 34:205-11. [DOI: 10.1007/s10930-015-9613-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
43
|
Meling DD, Zelasko S, Kambalyal A, Roy J, Das A. Functional role of the conserved i-helix residue I346 in CYP5A1-Nanodiscs. Biophys Chem 2015; 200-201:34-40. [PMID: 25900452 DOI: 10.1016/j.bpc.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/04/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Thromboxane synthase (CYP5A1) is a non-classical cytochrome P450 (CYP) expressed in human platelets that mediates vascular homeostasis by producing thromboxane A2 (TXA2) through the isomerization of prostaglandin H2 (PGH2). A homology alignment of CYP5A1 with human CYPs indicates that a highly conserved I-helix threonine residue is occupied by an isoleucine at position 346 in CYP5A1. We find that reverse-engineering CYP5A1 to contain either threonine or serine in this position dramatically increases TXA2 formation. Interestingly, the levels of malondialdehyde (MDA), a homolytic fragmentation product of PGH2 formed via a pathway independent of TXA2 formation, remain constant. Furthermore, spectral analysis using two PGH2 substrate analogs supports the observed activity changes in the hydroxyl-containing mutants. The more constrained active site of the I346T mutant displays altered PGH2 substrate analog binding properties. Together these studies provide new mechanistic insights into CYP5A1 mediated isomerization of PGH2 with respect to a critical active site residue.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Amogh Kambalyal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61802, USA
| | - Aditi Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61802, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61802, USA; Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana IL 61802, USA.
| |
Collapse
|
44
|
Meling DD, McDougle DR, Das A. CYP2J2 epoxygenase membrane anchor plays an important role in facilitating electron transfer from CPR. J Inorg Biochem 2014; 142:47-53. [PMID: 25450017 DOI: 10.1016/j.jinorgbio.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023]
Abstract
CYP2J2 epoxygenase is a membrane-bound cytochrome P450 primarily expressed in the heart and plays a significant role in cardiovascular diseases. The interactions of CYP2J2 with its redox partner, cytochrome P450 reductase (CPR), and with its substrates are quite complex and can have a significant effect on the kinetics of substrate metabolism. Here we show that the N-terminus of CYP2J2 plays an important role in the formation of CYP-CPR complex for subsequent electron transfer. We demonstrate that when CYP2J2-CPR are pre-incubated before the onset of reduction, the kinetics of reduction is triphasic and is of a similar order of magnitude to previously reported rates in other cytochrome P450 systems. However, when CYP2J2 and CPR form a complex during the time course of the experiment the kinetics of the fastest phase for N-terminus containing full-length CYP2J2 is 200 times faster than the kinetics of reduction of N-terminally truncated CYP2J2. Hence, we show that the N-terminus of CYP2J2 is very important to form a productive CYP-CPR complex to facilitate electron transfer.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
45
|
McDougle DR, Kambalyal A, Meling DD, Das A. Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. J Pharmacol Exp Ther 2014; 351:616-27. [PMID: 25277139 DOI: 10.1124/jpet.114.216598] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are arachidonic acid (AA) derivatives that are known to regulate human cardiovascular functions. CYP2J2 is the primary cytochrome P450 in the human heart and is most well known for the metabolism of AA to the biologically active epoxyeicosatrienoic acids. In this study, we demonstrate that both 2-AG and AEA are substrates for metabolism by CYP2J2 epoxygenase in the model membrane bilayers of nanodiscs. Reactions of CYP2J2 with AEA formed four AEA-epoxyeicosatrienoic acids, whereas incubations with 2-AG yielded detectable levels of only two 2-AG epoxides. Notably, 2-AG was shown to undergo enzymatic oxidative cleavage to form AA through a NADPH-dependent reaction with CYP2J2 and cytochrome P450 reductase. The formation of the predominant AEA and 2-AG epoxides was confirmed using microsomes prepared from the left myocardium of porcine and bovine heart tissues. The nuances of the ligand-protein interactions were further characterized using spectral titrations, stopped-flow small-molecule ligand egress, and molecular modeling. The experimental and theoretical data were in agreement, which showed that substitution of the AA carboxylic acid with the 2-AG ester-glycerol changes the binding interaction of these lipids within the CYP2J2 active site, leading to different product distributions. In summary, we present data for the functional metabolomics of AEA and 2-AG by a membrane-bound cardiovascular epoxygenase.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amogh Kambalyal
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Aditi Das
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
46
|
Khatri Y, Luthra A, Duggal R, Sligar SG. Kinetic solvent isotope effect in steady-state turnover by CYP19A1 suggests involvement of Compound 1 for both hydroxylation and aromatization steps. FEBS Lett 2014; 588:3117-22. [PMID: 24997347 DOI: 10.1016/j.febslet.2014.06.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
CYP19A1, or human aromatase catalyzes the conversion of androgens to estrogens in a three-step reaction through the formation of 19-hydroxy and 19-aldehyde intermediates. While the first two steps of hydroxylation are thought to proceed through a high-valent iron-oxo species, controversy exists surrounding the identity of the reaction intermediate that catalyzes the lyase and aromatization reaction. We investigated the kinetic isotope effect on the steady-state turnover of Nanodisc-incorporated human CYP19A1 to explore the mechanisms of this reaction. Our experiments reveal a significant (∼ 2.5) kinetic solvent isotope effect for the C10-C19 lyase reaction, similar to that of the first two hydroxylation steps (2.7 and 1.2). These data implicate the involvement of Compound 1 as a reactive intermediate in the final aromatization step of CYP19A1.
Collapse
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Abhinav Luthra
- Department of Biochemistry, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Ruchia Duggal
- Department of Biochemistry, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
47
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
48
|
Mak PJ, Luthra A, Sligar SG, Kincaid JR. Resonance Raman spectroscopy of the oxygenated intermediates of human CYP19A1 implicates a compound i intermediate in the final lyase step. J Am Chem Soc 2014; 136:4825-8. [PMID: 24645879 PMCID: PMC3985783 DOI: 10.1021/ja500054c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
CYP19A1, or aromatase,
a cytochrome P450 responsible for estrogen
biosynthesis in humans, is an important therapeutic target for the
treatment of breast cancer. There is still controversy surrounding
the identity of reaction intermediate that catalyzes carbon–carbon
scission in this key enzyme. Probing the oxy-complexes of CYP19A1
poised for hydroxylase and lyase chemistries using resonance Raman
spectroscopy and drawing a comparison with CYP17A1, we have found
no significant difference in the frequencies or isotopic shifts for
these two steps in CYP19A1. Our experiments implicate the involvement
of Compound I in the terminal lyase step of CYP19A1 catalysis.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | | | | | | |
Collapse
|
49
|
Das A, Varma SS, Mularczyk C, Meling DD. Functional Investigations of Thromboxane Synthase (CYP5A1) in Lipid Bilayers of Nanodiscs. Chembiochem 2014; 15:892-9. [DOI: 10.1002/cbic.201300646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 12/20/2022]
|
50
|
McDougle DR, Palaria A, Magnetta E, Meling DD, Das A. Functional studies of N-terminally modified CYP2J2 epoxygenase in model lipid bilayers. Protein Sci 2014; 22:964-79. [PMID: 23661295 DOI: 10.1002/pro.2280] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/18/2013] [Accepted: 05/04/2013] [Indexed: 01/14/2023]
Abstract
CYP2J2 epoxygenase is a membrane bound cytochrome P450 that converts omega-3 and omega-6 fatty acids into physiologically active epoxides. In this work, we present a comprehensive comparison of the effects of N-terminal modifications on the properties of CYP2J2 with respect to the activity of the protein in model lipid bilayers using Nanodiscs. We demonstrate that the complete truncation of the N-terminus changes the association of this protein with the E.coli membrane but does not disrupt incorporation in the lipid bilayers of Nanodiscs. Notably, the introduction of silent mutations at the N-terminus was used to express full length CYP2J2 in E. coli while maintaining wild-type functionality. We further show that lipid bilayers are essential for the productive use of NADPH for ebastine hydroxylation by CYP2J2. Taken together, it was determined that the presence of the N-terminus is not as critical as the presence of a membrane environment for efficient electron transfer from cytochrome P450 reductase to CYP2J2 for ebastine hydroxylation in Nanodiscs. This suggests that adopting the native-like conformation of CYP2J2 and cytochrome P450 reductase in lipid bilayers is essential for effective use of reducing equivalents from NADPH for ebastine hydroxylation.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|