1
|
Liu R, Pan Y, Wang N, Tang D, Urlacher VB, Li S. Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. J Steroid Biochem Mol Biol 2023; 229:106268. [PMID: 36764495 DOI: 10.1016/j.jsbmb.2023.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.
Collapse
Affiliation(s)
- Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Shin J, Kim S, Park W, Jin KC, Kim SK, Kweon DH. Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose. J Microbiol Biotechnol 2022; 32:1471-1478. [PMID: 36437520 PMCID: PMC9720067 DOI: 10.4014/jmb.2209.09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seungjoo Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea,
S.K. Kim Phone: +82-31-670-3261 Fax: +82-31-675-3108 E-mail:
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding authors D.H. Kweon Phone: +82-31-290-7869 Fax: +82-31-290-7870 E-mail:
| |
Collapse
|
3
|
Liu K, Wang FQ, Liu K, Zhao Y, Gao B, Tao X, Wei D. Light-driven progesterone production by InP-(M. neoaurum) biohybrid system. BIORESOUR BIOPROCESS 2022; 9:93. [PMID: 38647746 PMCID: PMC10992907 DOI: 10.1186/s40643-022-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Progesterone is one of the classical hormone drugs used in medicine for maintaining pregnancy. However, its manufacturing process, coupled with organic reagents and poisonous catalysts, causes irreversible environmental pollution. Recent advances in synthetic biology have demonstrated that the microbial biosynthesis of natural products, especially difficult-to-synthesize compounds, from building blocks is a promising strategy. Herein, overcoming the heterologous cytochrome P450 enzyme interdependency in Mycolicibacterium neoaurum successfully constructed the CYP11A1 running module to realize metabolic conversion from waste phytosterols to progesterone. Subsequently, progesterone yield was improved through strategies involving electron transfer and NADPH regeneration. Mutant CYP11A1 (mCYP11A1) and adrenodoxin reductase (ADR) were connected by a flexible linker (L) to form the chimera mCYP11A1-L-ADR to enhance electron transfer. The chimera mCYP11A1-L-ADR, adrenodoxin (ADX), and ADR-related homolog ARH1 were expressed in M. neoaurum, showed positive activity and produced 45 mg/L progesterone. This electron transfer strategy increased progesterone production by 3.95-fold compared with M. neoaurum expressing mCYP11A1, ADR, and ADX. Significantly, a novel inorganic-biological hybrid system was assembled by combining engineered M. neoaurum and InP nanoparticles to regenerate NADPH, which was increased 84-fold from the initial progesterone titer to 235 ± 50 mg/L. In summary, this work highlights the green and sustainable potential of obtaining synthetic progesterone from sterols in M. neoaurum.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yunqiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Artyukh RI, Kachalova GS, Yunusova AK, Fatkhullin BF, Atanasov BP, Perevyazova TA, Popov AN, Gabdulkhakov AG, Zheleznaya LA. The key role of E418 carboxyl group in the formation of Nt.BspD6I nickase active site: Structural and functional properties of Nt.BspD6I E418A mutant. J Struct Biol 2020; 210:107508. [PMID: 32298813 DOI: 10.1016/j.jsb.2020.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
The mutated nickase Nt.BspD6I E418A has been obtained by site-directed mutagenesis. The purified protein has been crystallized, and its spatial structure has been determined at 2.45 Å resolution. An analysis of the crystal structures of the wild-type and mutated nickase have shown that the elimination of a carboxyl group due to the E418A mutation initiates marked conformational changes in both the N-terminal recognition domain and the C-terminal catalytic domain of nickase and insignificantly affects its linker domain. This is supported by changes in the functional properties of mutated nickase: an increase in the oligomerization capacity in the presence of a substrate, a reduction in the capacity to bind a substrate, and complete loss of catalytic activity.
Collapse
Affiliation(s)
- Rimma I Artyukh
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Galina S Kachalova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alfiya K Yunusova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Boris P Atanasov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Tatyana A Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Ludmila A Zheleznaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
6
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
7
|
Stenger B, Gerber A, Bernhardt R, Hannemann F. Functionalized poly(3-hydroxybutyric acid) bodies as new in vitro biocatalysts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:52-59. [PMID: 28870733 DOI: 10.1016/j.bbapap.2017.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 11/29/2022]
Abstract
Cytochromes P450 play a key role in the drug and steroid metabolism in the human body. This leads to a high interest in this class of proteins. Mammalian cytochromes P450 are rather delicate. Due to their localization in the mitochondrial or microsomal membrane, they tend to aggregate during expression and purification and to convert to an inactive form so that they have to be purified and stored in complex buffers. The complex buffers and low storage temperatures, however, limit the feasibility of fast, automated screening of the corresponding cytochrome P450-effector interactions, which are necessary to study substrate-protein and inhibitor-protein interactions. Here, we present the production and isolation of functionalized poly(3-hydroxybutyrate) granules (PHB bodies) from Bacillus megaterium MS941 strain. In contrast to the expression in Escherichia coli, where mammalian cytochromes P450 are associated to the cell membrane, when CYP11A1 is heterologously expressed in Bacillus megaterium, it is located on the PHB bodies. The surface of these particles provides a matrix for immobilization and stabilization of the CYP11A1 during the storage of the protein and substrate conversion. It was demonstrated that the PHB polymer basis is inert concerning the performed conversion. Immobilization of the CYP11A1 onto the PHB bodies allows freeze-drying of the complex without significant decrease of the CYP11A1 activity. This is the first lyophilization of a mammalian cytochrome P450, which allows storage over more than 18days at 4°C instead of storage at -80°C. In addition, we were able to immobilize the cytochrome P450 on the PHB bodies in vitro. In this case the expression of the protein is separated from the production of the immobilization matrix, which widens the application of this method. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Benjamin Stenger
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Adrian Gerber
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
8
|
Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact 2015. [PMID: 26215140 PMCID: PMC4517628 DOI: 10.1186/s12934-015-0300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. Results CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. Conclusion We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism’s PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0300-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA. Structural and functional analysis of novel human cytochrome C targets in apoptosis. Mol Cell Proteomics 2014; 13:1439-56. [PMID: 24643968 DOI: 10.1074/mcp.m113.034322] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Since the first description of apoptosis four decades ago, great efforts have been made to elucidate, both in vivo and in vitro, the molecular mechanisms involved in its regulation. Although the role of cytochrome c during apoptosis is well established, relatively little is known about its participation in signaling pathways in vivo due to its essential role during respiration. To obtain a better understanding of the role of cytochrome c in the onset of apoptosis, we used a proteomic approach based on affinity chromatography with cytochrome c as bait in this study. In this approach, novel cytochrome c interaction partners were identified whose in vivo interaction and cellular localization were facilitated through bimolecular fluorescence complementation. Modeling of the complex interface between cytochrome c and its counterparts indicated the involvement of the surface surrounding the heme crevice of cytochrome c, in agreement with the vast majority of known redox adducts of cytochrome c. However, in contrast to the high turnover rate of the mitochondrial cytochrome c redox adducts, those occurring under apoptosis led to the formation of stable nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon resonance and nuclear magnetic resonance measurements, which permitted us to corroborate the formation of such complexes in vitro. The results obtained suggest that human cytochrome c interacts with pro-survival, anti-apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c may interfere with cell survival pathways and unlock apoptosis in order to prevent the spatial and temporal coexistence of antagonist signals.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Simon Janocha
- §Institut für Biochemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
| | - José A Navarro
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Manuel Hervás
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Rita Bernhardt
- §Institut für Biochemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
| | - Adrián Velázquez-Campoy
- ¶Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain, and Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Antonio Díaz-Quintana
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain;
| |
Collapse
|
10
|
Neunzig J, Bernhardt R. Dehydroepiandrosterone sulfate (DHEAS) stimulates the first step in the biosynthesis of steroid hormones. PLoS One 2014; 9:e89727. [PMID: 24586990 PMCID: PMC3931814 DOI: 10.1371/journal.pone.0089727] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant circulating steroid in human, with the highest concentrations between age 20 and 30, but displaying a significant decrease with age. Many beneficial functions are ascribed to DHEAS. Nevertheless, long-term studies are very scarce concerning the intake of DHEAS over several years, and molecular investigations on DHEAS action are missing so far. In this study, the role of DHEAS on the first and rate-limiting step of steroid hormone biosynthesis was analyzed in a reconstituted in vitro system, consisting of purified CYP11A1, adrenodoxin and adrenodoxin reductase. DHEAS enhances the conversion of cholesterol by 26%. Detailed analyses of the mechanism of DHEAS action revealed increased binding affinity of cholesterol to CYP11A1 and enforced interaction with the electron transfer partner, adrenodoxin. Difference spectroscopy showed Kd-values of 40±2.7 µM and 24.8±0.5 µM for CYP11A1 and cholesterol without and with addition of DHEAS, respectively. To determine the Kd-value for CYP11A1 and adrenodoxin, surface plasmon resonance measurements were performed, demonstrating a Kd-value of 3.0±0.35 nM (with cholesterol) and of 2.4±0.05 nM when cholesterol and DHEAS were added. Kinetic experiments showed a lower Km and a higher kcat value for CYP11A1 in the presence of DHEAS leading to an increase of the catalytic efficiency by 75%. These findings indicate that DHEAS affects steroid hormone biosynthesis on a molecular level resulting in an increased formation of pregnenolone.
Collapse
Affiliation(s)
- Jens Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
11
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pirie CM, De Mey M, Prather KLJ, Ajikumar PK. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol 2013; 8:662-72. [PMID: 23373985 DOI: 10.1021/cb300634b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Collapse
Affiliation(s)
- Christopher M. Pirie
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| | - Marjan De Mey
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
- Centre of
Expertise−Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kristala L. Jones Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|