1
|
Lindemeier D, Graubner W, Mehner-Breitfeld D, Malešević M, Brüser T. Positive charges promote the recognition of proteins by the chaperone SlyD from Escherichia coli. PLoS One 2024; 19:e0305823. [PMID: 38917203 PMCID: PMC11198818 DOI: 10.1371/journal.pone.0305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes. Using peptide arrays to analyze these signal peptide interactions, we found that SlyD interacted only with positively charged peptides, with a preference for arginines over lysines, and large hydrophobic residues enhanced binding. Especially a twin-arginine motif was recognized, a pair of highly conserved arginines adjacent to a stretch of hydrophobic residues. Using isothermal titration calorimetry (ITC) with purified SlyD and a signal peptide-containing model Tat substrate, we could show that the wild type twin-arginine signal peptide was bound with higher affinity than an RR>KK mutated variant, confirming that positive charges are recognized by SlyD, with a preference of arginines over lysines. The specific role of negative charges of the chaperone domain surface and of hydrophobic residues in the chaperone active site was further analyzed by ITC of mutated SlyD variants. Our data show that the supposed key hydrophobic residues of the active site are indeed crucial for binding, and that binding is influenced by negative charges on the chaperone domain. Recognition of positive charges is likely achieved by a large negatively charged surface region of the chaperone domain, which is highly conserved although individual positions are variable.
Collapse
Affiliation(s)
- Daniel Lindemeier
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | - Wenke Graubner
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | | | - Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
2
|
Žoldák G, Knappe TA, Geitner AJ, Scholz C, Dobbek H, Schmid FX, Jakob RP. Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst-A Structural and Functional Analysis. Molecules 2024; 29:1440. [PMID: 38611720 PMCID: PMC11013033 DOI: 10.3390/molecules29071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.
Collapse
Affiliation(s)
- Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, 040 11 Kosice, Slovakia
| | - Thomas A. Knappe
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Anne-Juliane Geitner
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | | | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Franz X. Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Roman P. Jakob
- Departement Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Keßler S, González-Rubio G, Reinalter ER, Kovermann M, Cölfen H. Synthesis of nickel hexacyanoferrate nanocubes with tuneable dimensions via temperature-controlled Ni 2+-citrate complexation. Chem Commun (Camb) 2020; 56:14439-14442. [PMID: 33146182 DOI: 10.1039/d0cc04628k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The citrate-assisted growth of nickel hexacyanoferrate (NiHCF) nanocubes was investigated. Control over the complexation of Ni2+ ions with citrate at different temperatures enabled fine tuning of the nanocrystal (NC) dimensions and their self-assembly into mesocrystals. Our results introduce new concepts towards the synthesis of NiHCF NCs, potentially applicable to other members of the Prussian blue analogues family.
Collapse
Affiliation(s)
- Sascha Keßler
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
4
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
5
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
6
|
Geitner AJ, Weininger U, Paulsen H, Balbach J, Kovermann M. Structure-Based Insights into the Dynamics and Function of Two-Domain SlpA from Escherichia coli. Biochemistry 2017; 56:6533-6543. [PMID: 29155566 DOI: 10.1021/acs.biochem.7b00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SlpA (SlyD-like protein A) comprises two domains, a FK506 binding domain (FKBP fold) of moderate prolyl cis/trans-isomerase activity and an inserted in flap (IF) domain that hosts its chaperone activity. Here we present the nuclear magnetic resonance (NMR) solution structure of apo Escherichia coli SlpA determined by NMR that mirrors the structural properties seen for various SlyD homologues. Crucial structural differences in side-chain orientation arise for F37, which points directly into the hydrophobic core of the active site. It forms a prominent aromatic stacking with F15, one of the key residues for PPIase activity, thus giving a possible explanation for the inherently low PPIase activity of SlpA. The IF domain reveals the highest stability within the FKBP-IF protein family, most likely arising from an aromatic cluster formed by four phenylalanine residues. Both the thermodynamic stability and the PPIase and chaperone activity let us speculate that SlpA is a backup system for homologous bacterial systems under unfavorable conditions.
Collapse
Affiliation(s)
| | - Ulrich Weininger
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Hauke Paulsen
- Institut für Physik, Universität Lübeck , Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Universität Konstanz , Fachbereich Chemie, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
7
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
8
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
9
|
Quistgaard EM, Weininger U, Ural-Blimke Y, Modig K, Nordlund P, Akke M, Löw C. Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. BMC Biol 2016; 14:82. [PMID: 27664121 PMCID: PMC5034536 DOI: 10.1186/s12915-016-0300-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Peptidyl-prolyl isomerases (PPIases) catalyze cis/trans isomerization of peptidyl-prolyl bonds, which is often rate-limiting for protein folding. SlyD is a two-domain enzyme containing both a PPIase FK506-binding protein (FKBP) domain and an insert-in-flap (IF) chaperone domain. To date, the interactions of these domains with unfolded proteins have remained rather obscure, with structural information on binding to the FKBP domain being limited to complexes involving various inhibitor compounds or a chemically modified tetrapeptide. Results We have characterized the binding of 15-residue-long unmodified peptides to SlyD from Thermus thermophilus (TtSlyD) in terms of binding thermodynamics and enzyme kinetics through the use of isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, and site-directed mutagenesis. We show that the affinities and enzymatic activity of TtSlyD towards these peptides are much higher than for the chemically modified tetrapeptides that are typically used for activity measurements on FKBPs. In addition, we present a series of crystal structures of TtSlyD with the inhibitor FK506 bound to the FKBP domain, and with 15-residue-long peptides bound to either one or both domains, which reveals that substrates bind in a highly adaptable fashion to the IF domain through β-strand augmentation, and can bind to the FKBP domain as both types VIa1 and VIb-like cis-proline β-turns. Our results furthermore provide important clues to the catalytic mechanism and support the notion of inter-domain cross talk. Conclusions We found that 15-residue-long unmodified peptides can serve as better substrate mimics for the IF and FKBP domains than chemically modified tetrapeptides. We furthermore show how such peptides are recognized by each of these domains in TtSlyD, and propose a novel general model for the catalytic mechanism of FKBPs that involves C-terminal rotation around the peptidyl-prolyl bond mediated by stabilization of the twisted transition state in the hydrophobic binding site. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0300-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Kristofer Modig
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,School of Biological Sciences, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden. .,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany.
| |
Collapse
|
10
|
Dantu SC, Khavnekar S, Kale A. Conformational dynamics of Peb4 exhibit “mother’s arms” chain model: a molecular dynamics study. J Biomol Struct Dyn 2016; 35:2186-2196. [DOI: 10.1080/07391102.2016.1209131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sarath Chandra Dantu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sagar Khavnekar
- UM-DAE Centre for Excellence in Basic Science, University of Mumbai, Vidhyanagari Campus, Mumbai 400098, India
| | - Avinash Kale
- UM-DAE Centre for Excellence in Basic Science, University of Mumbai, Vidhyanagari Campus, Mumbai 400098, India
| |
Collapse
|
11
|
Abstract
![]()
Biological activities of enzymes, including
regulation or coordination of mechanistic stages preceding or following
the chemical step, may depend upon kinetic or equilibrium changes
in protein conformations. Exchange of more open or flexible conformational
states with more closed or constrained states can influence inhibition,
allosteric regulation, substrate recognition, formation of the Michaelis
complex, side reactions, and product release. NMR spectroscopy has
long been applied to the study of conformational dynamic processes
in enzymes because these phenomena can be characterized over multiple
time scales with atomic site resolution. Laboratory-frame spin-relaxation
measurements, sensitive to reorientational motions on picosecond–nanosecond
time scales, and rotating-frame relaxation-dispersion measurements,
sensitive to chemical exchange processes on microsecond–millisecond
time scales, provide information on both conformational distributions
and kinetics. This Account reviews NMR spin relaxation studies of
the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational
flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations
of the bacterial ribonuclease H enzymes show that the handle region,
one of three loop regions that interact with substrates, interconverts
between two conformations. Comparison of these conformations with
the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed
state is inhibitory to binding. The large population of the closed
conformation in T. thermophilus ribonuclease H contributes
to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized
a conformational transition in AlkB between an open state, in which
the side chains of methionine residues in the active site are disordered,
and a closed state, in which these residues are ordered. The open
state is highly populated in the AlkB/Zn(II) complex, and the closed
state is highly populated in the AlkB/Zn(II)/2OG/substrate complex,
in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is
a methylated DNA oligonucleotide. The equilibrium is shifted to approximately
equal populations of the two conformations in the AlkB/Zn(II)/2OG
complex. The conformational shift induced by 2OG ensures that 2OG
binds to AlkB/Zn(II) prior to the substrate. In addition, the opening
rate of the closed conformation limits premature release of substrate,
preventing generation of toxic side products by reaction with water.
Closure of active site loop 6 in triosephosphate isomerase is critical
for forming the Michaelis complex, but reopening of the loop after
the reaction is (partially) rate limiting. NMR spin relaxation and
MD simulations of triosephosphate isomerase in complex with glycerol
3-phosphate demonstrate that closure of loop 6 is a highly correlated
rigid-body motion. The MD simulations also indicate that motions of
Gly173 in the most flexible region of loop 6 contribute to opening
of the active site loop for product release. Considered together,
these three enzyme systems illustrate the power of NMR spin relaxation
investigations in providing global insights into the role of conformational
dynamic processes in the mechanisms of enzymes from initial activation
to final product release.
Collapse
Affiliation(s)
- Arthur G. Palmer
- Department of Biochemistry and
Molecular Biophysics, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
12
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
13
|
Kovermann M, Schmid FX, Balbach J. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD. Biol Chem 2014; 394:965-75. [PMID: 23585180 DOI: 10.1515/hsz-2013-0137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 11/15/2022]
Abstract
SlyD is a bacterial two-domain protein that functions as a molecular chaperone, a prolyl cis/trans isomerase, and a nickel-binding protein. This review summarizes recent findings about the molecular enzyme mechanism of SlyD. The chaperone function located in one domain of SlyD is involved in twin-arginine translocation and increases the catalytic efficiency of the prolyl cis/trans isomerase domain in protein folding by two orders of magnitude. The C-terminal tail of SlyD binds Ni2+ ions and supplies them for the maturation of [NiFe] hydrogenases. A combined biochemical and biophysical analysis revealed the molecular basis of the delicate interplay of the different domains of SlyD for optimal function.
Collapse
Affiliation(s)
- Michael Kovermann
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine MZP, Martin-Luther Universität Halle-Wittenberg, D-06120 Halle, Germany
| | | | | |
Collapse
|
14
|
Generation of a Highly Active Folding Enzyme by Combining a Parvulin-Type Prolyl Isomerase from SurA with an Unrelated Chaperone Domain. J Mol Biol 2013; 425:4089-98. [DOI: 10.1016/j.jmb.2013.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
|
15
|
Matena A, Sinnen C, van den Boom J, Wilms C, Dybowski JN, Maltaner R, Mueller JW, Link NM, Hoffmann D, Bayer P. Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Structure 2013; 21:1769-77. [PMID: 23972472 DOI: 10.1016/j.str.2013.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The mitotic regulator Pin1 plays an important role in protein quality control and age-related medical conditions such as Alzheimer disease and Parkinson disease. Although its cellular role has been thoroughly investigated during the past decade, the molecular mechanisms underlying its function remain elusive. We provide evidence for interactions between the two domains of Pin1. Several residues displayed unequivocal peak splits in nuclear magnetic resonance spectra, indicative of two different conformational states in equilibrium. Pareto analysis of paramagnetic relaxation enhancement data demonstrates that the two domains approach each other upon addition of a nonpeptidic ligand. Titration experiments with phosphorylated peptides monitored by fluorescence anisotropy and chemical shift perturbation indicate that domain interactions increase Pin1's affinity toward peptide ligands. We propose this interplay of the domains and ligands to be a general mechanism for a large class of two-domain proteins.
Collapse
Affiliation(s)
- Anja Matena
- Research Group Structural and Medicinal Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
17
|
Zoldák G, Geitner AJ, Schmid FX. The Prolyl Isomerase SlyD Is a Highly Efficient Enzyme but Decelerates the Conformational Folding of a Client Protein. J Am Chem Soc 2013; 135:4372-9. [DOI: 10.1021/ja311775a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gabriel Zoldák
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Anne-Juliane Geitner
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Franz X. Schmid
- Laboratorium
für Biochemie und Bayreuther Zentrum
für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
18
|
Kovermann M, Balbach J. Dynamic control of the prolyl isomerase function of the dual-domain SlyD protein. Biophys Chem 2013; 171:16-23. [DOI: 10.1016/j.bpc.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022]
|
19
|
Quistgaard EM, Nordlund P, Löw C. High‐resolution insights into binding of unfolded polypeptides by the PPIase chaperone SlpA. FASEB J 2012; 26:4003-13. [DOI: 10.1096/fj.12-208397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Esben M. Quistgaard
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Pär Nordlund
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- School of Biological SciencesNanyang Technological UniversitySingapore
| | - Christian Löw
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
20
|
Haupt C, Weininger U, Kovermann M, Balbach J. Local and Coupled Thermodynamic Stability of the Two-Domain and Bifunctional Enzyme SlyD from Escherichia coli. Biochemistry 2011; 50:7321-9. [DOI: 10.1021/bi2000627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caroline Haupt
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ulrich Weininger
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
- Mitteldeutsches Zentrum für
Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
21
|
Kahra D, Kovermann M, Löw C, Hirschfeld V, Haupt C, Balbach J, Hübner CG. Conformational plasticity and dynamics in the generic protein folding catalyst SlyD unraveled by single-molecule FRET. J Mol Biol 2011; 411:781-90. [PMID: 21596048 DOI: 10.1016/j.jmb.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/15/2022]
Abstract
The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.
Collapse
Affiliation(s)
- Dana Kahra
- Institut für Physik, Universität zu Lübeck, Ratzeburger Allee 160, D-23564 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|