1
|
Chaikaew S, Watanabe Y, Zheng D, Motojima F, Yamaguchi T, Asano Y. Structure-Based Site-Directed Mutagenesis of Hydroxynitrile Lyase from Cyanogenic Millipede, Oxidus gracilis for Hydrocyanation and Henry Reactions. Chembiochem 2024; 25:e202400118. [PMID: 38526556 DOI: 10.1002/cbic.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Å resolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.
Collapse
Affiliation(s)
- Siriporn Chaikaew
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yukio Watanabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
2
|
Zheng D, Nakabayashi M, Asano Y. Structural characterization of Linum usitatissimum hydroxynitrile lyase: A new cyanohydrin decomposition mechanism involving a cyano-zinc complex. J Biol Chem 2022; 298:101650. [PMID: 35101448 PMCID: PMC8892092 DOI: 10.1016/j.jbc.2022.101650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxynitrile lyase from Linum usitatissimum (LuHNL) is an enzyme involved in the catabolism of cyanogenic glycosides to release hydrogen cyanide upon tissue damage. This enzyme strictly conserves the substrate- and NAD(H)-binding domains of Zn2+-containing alcohol dehydrogenase (ADH); however, there is no evidence suggesting that LuHNL possesses ADH activity. Herein, we determined the ligand-free 3D structure of LuHNL and its complex with acetone cyanohydrin and (R)-2-butanone cyanohydrin using X-ray crystallography. These structures reveal that an A-form NAD+ is tightly but not covalently bound to each subunit of LuHNL. The restricted movement of the NAD+ molecule is due to the "sandwich structure" on the adenine moiety of NAD+. Moreover, the structures and mutagenesis analysis reveal a novel reaction mechanism for cyanohydrin decomposition involving the cyano-zinc complex and hydrogen-bonded interaction of the hydroxyl group of cyanohydrin with Glu323/Thr65 and H2O/Lys162 of LuHNL. The deprotonated Lys162 and protonated Glu323 residues are presumably stabilized by a partially desolvated microenvironment. In summary, the substrate binding geometry of LuHNL provides insights into the differences in activities of LuHNL and ADH, and identifying this novel reaction mechanism is an important contribution to the study of hydroxynitrile lyases.
Collapse
Affiliation(s)
- Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Makoto Nakabayashi
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.
| |
Collapse
|
3
|
Chatterjee A, Rao DHS, Kumar Padhi S. One‐Pot Enzyme Cascade Catalyzed Asymmetrization of Primary Alcohols: Synthesis of Enantiocomplementary Chiral β‐Nitroalcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - D. H. Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| |
Collapse
|
4
|
Nuylert A, Nakabayashi M, Yamaguchi T, Asano Y. Discovery and Structural Analysis to Improve the Enantioselectivity of Hydroxynitrile Lyase from Parafontaria laminata Millipedes for ( R)-2-Chloromandelonitrile Synthesis. ACS OMEGA 2020; 5:27896-27908. [PMID: 33163773 PMCID: PMC7643134 DOI: 10.1021/acsomega.0c03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Hydroxynitrile lyase (HNL) catalyzes the reversible synthesis and degradation of cyanohydrins, which are important synthetic intermediates for fine chemical and pharmaceutical industries. Here, we report the discovery of HNL from Parafontaria laminata (PlamHNL) millipedes, purification of the HNL to homogeneity, expression of the gene for the enzyme in heterologous expression hosts, and increase in the reaction rate and enantioselectivity in the synthesis of 2-chloromandelonitrile by protein engineering. The recombinant PlamHNL expressed in Pichia pastoris is glycosylated and has a higher thermostability and pH stability than the nonglycosylated HNL expressed in Escherichia coli. PlamHNL showed a unique wide substrate specificity among other millipede HNLs acting on various cyanohydrins, including 2-chloromandelonitrile, a key intermediate for the antithrombotic agent clopidogrel. We solved the X-ray crystal structure of the PlamHNL and found that the catalytic residues were almost identical to those of HNL from Chamberlinius hualienensis, although the forming binding cavity was different. In order to improve the catalytic activity and stereoselectivity, a computational structure-guided directed evolution approach was performed by an enzyme-substrate docking simulation at all of the residues that were exposed on the surface of the active site. The PlamHNL-N85Y mutant showed higher conversion (91% conversion with 98.2% ee of the product) than the wild type (76% conversion with 90% ee of the product) at pH 3.5 and 25 °C for 30 min of incubation. This study shows the diversity of millipede HNLs and reveals the molecular basis for improvement of the activity and stereoselectivity of the wild-type HNL to increase the reaction rate and enantioselectivity in the synthesis of 2-chloromandelonitrile.
Collapse
Affiliation(s)
- Aem Nuylert
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Makoto Nakabayashi
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Takuya Yamaguchi
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Motojima F, Izumi A, Nuylert A, Zhai Z, Dadashipour M, Shichida S, Yamaguchi T, Nakano S, Asano Y. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines. FEBS J 2020; 288:1679-1695. [PMID: 32679618 PMCID: PMC7983990 DOI: 10.1111/febs.15490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023]
Abstract
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis. The enzyme displays several features including a new primary structure, high stability, and the highest specific activity in (R)‐mandelonitrile ((R)‐MAN) synthesis (7420 U·mg−1) among the reported HNLs. In this study, we elucidated the crystal structure and reaction mechanism of natural ChuaHNL in ligand‐free form and its complexes with acetate, cyanide ion, and inhibitors (thiocyanate or iodoacetate) at 1.6, 1.5, 2.1, 1.55, and 1.55 Å resolutions, respectively. The structure of ChuaHNL revealed that it belongs to the lipocalin superfamily, despite low amino acid sequence identity. The docking model of (R)‐MAN with ChuaHNL suggested that the hydroxyl group forms hydrogen bonds with R38 and K117, and the nitrile group forms hydrogen bonds with R38 and Y103. The mutational analysis showed the importance of these residues in the enzymatic reaction. From these results, we propose that K117 acts as a base to abstract a proton from the hydroxyl group of cyanohydrins and R38 acts as an acid to donate a proton to the cyanide ion during the cleavage reaction of cyanohydrins. The reverse mechanism would occur during the cyanohydrin synthesis. (Photo: Dr. Yuko Ishida) Databases Structural data are available in PDB database under the accession numbers 6JHC, 6KFA, 6KFB, 6KFC, and 6KFD.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Atsushi Izumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Aem Nuylert
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Zhenyu Zhai
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Mohammad Dadashipour
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Sayaka Shichida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Shogo Nakano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
6
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity. PLoS One 2020; 15:e0235341. [PMID: 32603354 PMCID: PMC7326234 DOI: 10.1371/journal.pone.0235341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022] Open
Abstract
Hydroxynitrile lyases (HNL's) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
Affiliation(s)
- Bryan J. Jones
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Robert L. Evans
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan J. Mylrea
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Debayan Chaudhury
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine Luo
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bo Guan
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Colin T. Pierce
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Wendy R. Gordon
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
7
|
Pyrethroid Carboxylesterase PytH from Sphingobium faniae JZ-2: Structure and Catalytic Mechanism. Appl Environ Microbiol 2020; 86:AEM.02971-19. [PMID: 32303545 DOI: 10.1128/aem.02971-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 01/24/2023] Open
Abstract
Carboxylesterase PytH, isolated from the pyrethroid-degrading bacterium Sphingobium faniae JZ-2, could rapidly hydrolyze the ester bond of a wide range of pyrethroid pesticides, including permethrin, fenpropathrin, cypermethrin, fenvalerate, deltamethrin, cyhalothrin, and bifenthrin. To elucidate the catalytic mechanism of PytH, we report here the crystal structures of PytH with bifenthrin (BIF) and phenylmethylsulfonyl fluoride (PMSF) and two PytH mutants. Though PytH shares low sequence identity with reported α/β-hydrolase fold proteins, the typical triad catalytic center with Ser-His-Asp triad (Ser78, His230, and Asp202) is present and vital for the hydrolase activity. However, no contact was found between Ser78 and His230 in the structures we solved, which may be due to the fact that the PytH structures we determined are in their inactive or low-activity forms. The structure of PytH is composed of a core domain and a lid domain; some hydrophobic amino acid residues surrounding the substrate from both domains form a deeper and wider hydrophobic pocket than its homologous structures. This indicates that the larger hydrophobic pocket makes PytH fit for its larger substrate binding; both lid and core domains are involved in substrate binding, and the lid domain-induced core domain movement may make the active center correctly positioned with substrates.IMPORTANCE Pyrethroid pesticides are widely applied in agriculture and household; however, extensive use of these pesticides also causes serious environmental and health problems. The hydrolysis of pyrethroids by carboxylesterases is the major pathway of microbial degradation of pyrethroids, but the structure of carboxylesterases and its catalytic mechanism are still unknown. Carboxylesterase PytH from Sphingobium faniae JZ-2 could effectively hydrolyze a wide range of pyrethroid pesticides. The crystal structures of PytH are solved in this study. This showed that PytH belongs to the α/β-hydrolase fold proteins with typical catalytic Ser-His-Asp triad, though PytH has a low sequence identity (about 20%) with them. The special large hydrophobic binding pocket enabled PytH to bind bigger pyrethroid family substrates. Our structures shed light on the substrate selectivity and the future application of PytH and deepen our understanding of α/β-hydrolase members.
Collapse
|
8
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity.. [DOI: 10.1101/2020.04.06.027797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractHydroxynitrile lyases (HNL’s) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/ mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
|
9
|
Isobe K, Kitagawa A, Kanamori K, Kashiwagi N, Matsui D, Yamaguchi T, Fuhshuku KI, Semba H, Asano Y. Characterization of a novel hydroxynitrile lyase from Nandina domestica Thunb. Biosci Biotechnol Biochem 2018; 82:1760-1769. [DOI: 10.1080/09168451.2018.1490171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
The leaves of Nandina domestica Thunb. exhibited high hydroxynitrile lyase (HNL) activity in (R)-mandelonitrile synthesis. The specific activity of young leaves was significantly higher than that of mature leaves. We isolated two HNLs with molecular mass of 24.9 kDa (NdHNL-S) and 28.0 kDa (NdHNL-L) from the young leaves. Both NdHNLs were composed of two identical subunits, without FAD and carbohydrates. We purified NdHNL-L and revealed its enzymatic properties. The whole deduced amino acid sequence of NdHNL-L was not homologous to any other HNLs, and the specific activity for mandelonitrile synthesis by NdHNL-L was higher than that by other plant HNLs. The enzyme catalyzed enantioselective synthesis of (R)-cyanohydrins, exhibited high activity at pH 4.0, and high stability in the pH range of 3.5–8.0 and below 55°C. Thus, NdHNL-L is a novel HNL with novel amino acid sequence and has a potential for the efficient production of (R)-cyanohydrins.
Collapse
Affiliation(s)
- Kimiyasu Isobe
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, Kurokawa, Imizu, Toyama, Japan
| | - Asuka Kitagawa
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Kazuma Kanamori
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Nozomi Kashiwagi
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Daisuke Matsui
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, Kurokawa, Imizu, Toyama, Japan
| | - Takuya Yamaguchi
- Asano Active Enzyme Molecule Project, ERATO, JST, Kurokawa, Imizu, Toyama, Japan
| | - Ken-ichi Fuhshuku
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Hisashi Semba
- Suita Research Laboratory, Nippon Shokubai Co. Ltd, Suita, Osaka, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center andDepartment of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, Kurokawa, Imizu, Toyama, Japan
| |
Collapse
|
10
|
Jangir N, Sangoji D, Padhi SK. Baliospermum montanum hydroxynitrile lyase catalyzed synthesis of chiral cyanohydrins in a biphasic solvent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Hydroxynitrile lyases from cyanogenic millipedes: molecular cloning, heterologous expression, and whole-cell biocatalysis for the production of (R)-mandelonitrile. Sci Rep 2018; 8:3051. [PMID: 29445093 PMCID: PMC5813103 DOI: 10.1038/s41598-018-20190-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
Hydroxynitrile lyases (HNLs), which are key enzymes in cyanogenesis, catalyze the cleavage of cyanohydrins into carbonyl compounds and hydrogen cyanide. Since HNLs also catalyze the reverse reaction, they are used industrially for the asymmetric synthesis of cyanohydrins, which are valuable building blocks of pharmaceuticals and fine chemicals. HNLs have been isolated from cyanogenic plants and bacteria. Recently, an HNL from the cyanogenic millipede Chamberlinius hualienensis was shown to have the highest specific activity for (R)-mandelonitrile synthesis, along with high stability and enantioselectivity. However, no HNLs have been isolated from other cyanogenic millipedes. We identified and characterized HNLs from 10 cyanogenic millipedes in the Paradoxosomatidae and Xystodesmidae. Sequence analyses showed that HNLs are conserved among cyanogenic millipedes and likely evolved from one ancestral gene. The HNL from Parafontaria tonominea was expressed in Escherichia coli SHuffle T7 and showed high specific activity for (R)-mandelonitrile synthesis and stability at a range of pHs and temperatures. The stability of millipede HNLs is likely due to disulfide bond(s). The E. coli cells expressing HNL produced (R)-mandelonitrile with 97.6% enantiomeric excess without organic solvents. These results demonstrate that cyanogenic millipedes are a valuable source of HNLs with high specific activity and stability.
Collapse
|
12
|
Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily. Sci Rep 2017; 7:46738. [PMID: 28466867 PMCID: PMC5413884 DOI: 10.1038/srep46738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins. Due to their convergent evolution, finding new representatives is challenging. Here we show the discovery of unique HNL enzymes from the fern Davallia tyermannii by coalescence of transcriptomics, proteomics and enzymatic screening. It is the first protein with a Bet v1-like protein fold exhibiting HNL activity, and has a new catalytic center, as shown by protein crystallography. Biochemical properties of D. tyermannii HNLs open perspectives for the development of a complementary class of biocatalysts for the stereoselective synthesis of cyanohydrins. This work shows that systematic integration of -omics data facilitates discovery of enzymes with unpredictable sequences and helps to extend our knowledge about enzyme diversity.
Collapse
|
13
|
Structures of almond hydroxynitrile lyase isoenzyme 5 provide a rationale for the lack of oxidoreductase activity in flavin dependent HNLs. J Biotechnol 2016; 235:24-31. [DOI: 10.1016/j.jbiotec.2016.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/21/2022]
|
14
|
Li H, Pu H. Crystal structure of methylesterase family member 16 (MES16) from Arabidopsis thaliana. Biochem Biophys Res Commun 2016; 474:226-231. [PMID: 27109476 DOI: 10.1016/j.bbrc.2016.04.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
Methylesterase family member 16 (MES16) is an integral component of chlorophyll breakdown. It catalyzes the demethylation of fluorescent chlorophyll catabolite (FCC) and pheophorbide in vitro, and specifically demethylates FCC in vivo. Here we report the crystal structure of MES16 from Arabidopsis thaliana at 2.8 Å resolution. The structure confirm that MES16 is a member of the α/β-hydrolase superfamily with Ser-87, His-239, and Asp-211 as the catalytic triad. Our biochemical studies reveal that MES16 has esterase activity with methyl-indole acetic acid as the substrate, and the catalytically essential role of Ser-87 has been demonstrated.
Collapse
Affiliation(s)
- Hongmei Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Hua Pu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; University of Chinese Academy of Sciences, College of Life Science, Beijing, 101048, People's Republic of China
| |
Collapse
|
15
|
Asano Y, Kawahara N. A New S-Hydroxynitrile Lyase from Baliospermum montanum—Its Structure, Molecular Dynamics Simulation, and Improvement by Protein Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Asano Active Enzyme Molecule Project, Toyama, Japan
| | - Nobuhiro Kawahara
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Asano Active Enzyme Molecule Project, Toyama, Japan
| |
Collapse
|
16
|
Rauwerdink A, Lunzer M, Devamani T, Jones B, Mooney J, Zhang ZJ, Xu JH, Kazlauskas RJ, Dean AM. Evolution of a Catalytic Mechanism. Mol Biol Evol 2015; 33:971-9. [PMID: 26681154 DOI: 10.1093/molbev/msv338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation-amplification-divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme.
Collapse
Affiliation(s)
- Alissa Rauwerdink
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Mark Lunzer
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Titu Devamani
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Bryan Jones
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Joanna Mooney
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Zhi-Jun Zhang
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota Department of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Jian-He Xu
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota Department of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Romas J Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota
| | - Antony M Dean
- Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota Department of Ecology, Evolution and Behavior, University of Minnesota College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
17
|
Kawahara N, Asano Y. Mutagenesis of an Asn156 Residue in a Surface Region ofS-Selective Hydroxynitrile Lyase fromBaliospermum montanumEnhances Catalytic Efficiency and Enantioselectivity. Chembiochem 2015; 16:1891-1895. [DOI: 10.1002/cbic.201500225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/11/2022]
|
18
|
Torrelo G, Ribeiro de Souza FZ, Carrilho E, Hanefeld U. Xylella fastidiosa esterase rather than hydroxynitrile lyase. Chembiochem 2015; 16:625-30. [PMID: 25684099 DOI: 10.1002/cbic.201402685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 11/10/2022]
Abstract
In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold.
Collapse
Affiliation(s)
- Guzman Torrelo
- Gebouw voor Scheikunde, Biokatalyse Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628 BL Delft (The Netherlands).
| | | | | | | |
Collapse
|
19
|
Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software. Sci Rep 2015; 5:8193. [PMID: 25645341 PMCID: PMC4648443 DOI: 10.1038/srep08193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.
Collapse
|