1
|
Pomin VH, Rajarathnam K. NMR Methods for Characterization of Glycosaminoglycan-Chemokine Interactions. Methods Mol Biol 2023; 2597:143-157. [PMID: 36374420 DOI: 10.1007/978-1-0716-2835-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Humans express around 50 chemokines that play crucial roles in human pathophysiology from combating infection to immune surveillance by directing and trafficking leukocytes to the target tissue. Glycosaminoglycans (GAGs) regulate chemokine function by tuning monomer/dimer levels, chemotactic/haptotactic gradients, and how they are presented to their receptors. Knowledge of the structural features of the chemokine-GAG complexes and GAG properties that define chemokine interactions is essential not only to understand chemokine function, but also for developing drugs that disrupt chemokine-GAG crosstalk and thereby impart protection against dysregulated host defense. Nuclear magnetic resonance (NMR) spectroscopy has proven to be quite useful for providing residue-specific interactions, binding geometry and models, specificity, and affinity. Multiple NMR methods have been used including (1) chemical shift perturbation (CSP), (2) saturation transfer difference (STD), and (3) paramagnetic relaxation enhancement (PRE) techniques. In this chapter, we describe how NMR CSP, STD, and PRE can be best used for characterizing chemokine-GAG interactions.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Pietikäinen A, Åstrand M, Cuellar J, Glader O, Elovaara H, Rouhiainen M, Salo J, Furihata T, Salminen TA, Hytönen J. Conserved lysine residues in decorin binding proteins of Borrelia garinii are critical in adhesion to human brain microvascular endothelial cells. Mol Microbiol 2021; 115:1395-1409. [PMID: 33512032 DOI: 10.1111/mmi.14687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
Lyme borreliosis is a tick-borne disease caused by Borrelia burgdorferi sensu lato spirochetes (Lyme borreliae). When the disease affects the central nervous system, it is referred to as neuroborreliosis. In Europe, neuroborreliosis is most often caused by Borrelia garinii. Although it is known that in the host Lyme borreliae spread from the tick bite site to distant tissues via the blood vasculature, the adherence of Lyme borreliae to human brain microvascular endothelial cells has not been studied before. Decorin binding proteins are adhesins expressed on Lyme borreliae. They mediate the adhesion of Lyme borreliae to decorin and biglycan, and the lysine residues located in the binding site of decorin binding proteins are important to the binding activity. In this study, we show that lysine residues located in the canonical binding site can also be found in decorin binding proteins of Borrelia garinii, and that these lysines contribute to biglycan and decorin binding. Most importantly, we show that the lysine residues are crucial for the binding of Lyme borreliae to decorin and biglycan expressing human brain microvascular endothelial cells, which in turn suggests that they are involved in the pathogenesis of neuroborreliosis.
Collapse
Affiliation(s)
- Annukka Pietikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.,Laboratory Division, Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mia Åstrand
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,National Doctoral Programme in Informational and Structural Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Julia Cuellar
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Otto Glader
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.,Doctoral Programme in Clinical Research, Turku, Finland
| | - Heli Elovaara
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Meri Rouhiainen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.,Doctoral Programme in Clinical Research, Turku, Finland
| | - Jemiina Salo
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jukka Hytönen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.,Laboratory Division, Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Cuellar J, Pietikäinen A, Glader O, Liljenbäck H, Söderström M, Hurme S, Salo J, Hytönen J. Borrelia burgdorferi Infection in Biglycan Knockout Mice. J Infect Dis 2019; 220:116-126. [DOI: 10.1093/infdis/jiz050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Julia Cuellar
- Institute of Biomedicine, University of Turku
- Turku Doctoral Programme of Molecular Medicine, Faculty of Medicine, University of Turku
| | - Annukka Pietikäinen
- Institute of Biomedicine, University of Turku
- Turku Doctoral Programme of Molecular Medicine, Faculty of Medicine, University of Turku
| | - Otto Glader
- Institute of Biomedicine, University of Turku
| | - Heidi Liljenbäck
- Turku Center for Disease Modeling, University of Turku
- Turku PET Centre, University of Turku
| | - Mirva Söderström
- Department of Pathology and Forensic Medicine, University of Turku and Turku University Hospital
| | - Saija Hurme
- Department of Biostatistics, University of Turku
| | | | - Jukka Hytönen
- Institute of Biomedicine, University of Turku
- Laboratory Division, Unit of Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Glycosaminoglycan-Protein Interactions by Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules 2018; 23:molecules23092314. [PMID: 30208595 PMCID: PMC6225283 DOI: 10.3390/molecules23092314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most utilized and informative analytical techniques for investigating glycosaminoglycan (GAG)-protein complexes. NMR methods that are commonly applied to GAG-protein systems include chemical shift perturbation, saturation transfer difference, and transferred nuclear Overhauser effect. Although these NMR methods have revealed valuable insight into the protein-GAG complexes, elucidating high-resolution structural and dynamic information of these often transient interactions remains challenging. In addition, preparation of structurally homogeneous and isotopically enriched GAG ligands for structural investigations continues to be laborious. As a result, understanding of the structure-activity relationship of GAGs is still primitive. To overcome these deficiencies, several innovative NMR techniques have been developed lately. Here, we review some of the commonly used techniques along with more novel methods such as waterLOGSY and experiments to examine structure and dynamic of lysine and arginine side chains to identify GAG-binding sites. We will also present the latest technology that is used to produce isotopically enriched as well as paramagnetically tagged GAG ligands. Recent results that were obtained from solid-state NMR of amyloid’s interaction with GAG are also presented together with a brief discussion on computer assisted modeling of GAG-protein complexes using sparse experimental data.
Collapse
|
6
|
Caine JA, Coburn J. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion. Front Immunol 2016; 7:442. [PMID: 27818662 PMCID: PMC5073149 DOI: 10.3389/fimmu.2016.00442] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick-mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.
Collapse
Affiliation(s)
- Jennifer A. Caine
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenifer Coburn
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|