1
|
Ma Z, Yang K, Wang J, Ma J, Yao L, Si E, Li B, Ma X, Shang X, Meng Y, Wang H. Exogenous Melatonin Enhances the Low Phosphorus Tolerance of Barley Roots of Different Genotypes. Cells 2023; 12:1397. [PMID: 37408231 PMCID: PMC10217165 DOI: 10.3390/cells12101397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 μM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.
Collapse
Affiliation(s)
- Zengke Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingwei Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Li M, Zhou J, Liu Q, Mao L, Li H, Li S, Guo R. Dynamic variation of nutrient absorption, metabolomic and transcriptomic indexes of soybean ( Glycine max) seedlings under phosphorus deficiency. AOB PLANTS 2023; 15:plad014. [PMID: 37124081 PMCID: PMC10132309 DOI: 10.1093/aobpla/plad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The dynamic trajectory of metabolites and gene expression related to phosphorus absorption and utilization in soybean seedling roots were determined under short- and long-term phosphorus deficiency stress. The metabolome results showed that TCA and GS/GOGAT cycles were enhanced after 2 days of phosphorus deficiency stress; however, they were inhibited after 15 days. GC-TOF-MS showed that phosphorus deficiency increased the accumulation of amino acids significantly after 2 days, whereas organic acids and lipid substances increased significantly after 15 days. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that transcriptional levels of five key genes related to phosphorus activation and phosphorus starvation signal transduction increased continuously with phosphorus deficiency. The expression of GmPHT1 and GmSPX triggered the phosphorus starvation signal pathway and induced the expression of the GmPS and GmPAP genes to enhance the synthesis and secretion of organophosphorus hydrolase and organic acid in soybean roots under phosphorus deficiency. The phospholipid metabolism was enhanced significantly after 15 days of stress and when GmSQD, a crucial enzyme in lipid biosynthesis, was up-regulated. Thus, we propose that future investigations on stress caused by phosphorus deficiency should include more organs obtained at different developmental stages.
Collapse
Affiliation(s)
- Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun 130024, China
| | - Ji Zhou
- Land Consolidation and Rehabilitation Centre, The Ministry of Land and Resources, Beijing 100035, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Mao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoru Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng City 024000, InnerMongolia
| | - Rui Guo
- Corresponding author’s e-mail address:
| |
Collapse
|
3
|
Li H, Xu L, Li J, Lyu X, Li S, Wang C, Wang X, Ma C, Yan C. Multi-omics analysis of the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots. FRONTIERS IN PLANT SCIENCE 2022; 13:992036. [PMID: 36119614 PMCID: PMC9478169 DOI: 10.3389/fpls.2022.992036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The regulatory effects of uneven phosphorus supplies on phosphorus transport in soybean roots are still unclear. To further analyze the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots and the effects of uneven phosphorus application on the physiological mechanism of phosphorus transport in soybean roots, dual-root soybean plants were prepared via grafting, and a sand culture experiment was performed. From the unfolded cotyledon stage to the initial flowering stage, one side of each dual-root soybean system was irrigated with a low-phosphorus-concentration solution (phosphorus-application [P+] side), and the other side was irrigated with a phosphorus-free nutrient solution (phosphorus-free [P-] side); this setup allowed the study of the effects of different phosphorus supply levels on the expression of genes and proteins and the accumulation of metabolites in soybean roots on the P- side to clarify the method through which phosphorus transport is regulated in soybean roots and to provide a theoretical basis for improving the use rate of phosphorus fertilizer. The results revealed that the unilateral supply of low-concentration phosphorus promoted the uptake of phosphorus by soybean roots and the transport of phosphorus from the P+ side to the P- side. Compared with the normal concentration of phosphorus supply and the phosphorus-free supply, the low concentration phosphorus supply affected the regulation of the metabolic pathways involved in starch and sucrose metabolism, glycolysis, fructose, and mannose metabolism, etc., thereby affecting soybean root phosphorus transport. The low-phosphorus stress inhibited fructose synthesis and sucrose synthase synthesis in the soybean roots and the synthesis of hexokinase (HK) and fructose kinase, which catalyzes the conversion of fructose to fructose-6-phosphate. Low-phosphorus stress promoted the synthesis of sucrose invertase and the conversion of sucrose into maltose by the activity of starch synthase (StS) and stimulated the synthesis of UDPG pyrophosphorylase (UGP) and phosphoglucose isomerase (GP1), which is involved in the conversion of UDP-glucose to glucose-6-phosphate. The phosphorus transport pathway of soybean roots was then affected, which promoted phosphorus allocation to UTP and glucose-6-phosphate. Additionally, low-phosphorus stress hastened glycolysis in the soybean roots and inhibited the synthesis of malic acid, thereby promoting the transport of phosphorus in the roots. In addition, low-phosphorus stress inhibited the synthesis of fructose, mannose, and mannose-1-phosphate and the synthesis of other enzymes involved in phosphorus transport as well as invertase, thereby inhibiting the transport and synthesis of several organic phosphorus-containing compounds.
Collapse
Affiliation(s)
- Hongyu Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Letian Xu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jiaxin Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Sha Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chang Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xuelai Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Mo X, Liu G, Zhang Z, Lu X, Liang C, Tian J. Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis. Int J Mol Sci 2022; 23:4592. [PMID: 35562981 PMCID: PMC9105353 DOI: 10.3390/ijms23094592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| |
Collapse
|
5
|
Zhao H, Yang A, Kong L, Xie F, Wang H, Ao X. Proteome characterization of two contrasting soybean genotypes in response to different phosphorus treatments. AOB PLANTS 2021; 13:plab019. [PMID: 34150189 PMCID: PMC8209930 DOI: 10.1093/aobpla/plab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
Phosphorus (P) is an essential element for the growth and development of plants. Soybean (Glycine max) is an important food crop that is grown worldwide. Soybean yield is significantly affected by P deficiency in the soil. To investigate the molecular factors that determine the response and tolerance at low-P in soybean, we conducted a comparative proteomics study of a genotype with low-P tolerance (Liaodou 13, L13) and a genotype with low-P sensitivity (Tiefeng 3, T3) in a paper culture experiment with three P treatments, i.e. P-free (0 mmol·L-1), low-P (0.05 mmol·L-1) and normal-P (0.5 mmol·L-1). A total of 4126 proteins were identified in roots of the two genotypes. Increased numbers of differentially expressed proteins (DEPs) were obtained from low-P to P-free conditions compared to the normal-P treatment. All DEPs obtained in L13 (660) were upregulated in response to P deficiency, while most DEPs detected in T3 (133) were downregulated under P deficiency. Important metabolic pathways such as oxidative phosphorylation, glutathione metabolism and carbon metabolism were suppressed in T3, which could have affected the survival of the plants in P-limited soil. In contrast, L13 increased the metabolic activity in the 2-oxocarboxylic acid metabolism, carbon metabolism, glycolysis, biosynthesis of amino acids, pentose phosphatase, oxidative phosphorylation, other types of O-glycan biosynthesis and riboflavin metabolic pathways in order to maintain normal plant growth under P deficiency. Three key proteins I1KW20 (prohibitins), I1K3U8 (alpha-amylase inhibitors) and C6SZ93 (alpha-amylase inhibitors) were suggested as potential biomarkers for screening soybean genotypes with low-P tolerance. Overall, this study provides new insights into the response and tolerance to P deficiency in soybean.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Ahui Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Lingjian Kong
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Futi Xie
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiying Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Ma Z, Wang J, Li C, Ren P, Yao L, Li B, Meng Y, Ma X, Si E, Yang K, Shang X, Wang H. Global Profiling of Phosphorylation Reveals the Barley Roots Response to Phosphorus Starvation and Resupply. FRONTIERS IN PLANT SCIENCE 2021; 12:676432. [PMID: 34335649 PMCID: PMC8317692 DOI: 10.3389/fpls.2021.676432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/09/2021] [Indexed: 05/04/2023]
Abstract
Phosphorus (P) deficiency is a major threat to the crop production, and for understanding the response mechanism of plant roots, P stress may facilitate the development of crops with increased tolerance. Phosphorylation plays a critical role in the regulation of proteins for plant responses to biotic and abiotic stress; however, its functions in P starvation/resupply are largely unknown for barley (Hordeum vulgare) growth. Here, we performed a global review of phosphorylation in barley roots treated by P starvation/resupply. We identified 7,710 phosphorylation sites on 3,373 proteins, of which 76 types of conserved motifs were extracted from 10,428 phosphorylated peptides. Most phosphorylated proteins were located in the nucleus (36%) and chloroplast (32%). Compared with the control, 186 and 131 phosphorylated proteins under P starvation condition and 156 and 111 phosphorylated proteins under P resupply condition showed significant differences at 6 and 48 h, respectively. These proteins mainly participated in carbohydrate metabolism, phytohormones, signal transduction, cell wall stress, and oxidases stress. Moreover, the pathways of the ribosome, RNA binding, protein transport, and metal binding were significantly enriched under P starvation, and only two pathways of ribosome and RNA binding were greatly enriched under Pi resupply according to the protein-protein interaction analysis. The results suggested that the phosphorylation proteins might play important roles in the metabolic processes of barley roots in response to Pi deficiency/resupply. The data not only provide unique access to phosphorylation reprogramming of plant roots under deficiency/resupply but also demonstrate the close cooperation between these phosphorylation proteins and key metabolic functions.
Collapse
Affiliation(s)
- Zengke Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
7
|
Kim E, Hwang S, Lee I. SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res 2017; 45:D1082-D1089. [PMID: 27492285 PMCID: PMC5210602 DOI: 10.1093/nar/gkw704] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance.
Collapse
Affiliation(s)
- Eiru Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sohyun Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|