1
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
2
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Silva LOS, Moreira TR, Gonçales RA, Tomazett MV, Parente-Rocha JA, Mattos K, Paccez JD, Ruiz OH, Pereira M, Soares CMDA, Weber SS, Cruz-Leite VRM, Borges CL. Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages. Microorganisms 2022; 10:microorganisms10102011. [PMID: 36296287 PMCID: PMC9608497 DOI: 10.3390/microorganisms10102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to acquire nitrogen from alternative sources when preferential sources are absent. Formamidase has been related to nitrogen depletion in Aspergillus nidulans through formamide degradation to use the released ammonia as a nitrogen source. In Paracoccidioides spp., formamidase is highly expressed in transcriptomic and proteomic analyses. Here, we aim to investigate the importance of formamidase to Paracoccidioides lutzii. Thereby, we developed a P. lutzii silenced strain of fmd gene (AsFmd) by antisense RNA technology using Agrobacterium tumefaciens-mediated transformation (ATMT). The AsFmd strain led to increased urease expression, an enzyme related to nitrogen assimilation in other fungi, suggesting that P. lutzii might explore urease as an alternative route for ammonia metabolism as a nitrogen source. Moreover, formamidase was important for fungal survival inside macrophages, as fungal recovery after macrophage infection was lower in AsFmd compared to wild-type (WT) strain. Our findings suggest potential alternatives of nitrogen acquisition regulation in P. lutzii, evidencing formamidase influence in fungal virulence.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Thalison Rodrigues Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4700-000 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4800-000 Braga, Portugal
| | - Mariana Vieira Tomazett
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Karine Mattos
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juliano Domiraci Paccez
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| |
Collapse
|
4
|
Saucedo-Campa DO, Martínez-Rocha AL, Ríos-Castro E, Alba-Fierro CA, Escobedo-Bretado MA, Cuéllar-Cruz M, Ruiz-Baca E. Proteomic Analysis of Sporothrix schenckii Exposed to Oxidative Stress Induced by Hydrogen Peroxide. Pathogens 2022; 11:pathogens11020230. [PMID: 35215174 PMCID: PMC8880468 DOI: 10.3390/pathogens11020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sporothrix schenckii modulates the expression of its cell wall proteins (CWPs) in response to reactive oxygen species (ROS) generated by the phagocytic cells of the human host, which allows it to evade and escape the immune system. In this study, we performed a comparative proteomic analysis of the CW of S. schenckii after exposure and nonexposure to H2O2. Several CWPs involved in CW remodeling and fungal pathogenesis that modulated their expression in response to this oxidizing agent were identified, as were a number of antioxidant enzymes and atypical CWPs, called moonlighting proteins, such as the Hsp70-5, lipase 1 (Lip1), enolase (Eno), and pyruvate kinase (Pk). Moreover, RT-qPCR assays demonstrated that the transcription of genes HSP70-5, LIP1, ENO, and PK is regulated in response to the oxidant. The results indicated that S. schenckii differentially expressed CWPs to confer protection against ROS upon this fungus. Furthermore, among these proteins, antioxidant enzymes and interestingly, moonlighting-like CWPs play a role in protecting the fungus from oxidative stress (OS), allowing it to infect human host cells.
Collapse
Affiliation(s)
- Dulce O. Saucedo-Campa
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Ana L. Martínez-Rocha
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Emmanuel Ríos-Castro
- Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Ciudad de Mexico 07360, Mexico;
| | - Carlos A. Alba-Fierro
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Miguel A. Escobedo-Bretado
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
- Correspondence:
| |
Collapse
|
5
|
Gonçales RA, Salamanca AL, Júnior LR, E Silva KS, de Vasconcelos EJ, Dos Reis TF, Castro RC, C Ruy PD, Romagnoli B, Ruiz J, Pereira M, de A Soares CM, Coelho PS. In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp. Future Microbiol 2021; 16:589-606. [PMID: 33998266 DOI: 10.2217/fmb-2020-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.
Collapse
Affiliation(s)
- Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ayda Lm Salamanca
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Luiz Rb Júnior
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Kleber Sf E Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Elton Jr de Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Ricardo C Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Patrícia de C Ruy
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Bárbara Romagnoli
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Jerônimo Ruiz
- Fundação Oswaldo Cruz, Instituto Rene Rachaou (IRR), Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Célia M de A Soares
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Paulo Sr Coelho
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
6
|
Silva LBR, Taira CL, Cleare LG, Martins M, Junqueira M, Nosanchuk JD, Taborda CP. Identification of Potentially Therapeutic Immunogenic Peptides From Paracoccidioides lutzii Species. Front Immunol 2021; 12:670992. [PMID: 34046037 PMCID: PMC8144467 DOI: 10.3389/fimmu.2021.670992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.
Collapse
Affiliation(s)
- Leandro B R Silva
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Cleison L Taira
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Levi G Cleare
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Michele Martins
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos P Taborda
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratorio de Micologia Medica (LIM53), Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. J Fungi (Basel) 2021; 7:jof7010021. [PMID: 33401497 PMCID: PMC7823998 DOI: 10.3390/jof7010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.
Collapse
|
8
|
Prediction of Conserved Peptides of Paracoccidioides for Interferon-γ Release Assay: The First Step in the Development of a Lab-Based Approach for Immunological Assessment during Antifungal Therapy. J Fungi (Basel) 2020; 6:jof6040379. [PMID: 33352628 PMCID: PMC7766394 DOI: 10.3390/jof6040379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired antigen-specific cell-mediated immunity (CMI) is a primary immunological disturbance observed in individuals that develop paracoccidioidomycosis (PCM) after exposure to Paracoccidioides spp. Restoration of Paracoccidioides-specific CMI is crucial to stop the antifungal treatment and avoid relapses. A convenient and specific laboratory tool to assess antigen specific CMI is required for the appropriate clinical treatment of fungal infections, in order to decrease the time of antifungal therapy. We used an interferon-γ release assay strategy, used in the diagnosis of latent tuberculosis infection, to address our aims in this study. Information on proteins secreted by two well-studied representative strains-Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb-01)-were explored using PubMed or MEDLINE. From 26 publications, 252 proteins were identified, of which 203 were similar according to the Basic Local Alignment Search Tool. This enabled a selection of conserved peptides using the MEGA software. The SignalP-5.0, TMHMM, IEDB, NetMHC II, and IFNepitope algorithms were used to identify appropriate epitopes. In our study, we predicted antigenic epitopes of Paracoccidioides that could bind to MHC class II and induce IFN-γ secretion. These T cell epitopes can be used in the development of a laboratory tool to monitor the CMI of patients with PCM.
Collapse
|
9
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
10
|
Li L, Liu W, Liang T, Ma F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process. BIORESOURCE TECHNOLOGY 2020; 315:123854. [PMID: 32739749 DOI: 10.1016/j.biortech.2020.123854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The formation process of the algae-bacteria symbiotic system (ABSS) was analyzed, and the formation adsorption conditions were optimized. The role of extracellular polymeric substances (EPS), specific surface area and zeta potential in adsorption mechanisms were assessed and proposed. The results showed the dry weight of the ABSS and adsorption efficiency of microalgae reached the highest under the conditions of 25 °C, pH 6.0, 160 rpm and CaCl2 2.0 mg/mL. The process of the ABSS formation could be mainly divided into the fast stage and slow stage. The roles of EPS, specific surface area and zeta potential accounted for 84.22%, 5.17% and 10.61% of the adsorption capacity, respectively. EPS dominated the formation of the ABSS. The results indicated that mycelial pellets were biosorption materials and had the characteristics of chemical materials.
Collapse
Affiliation(s)
- Lixin Li
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, People's Republic of China; State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Wanmeng Liu
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, People's Republic of China; State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Taojie Liang
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, People's Republic of China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150080, People's Republic of China.
| |
Collapse
|
11
|
Elias Moreira AL, Milhomem Cruz-Leite VR, O'Hara Souza Silva L, Alves Parente AF, Bailão AM, Maria de Almeida Soares C, Parente-Rocha JA, Ruiz OH, Borges CL. Proteome characterization of Paracoccidioides lutzii conidia by using nanoUPLC-MS E. Fungal Biol 2020; 124:766-780. [PMID: 32883428 DOI: 10.1016/j.funbio.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022]
Abstract
Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.
Collapse
Affiliation(s)
- André Luís Elias Moreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Orville Hernandez Ruiz
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; Grupo de Investigación MICROBA, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
12
|
Copper overload in Paracoccidioides lutzii results in the accumulation of ergosterol and melanin. Microbiol Res 2020; 239:126524. [PMID: 32570056 DOI: 10.1016/j.micres.2020.126524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Paracoccidioidomycosis is a highly prevalent systemic mycosis in Latin America, caused by fungi of the genus Paracoccidioides. Copper is essential for eukaryotes and bacteria. This micronutrient is used in many vital biochemical processes, although metal excess levels can be toxic for organisms. Pathways underlying copper overload are poorly understood in members of the Paracoccidioides complex. The responses of Paracoccidioides lutzii yeast cells to copper overload were here evaluated. The results showed that under copper overload, cells presented a dark brown pigment, identified as melanin. Proteomic analyses identified mainly the accumulation of proteins related to amino acids metabolism, ergosterol synthesis and melanin production, suggesting that P. lutzii responds to copper overload by changing aspects of its metabolism and also plasma membrane and cell wall remodeling. Proteomic data were confirmed by biochemical analysis.
Collapse
|
13
|
Proteomic analysis of Sporothrix schenckii cell wall reveals proteins involved in oxidative stress response induced by menadione. Microb Pathog 2020; 141:103987. [PMID: 31962184 DOI: 10.1016/j.micpath.2020.103987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Sporotrichosis is an emergent subcutaneous mycosis that is a threat to both humans and other animals. Sporotrichosis is acquired by the traumatic implantation of species of the Sporothrix genus. Added to the detoxification systems, pathogenic fungi possess different mechanisms that allow them to survive within the phagocytic cells of their human host during the oxidative burst. These mechanisms greatly depend from the cell wall (CW) since phagocytic cells recognize pathogens through specific receptors associated to the structure. To date, there are no studies addressing the modulation of the expression of S. schenckii CW proteins (CWP) in response to reactive oxygen species (ROS). Therefore, in this work, a proteomic analysis of the CW of S. schenckii in response to the oxidative agent menadione (O2•-) was performed. Proteins that modulate their expression were identified which can be related to the fungal survival mechanisms within the phagocyte. Among the up-regulated CWP in response to the oxidative agent, 13 proteins that could be involved in the mechanisms of oxidative stress response in S. schenckii were identified. The proteins identified were thioredoxin1 (Trx1), superoxide dismutase (Sod), GPI-anchored cell wall protein, β-1,3-endoglucanase EglC, glycoside hydrolase (Gh), chitinase, CFEM domain protein, glycosidase crf1, covalently-linked cell wall protein (Ccw), 30 kDa heat shock protein (Hsp30), lipase, trehalase (Treh), fructose-bisphosphate aldolase (Fba1) and citrate synthase (Cs). The identification of CWP that modulates their expression in response to superoxide ion (O2•-) in S. schenckii is a useful approach to understand how the fungus defends itself against ROS, in order to evade the phagocytic cells from the host and cause the infection.
Collapse
|
14
|
Burgos-Canul YY, Canto-Canché B, Berezovski MV, Mironov G, Loyola-Vargas VM, Barba de Rosa AP, Tzec-Simá M, Brito-Argáez L, Carrillo-Pech M, Grijalva-Arango R, Muñoz-Pérez G, Islas-Flores I. The cell wall proteome from two strains of Pseudocercospora fijiensis with differences in virulence. World J Microbiol Biotechnol 2019; 35:105. [PMID: 31267317 DOI: 10.1007/s11274-019-2681-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
Abstract
Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.
Collapse
Affiliation(s)
- Yamily Y Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Gleb Mironov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ana Paulina Barba de Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Mildred Carrillo-Pech
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Gilberto Muñoz-Pérez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
15
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
16
|
Araújo DS, Pereira M, Portis IG, dos Santos Junior ADCM, Fontes W, de Sousa MV, Assunção LDP, Baeza LC, Bailão AM, Ricart CAO, Brock M, Soares CMDA. Metabolic Peculiarities of Paracoccidioides brasiliensis Dimorphism as Demonstrated by iTRAQ Labeling Proteomics. Front Microbiol 2019; 10:555. [PMID: 30949151 PMCID: PMC6436475 DOI: 10.3389/fmicb.2019.00555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/04/2019] [Indexed: 01/29/2023] Open
Abstract
Paracoccidioidomycosis (PCM), a systemic mycosis with a high incidence in Latin America, is caused by thermodimorphic fungi of the Paracoccidioides genus. The contact with host occurs by the inhalation of conidia or mycelial propagules which once reaching the pulmonary alveoli differentiate into yeast cells. This transition process is vital in the pathogenesis of PCM allowing the fungus survival in the host. Thus, the present work performed a comparative proteome analysis of mycelia, mycelia-to-yeast transition, and yeast cells of Paracoccidioides brasiliensis. For that, tryptic peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data analysis, which allowed the identification of 312 proteins differentially expressed in different morphological stages. Data showed that P. brasiliensis yeast cells preferentially employ aerobic beta-oxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP production, in comparison to mycelia and the transition from mycelia-to-yeast cells. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins allowing adaptation to environmental conditions during the increase of the temperature. In opposite of that, the alcoholic fermentation found to P. lutzii, at least under laboratory conditions, is strongly favored in mycelium compared to yeast cells. Thereby, the data strongly support substantial metabolic differences among members of the Paracoccidioides complex, when comparing the saprobiotic mycelia and the yeast parasitic phases.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Faculdade Unida de Campinas, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Mello Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
17
|
de Curcio JS, Paccez JD, Novaes E, Brock M, Soares CMDA. Cell Wall Synthesis, Development of Hyphae and Metabolic Pathways Are Processes Potentially Regulated by MicroRNAs Produced Between the Morphological Stages of Paracoccidioides brasiliensis. Front Microbiol 2018; 9:3057. [PMID: 30619144 PMCID: PMC6297277 DOI: 10.3389/fmicb.2018.03057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs are molecules involved in post-transcriptional gene regulation. In pathogenic fungi, microRNAs have been described at different morphological stages by regulating targets involved in processes such as morphogenesis and energy production. Members of the Paracoccidioides complex are the main etiological agents of a systemic mycosis in Latin America. Fungi of the Paracoccidioides complex present a wide range of plasticity to colonize different niches. In response to environmental changes these fungi undergo a morphological switch, remodel their cellular metabolism and modulate structural cell wall components. However, the underlying mechanisms regulating the gene expression is not well understood. By using high performance sequencing and bioinformatics analyses, this work characterizes microRNAs produced by Paracoccidioides brasiliensis. Here, we demonstrated that the transcript encoding proteins involved in microRNA biogenesis were differentially expressed in each morphological stage. In addition, 49 microRNAs were identified in cDNA libraries with 44 differentially regulated among the libraries. Sixteen microRNAs were differentially regulated in comparison to the mycelium in the mycelium-to-yeast transition phase. The yeast parasitic phase revealed a complete remodeling of the expression of these small RNAs. Analyses of targets of the induced microRNAs, from the different libraries, revealed that these molecules may potentially regulate in the cell wall, by repressing genes involved in the synthesis and degradation of glucans and chitin. Furthermore, mRNAs involved in cellular metabolism and development were predicted to be regulated by microRNAs. Therefore, this work describes a putative post transcriptional regulation, mediated by microRNAs in P. brasiliensis and its influence on the adaptive processes of thermal dimorphic fungus.
Collapse
Affiliation(s)
- Juliana S. de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano D. Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Mathias Brock
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
18
|
Parente-Rocha JA, Tomazett MV, Pigosso LL, Bailão AM, Ferreira de Souza A, Paccez JD, Baeza LC, Pereira M, Silva Bailão MG, Borges CL, Maria de Almeida Soares C. In vitro, ex vivo and in vivo models: A comparative analysis of Paracoccidioides spp. proteomic studies. Fungal Biol 2017; 122:505-513. [PMID: 29801795 DOI: 10.1016/j.funbio.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 01/12/2023]
Abstract
Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.
Collapse
Affiliation(s)
- Juliana Alves Parente-Rocha
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Mariana Vieira Tomazett
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Laurine Lacerda Pigosso
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Alexandre Melo Bailão
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Aparecido Ferreira de Souza
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Lilian Cristiane Baeza
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Maristela Pereira
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Mirelle Garcia Silva Bailão
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil; Unidade Acadêmica Especial Ciências da Saúde, Universidade Federal de Goiás, Jataí, Goiás, Brazil.
| | - Clayton Luiz Borges
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| |
Collapse
|