1
|
Mattsson HK, de Freitas MAM, de Azevedo GPR, Salazar V, Vieira VV, Tschoeke DA, Thompson CC, Thompson FL. Pseudoalteromonas simplex sp. nov. Isolated from the Skin of Bandtail Puffer Fish (Sphoeroides spengleri). Curr Microbiol 2024; 81:384. [PMID: 39354231 DOI: 10.1007/s00284-024-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
A novel bacterial isolate A520T (A520T = CBAS 737T = CAIM 1944T) was obtained from the skin of bandtail puffer fish Sphoeroides spengleri (Tetraodontidae Family), collected in Arraial do Cabo (Rio de Janeiro, Brazil). A520T is Gram-stain-negative, flagellated and aerobic bacteria. Optimum growth occurs at 25-30 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.5 Mb (4082 coding genes and G+C content of 41.1%). The closest phylogenetic neighbor was Pseudoalteromonas shioyasakiensis JCM 18891T (97.9% 16S rRNA sequence similarity, 94.8% Average Amino Acid Identity, 93% Average Nucleotide Identity and 51.8% similarity in Genome-to-Genome-Distance). Several in silico phenotypic features are useful to differentiate A520T from its closest phylogenetic neighbors, including trehalose, D-mannose, cellobiose, pyrrolidonyl-beta-naphthylamide, starch hydrolysis, D-xylose, lactose, tartrate utilization, sucrose, citrate, glycerol, mucate and acetate utilization, malonate, glucose oxidizer, gas from glucose, nitrite to gas, L-rhamnose, ornithine decarboxylase, lysine decarboxylase and yellow pigment. The genome of the novel species contains 3 gene clusters (~ 66.81 Kbp in total) coding for different types of bioactive compounds that could indicate ecological roles pertaining to the bandtail puffer fish host. Based on genome-based taxonomic approach, strain A520T (A520T = CBAS 737T = CAIM 1944T) is proposed as a new species, Pseudoalteromonas simplex sp. nov.
Collapse
Affiliation(s)
- Hannah K Mattsson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Vinicius Salazar
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica V Vieira
- Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Lu Y, Lu F, Zhang J, Tang Q, Yang D, Liu Y. Understanding the sources, function, and irreplaceable role of cobamides in organohalide-respiring bacteria. Front Microbiol 2024; 15:1435674. [PMID: 39139376 PMCID: PMC11321594 DOI: 10.3389/fmicb.2024.1435674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Halogenated organic compounds are persistent pollutants that pose a serious threat to human health and the safety of ecosystems. Cobamides are essential cofactors for reductive dehalogenases (RDase) in organohalide-respiring bacteria (OHRB), which catalyze the dehalogenation process. This review systematically summarizes the impact of cobamides on organohalide respiration. The catalytic processes of cobamide in dehalogenation processes are also discussed. Additionally, we examine OHRB, which cannot synthesize cobamide and must obtain it from the environment through a salvage pathway; the co-culture with cobamide producer is more beneficial and possible. This review aims to help readers better understand the importance and function of cobamides in reductive dehalogenation. The presented information can aid in the development of bioremediation strategies.
Collapse
Affiliation(s)
- Yongfeng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fancheng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jian Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qianwei Tang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Dan Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Guangxi Yuhuacheng Environmental Protection Technology Co., Nanning, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Kumar R, Singh U, Tiwari A, Tiwari P, Sahu JK, Sharma S. Vitamin B12: Strategies for enhanced production, fortified functional food products and health benefits. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
de Azevedo GPR, Mattsson HK, Tonon LAC, Arruda T, Salazar V, Bielinski V, Chagas F, Tschoeke DA, Thompson CC, Thompson FL. Vibrio fluminensis sp. nov. isolated from the skin of Southern Atlantic sharpnose-pufferfish (Canthigaster figueiredoi). Arch Microbiol 2022; 204:664. [DOI: 10.1007/s00203-022-03266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
|
5
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
6
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Heterologous expression of cobalamin dependent class-III enzymes. Protein Expr Purif 2021; 177:105743. [PMID: 32871253 PMCID: PMC7585037 DOI: 10.1016/j.pep.2020.105743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
The family of cobalamin class-III dependent enzymes is composed of the reductive dehalogenases (RDases) and related epoxyqueuosine reductases. RDases are crucial for the energy conserving process of organohalide respiration. These enzymes have the ability to reductively cleave carbon-halogen bonds, present in a number of environmentally hazardous pollutants, making them of significant interest for bioremediation applications. Unfortunately, it is difficult to obtain sufficient yields of pure RDase isolated from organohalide respiring bacteria for biochemical studies. Hence, robust heterologous expression systems are required that yield the active holo-enzyme which requires both iron-sulphur cluster and cobalamin incorporation. We present a comparative study of the heterologous expression strains Bacillus megaterium, Escherichia coli HMS174(DE3), Shimwellia blattae and a commercial strain of Vibrio natrigenes, for cobalamin class-III dependent enzymes expression. The Nitratireductor pacificus pht-3B reductive dehalogenase (NpRdhA) and the epoxyqueuosine reductase from Streptococcus thermophilus (StoQ) were used as model enzymes. We also analysed whether co-expression of the cobalamin transporter BtuB, supports increased cobalamin incorporation into these enzymes in E. coli. We conclude that while expression in Bacillus megaterium resulted in the highest levels of cofactor incorporation, co-expression of BtuB in E. coli presents an appropriate balance between cofactor incorporation and protein yield in both cases.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
7
|
Azevedo GPR, Mattsson HK, Lopes GR, Vidal L, Campeão M, Tonon LAC, Garcia GD, Tschoeke DA, Silva BS, Otsuki K, Gomez-Gil B, Swings J, Thompson FL, Thompson CC. Vibrio tetraodonis sp. nov.: genomic insights on the secondary metabolites repertoire. Arch Microbiol 2020; 203:399-404. [PMID: 32844278 DOI: 10.1007/s00203-020-02019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022]
Abstract
Description of a Gram-negative, motile, circular-shaped bacterial strain, designated A511T obtained from the skin of the pufferfish Sphoeroides spengleri (Family Tetraodontidae), collected in Arraial do Cabo, Brazil. Optimum growth occurs at 20-28 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.36 Mb, 3,976 coding genes and G + C content of 42.5%. Genomic taxonomy analyses based on average amino acid (AAI), genome-to-genome-distance (GGDH) and phylogenetic reconstruction placed A511T (= CBAS 712T = CAIM 1939T) into a new species of the genus Vibrio (Vibrio tetraodonis sp. nov.). The genome of the novel species contains eight genes clusters (~ 183.9 Kbp in total) coding for different types of bioactive compounds that hint to several possible ecological roles in the pufferfish host.
Collapse
Affiliation(s)
- Gustavo P R Azevedo
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
| | - Hannah K Mattsson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Grasiele R Lopes
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Livia Vidal
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Mariana Campeão
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Luciane A Chimetto Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Gizele D Garcia
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
- Institute of Microbiology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Diogo A Tschoeke
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Bruno S Silva
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Koko Otsuki
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Bruno Gomez-Gil
- CIAD, AC. Mazatlan Unit for Aquaculture, AP 711, 82000, Mazatlan, Sinaloa, Mexico
| | - Jean Swings
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Fabiano L Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Cristiane C Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro, Avenida Carlos Chagas Fo, s/n, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
| |
Collapse
|
8
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|