1
|
Mistry H, Richardson CD, Higginbottom A, Ashford B, Ahamed SU, Moore Z, Matthews FE, Brayne C, Simpson JE, Wharton SB. Relationships of brain cholesterol and cholesterol biosynthetic enzymes to Alzheimer's pathology and dementia in the CFAS population-derived neuropathology cohort. Neurosci Res 2024; 204:22-33. [PMID: 38278219 PMCID: PMC11192635 DOI: 10.1016/j.neures.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Altered cholesterol metabolism is implicated in brain ageing and Alzheimer's disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer's disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status.
Collapse
Affiliation(s)
- Hemant Mistry
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | | | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Bridget Ashford
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Saif U Ahamed
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Zoe Moore
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | | | - Carol Brayne
- Cambridge Public Health, University of Cambridge, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK.
| |
Collapse
|
2
|
Bai X, Wang S, Shu L, Cao Q, Hu H, Zhu Y, Chen C. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-ⅡA signaling in macrophages in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118006. [PMID: 38442806 DOI: 10.1016/j.jep.2024.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 μg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1β (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.
Collapse
Affiliation(s)
- Xufeng Bai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shuwen Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Limei Shu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qingyu Cao
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China
| | - Huiming Hu
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi, 330052, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Yanchen Zhu
- College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
3
|
Bartolomei M, Li J, Capriotti AL, Fanzaga M, d’Adduzio L, Laganà A, Cerrato A, Mulinacci N, Cecchi L, Bollati C, Lammi C. Olive ( Olea europaea L.) Seed as New Source of Cholesterol-Lowering Bioactive Peptides: Elucidation of Their Mechanism of Action in HepG2 Cells and Their Trans-Epithelial Transport in Differentiated Caco-2 Cells. Nutrients 2024; 16:371. [PMID: 38337656 PMCID: PMC10857614 DOI: 10.3390/nu16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The production of olive oil has important economic repercussions in Mediterranean countries but also a considerable impact on the environment. This production generates enormous quantities of waste and by-products, which can be exploited as new raw materials to obtain innovative ingredients and therefore make the olive production more sustainable. In a previous study, we decided to foster olive seeds by generating two protein hydrolysates using food-grade enzymes, alcalase (AH) and papain (PH). These hydrolysates have shown, both in vitro and at the cellular level, antioxidant and antidiabetic activities, being able to inhibit the activity of the DPP-IV enzyme and modulate the secretion of GLP-1. Given the multifunctional behavior of peptides, both hydrolysates displayed dual hypocholesterolemic activity, inhibiting the activity of HMGCoAR and impairing the PPI of PCSK9/LDLR, with an IC50 equal to 0.61 mg/mL and 0.31 mg/mL for AH and PH, respectively. Furthermore, both samples restored LDLR protein levels on the membrane of human hepatic HepG2 cells, increasing the uptake of LDL from the extracellular environment. Since intestinal bioavailability is a key component of bioactive peptides, the second objective of this work is to evaluate the capacity of AH and PH peptides to be transported by differentiated human intestinal Caco-2 cells. The peptides transported by intestinal cells have been analyzed using mass spectrometry analysis, identifying a mixture of stable peptides that may represent new ingredients with multifunctional qualities for the development of nutraceuticals and functional foods to delay the onset of metabolic syndrome, promoting the principles of environmental sustainability.
Collapse
Affiliation(s)
- Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Lorenza d’Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy;
| | - Lorenzo Cecchi
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 50144 Florence, Italy;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| |
Collapse
|
4
|
Guo J, Wang Y, Li P, Wu W, Xu F, Zhou K, Xu B. The modulatory effects on enterohepatic cholesterol metabolism of novel cholesterol-lowering peptides from gastrointestinal digestion of Xuanwei ham. Food Res Int 2023; 173:113391. [PMID: 37803728 DOI: 10.1016/j.foodres.2023.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The aim of this study was to investigate the effects and mechanism of in vitro protein digestive products of Xuanwei ham with different ripening periods on cholesterol metabolism and hypercholesterolemia. The results showed that compared with other gastrointestinal digestion (GID) groups, the GID group of Xuanwei ham with 3-year ripening period (XWH3-GID) inhibited the expression of Niemann-Pick C1-like 1 (NPC1L1) and acetyl-CoA acetyltransferase 2 (ACAT2) through hepatocyte nuclear factor 1-alpha (HNF-1α), which in turn effectively inhibited cholesterol absorption in Caco-2 cell monolayers. Following absorption by Caco-2 cell monolayers, the XWH3-GID group suppressed the expression and secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) via HNF-1α, which enhanced the protein expression and fluorescence intensity of low density lipoprotein receptor (LDLR) on the HepG2 cell membrane, and thus promoted the uptake of low density lipoprotein (LDL). Importantly, three novel peptides (LFP, PKF and VPFP) derived from titin were identified after intestinal epithelial transport in the XWH3-GID group, which could exert cholesterol-lowering effects through inhibiting intestinal cholesterol absorption and promoting peripheral hepatic LDL uptake, and effectively ameliorate western diet-induced hypercholesterolemia in ApoE-/- mice. These results suggest that Xuanwei ham with 3-year ripening period can be used as a source of cholesterol-lowering peptides and has potential to intervene in hypercholesterolemia.
Collapse
Affiliation(s)
- Jie Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
5
|
Bao C, Wu T, Zhu S, Wang X, Zhang Y, Wang X, Yang L, He C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin Sci (Lond) 2023; 137:1131-1143. [PMID: 37553962 DOI: 10.1042/cs20220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
Osteoporosis is a metabolic bone disease that affects hundreds of millions of people worldwide and is characterized by excessive loss of bone protein and mineral content. The incidence and mortality of osteoporosis increase with age, creating a significant medical and economic burden globally. The importance of cholesterol levels has been reported in the development of diseases including osteoporosis. It is important to note that key enzymes and molecules involved in cholesterol homeostasis are closely related to bone formation. Excessive cholesterol may cause osteoporosis, cholesterol and its metabolites affect bone homeostasis by regulating the proliferation and stimulation of osteoblasts and osteoclasts. Therefore, antagonism of elevated cholesterol levels may be a potential strategy to prevent osteoporosis. There is sufficient evidence to support the use of bisphosphonates and statin drugs for osteoporosis in the clinic. Therefore, in view of the aggravation of the aging problem, we summarize the intracellular mechanism of cholesterol homeostasis and its relationship with osteoporosis (including cholesterol and cholesterol oxidation products (COPs) in osteoporosis). Furthermore, the current clinical cholesterol-lowering drugs for osteoporosis were also summarized, as are new and promising therapies (cell-based therapies (e.g., stem cells) and biomaterial-delivered target drug therapies for osteoporosis as well).
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
6
|
Yuan X, Bao X, Liu X, Li X. Flaxseed-derived peptides ameliorate hepatic cholesterol metabolism in Sprague-Dawley rats fed a high-cholesterol and high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5348-5357. [PMID: 35318649 DOI: 10.1002/jsfa.11888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant peptides have been reported to have cholesterol-lowering activities. Previous research has found that ≤1 kDa flaxseed peptide (FP5 ) reduces cholesterol absorption and synthesis in vitro. In this research, we investigated the cholesterol-lowering activity of FP5 in Sprague-Dawley (SD) rats fed a high-cholesterol and high-fat diet. In addition, amino acid sequences of FP5 were determined by high-performance liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. RESULTS FP5 supplement significantly decreased the serum and hepatic cholesterol levels and modulated the hepatic gene and protein expression of cholesterol metabolism-related enzymes or regulators (3-hydroxy-3-methylglutaryl coenzyme A reductase, Low-Density Lipoprotein Receptor (LDLR), Cholesterol 7 α-hydroxylase, Niemann-Pick C1-like 1, ATP-binding cassette transporters G5 and G8). Eleven peptides were identified from FP5 . These peptides were characterized as hydrophobic amino acids such as leucine (L), proline (P), glycine (G), isoleucine (I) and continuous sequences, including LP, LL, LG and II, with low molecular weights. CONCLUSION FP5 has a certain cholesterol-lowering activity in SD rats fed a high-cholesterol and high-fat diet. The possible mechanism for ameliorating hepatic cholesterol metabolism of FP5 includes inhibiting hepatic cholesterol de novo synthesis, promoting the synthesis and excretion of bile acids, and inhibiting the reabsorption of bile acids during enterohepatic circulation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyu Yuan
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xiaojing Liu
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xuexin Li
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
7
|
Silva M, Philadelpho B, Santos J, Souza V, Souza C, Santiago V, Silva J, Souza C, Azeredo F, Castilho M, Cilli E, Ferreira E. IAF, QGF, and QDF Peptides Exhibit Cholesterol-Lowering Activity through a Statin-like HMG-CoA Reductase Regulation Mechanism: In Silico and In Vitro Approach. Int J Mol Sci 2021; 22:ijms222011067. [PMID: 34681729 PMCID: PMC8538380 DOI: 10.3390/ijms222011067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, in silico approaches are employed to investigate the binding mechanism of peptides derived from cowpea β-vignin and HMG-CoA reductase. With the obtained information, we designed synthetic peptides to evaluate their in vitro enzyme inhibitory activity. In vitro, the total protein extract and <3 kDa fraction, at 5000 µg, support this hypothesis (95% and 90% inhibition of HMG-CoA reductase, respectively). Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides were predicted to bind to the substrate binding site of HMGCR via HMG-CoAR. In silico, it was established that the mechanism of HMG-CoA reductase inhibition largely entailed mimicking the interactions of the decalin ring of simvastatin and via H-bonding; in vitro studies corroborated the predictions, whereby the HMG-CoA reductase activity was decreased by 69%, 77%, and 78%, respectively. Our results suggest that Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides derived from cowpea β-vignin have the potential to lower cholesterol synthesis through a statin-like regulation mechanism.
Collapse
Affiliation(s)
- Mariana Silva
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Biane Philadelpho
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Johnnie Santos
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Victória Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Caio Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Victória Santiago
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Jaff Silva
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Carolina Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Francine Azeredo
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Marcelo Castilho
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Eduardo Cilli
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
- Correspondence: (E.C.); (E.F.); Tel.: +55-16-993-487-096 (E.C.); +55-71-992-313-184 (E.F.)
| | - Ederlan Ferreira
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Correspondence: (E.C.); (E.F.); Tel.: +55-16-993-487-096 (E.C.); +55-71-992-313-184 (E.F.)
| |
Collapse
|
8
|
Hypocholesterolemic Effect of Potent Peptide and Bioactive Fraction from Pigeon Pea By-Products in Wistar Rats. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10261-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kumar V, Tiku PK. A Cholesterol Homeostasis by Bioactive Peptide Fraction from Pigeon Pea By-Product: An In-Vitro Study. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Martínez-Sánchez SM, Gabaldón-Hernández JA, Montoro-García S. Unravelling the molecular mechanisms associated with the role of food-derived bioactive peptides in promoting cardiovascular health. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Meng Y, Zong L. Estrogen stimulates SREBP2 expression in hepatic cell lines via an estrogen response element in the SREBP2 promoter. Cell Mol Biol Lett 2019; 24:65. [PMID: 31827541 PMCID: PMC6892134 DOI: 10.1186/s11658-019-0194-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Hypoestrogenism in women is strongly associated with menopause and it can lead to lipid disorder, which predisposes people to premature cardiovascular disease. However, the mechanism of lipid disorder remains unclear. Sterol regulatory element-binding protein 2 (SREBP2) is the key transcription factor regulating cholesterol metabolism. We hypothesize that estrogen regulates SREBP2 transcription through an estrogen response element (ERE) in the SREBP2 promoter region. Methods Human hepatoblastoma cells (HepG2) were treated with dose-dependent concentrations of estradiol (E2) for 24 h. Then, SREBP2 expression was determined via real-time PCR and immunofluorescence. The expressions of the SREBP2 downstream target genes HMGCR and LDLR were determined via real-time PCR. Lipid secretion in the culture media of HepG2 cells was measured using ELISA. Through bioinformatics analysis, we identified high-scoring ERE-like sequences in the SREBP2 gene promoter. Chromatin immunoprecipitation analysis was used to confirm the ERE. DNA fragments of the putative or mutated ERE-like sequence were synthesized and ligated into pGL3-basic plasmid to construct the SREBP2 promoter luciferase reporter systems. SREBP2-Luciferase (SREBP2-Luc), SREBP2-Mutation (SREBP2-Mut) and the blank control were transfected into hepatic cell lines. Luciferase activities were measured using the dual-luciferase reporter assay system. Chromatin immunoprecipitation analysis and the luciferase reporter assay were repeated in human hepatoma cells (HuH-7). Results We found that E2 dose-dependently increased the expression of SREBP2 in HepG2 cells and that the increased levels were blocked when treated with an estrogen receptor-alpha antagonist. Additionally, E2 increased both HMGCR and LDLR expression and lipid secretion in HepG2 cells. Notably, we identified a functional ERE in the SREBP2 gene promoter, to which E2 could specifically bind and induce transcription. Conclusions An ERE was identified in the SREBP2 gene promoter. It mediates the regulation of SREBP2 expression by estrogen in hepatocytes. This study provides a mechanism to link cardiovascular disease with estrogen.
Collapse
Affiliation(s)
- Ye Meng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 People's Republic of China
| | - Lu Zong
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 People's Republic of China
| |
Collapse
|