1
|
Pariary R, Shome G, Kalita S, Kalita S, Roy A, Harikishore A, Jana K, Senapati D, Mandal B, Mandal AK, Bhunia A. Peptide-Based Strategies: Combating Alzheimer's Amyloid β Aggregation through Ergonomic Design and Fibril Disruption. Biochemistry 2024; 63:2397-2413. [PMID: 39255071 DOI: 10.1021/acs.biochem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Amyloidosis of amyloid-β (Aβ) triggers a cascade of events, leading to oxidative damage and neuronal death. Therefore, inhibiting Aβ amyloidosis or disrupting the matured fibrils is the primary target to combat progressive Alzheimer's disease (AD) pathogenesis. Here, we undertake optimization strategies to improve the antiamyloid efficiency of our previously reported NF11 (NAVRWSLMRPF) peptide. Among the series of peptides tested, nontoxic and serum-stable peptide 1 or P1 containing an anthranilic acid residue shows immense potential in not only inhibiting the Aβ42 amyloid formation but also disrupting the mature Aβ42 fibrils into nontoxic small molecular weight soluble species. Our studies provide high-resolution characterization of the peptide's mechanism of action. With a binding affinity within the micromolar range for both the monomer and aggregated Aβ42, this α/β hybrid peptide can efficiently modulate Aβ amyloidosis while facilitating the clearance of toxic aggregates and enforcing protection from apoptosis. Thus, our studies highlight that incorporating a β-amino acid not only imparts protection from proteolytic degradation and improved stability but also functions effectively as a β breaker, redirecting the aggregation kinetics toward off-pathway fibrillation.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Sujan Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, Kamrup College Chamata, Nalbari 781306, India
| | - Sourav Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, North Gauhati College, North Guwahati 781031, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755, Singapore
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Atin Kumar Mandal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| |
Collapse
|
2
|
Roy S, Bhogapurapu B, Chandra S, Biswas K, Mishra P, Ghosh A, Bhunia A. Host antimicrobial peptide S100A12 disrupts the fungal membrane by direct binding and inhibits growth and biofilm formation of Fusarium species. J Biol Chem 2024; 300:105701. [PMID: 38301897 PMCID: PMC10891332 DOI: 10.1016/j.jbc.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Fungal keratitis is the foremost cause of corneal infections worldwide, of which Fusariumspp. is the common etiological agent that causes loss of vision and warrants surgical intervention. An increase in resistance to the available drugs along with severe side effects of the existing antifungals demands for new effective antimycotics. Here, we demonstrate that antimicrobial peptide S100A12 directly binds to the phospholipids of the fungal membrane, disrupts the structural integrity, and induces generation of reactive oxygen species in fungus. In addition, it inhibits biofilm formation by Fusariumspp. and exhibits antifungal property against Fusariumspp. both in vitro and in vivo. Taken together, our results delve into specific effect of S100A12 against Fusariumspp. with an aim to investigate new antifungal compounds to combat fungal keratitis.
Collapse
Affiliation(s)
- Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India.
| | - Bharathi Bhogapurapu
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sreyanki Chandra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Karishma Biswas
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Abhijit Ghosh
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| |
Collapse
|
3
|
Sarkar D, Bhunia A. Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis. ACS BIO & MED CHEM AU 2024; 4:4-19. [PMID: 38404748 PMCID: PMC10885112 DOI: 10.1021/acsbiomedchemau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 02/27/2024]
Abstract
The pursuit of a novel structural motif that can shed light on the key functional attributes is a primary focus in the study of protein folding disorders. Decades of research on Alzheimer's disease (AD) have centered on the Amyloid β (Aβ) pathway, highlighting its significance in understanding the disorder. The diversity in the Aβ pathway and the possible silent tracks which are yet to discover, makes it exceedingly intimidating to the interdisciplinary scientific community. Over the course of AD research, Aβ has consistently been at the forefront of scientific inquiry and discussion. In this review, we epitomize the role of a potential structural motif (GxxxG motif) that may provide a new horizon to the Aβ conflict. We emphasize on how comprehensive understanding of this motif from a structure-function perspective may pave the way for designing novel therapeutics intervention in AD and related diseases.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| |
Collapse
|
4
|
Roy D, Maity NC, Kumar S, Maity A, Ratha BN, Biswas R, Maiti NC, Mandal AK, Bhunia A. Modulatory role of copper on hIAPP aggregation and toxicity in presence of insulin. Int J Biol Macromol 2023; 241:124470. [PMID: 37088193 DOI: 10.1016/j.ijbiomac.2023.124470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Aggregation of the human islets amyloid polypeptide, or hIAPP, is linked to β-cell death in type II diabetes mellitus (T2DM). Different pancreatic β-cell environmental variables such as pH, insulin and metal ions play a key role in controlling the hIAPP aggregation. Since insulin and hIAPP are co-secreted, it is known from numerous studies that insulin suppresses hIAPP fibrillation by preventing the initial dimerization process. On the other hand, zinc and copper each have an inhibitory impact on hIAPP fibrillation, but copper promotes the production of toxic oligomers. Interestingly, the insulin oligomeric equilibrium is controlled by the concentration of zinc ions when the effect of insulin and zinc has been tested together. Lower zinc concentrations cause the equilibrium to shift towards the monomer and dimer states of insulin, which bind to monomeric hIAPP and stop it from developing into a fibril. On the other hand, the combined effects of copper and insulin have not yet been done. In this study, we have demonstrated how the presence of copper affects hIAPP aggregation and the toxicity of the resultant conformers with or without insulin. For this purpose, we have used a set of biophysical techniques, including NMR, fluorescence, CD etc., in combination with AFM and cell cytotoxicity assay. In the presence and/or absence of insulin, copper induces hIAPP to form structurally distinct stable toxic oligomers, deterring the fibrillation process. More specifically, the oligomers generated in the presence of insulin have slightly higher toxicity than those formed in the absence of insulin. This research will increase our understanding of the combined modulatory effect of two β-cell environmental factors on hIAPP aggregation.
Collapse
Affiliation(s)
- Dipanwita Roy
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Anupam Maity
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bhisma N Ratha
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Nakul Chandra Maiti
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata, 700091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, Sctor V, Kolkata 700091, India.
| |
Collapse
|
5
|
Reichelderfer VT, Chaparro Sosa AF, Kaar JL, Schwartz DK. Tuning the surface charge of phospholipid bilayers inhibits insulin fibrilization. Colloids Surf B Biointerfaces 2022; 220:112904. [PMID: 36265317 PMCID: PMC10164472 DOI: 10.1016/j.colsurfb.2022.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.
Collapse
Affiliation(s)
- Victoria T Reichelderfer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
6
|
Das A, Gangarde YM, Pariary R, Bhunia A, Saraogi I. An amphiphilic small molecule drives insulin aggregation inhibition and amyloid disintegration. Int J Biol Macromol 2022; 218:981-991. [PMID: 35907468 DOI: 10.1016/j.ijbiomac.2022.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
The aggregation of proteins into ordered fibrillar structures called amyloids, and their disintegration represent major unsolved problems that limit the therapeutic applications of several proteins. For example, insulin, commonly used for the treatment of diabetes, is susceptible to amyloid formation upon exposure to non-physiological conditions, resulting in a loss of its biological activity. Here, we report a novel amphiphilic molecule called PAD-S, which acts as a chemical chaperone and completely inhibits fibrillation of insulin and its biosimilars. Mechanistic investigations and molecular docking lead to the conclusion that PAD-S binds to key hydrophobic regions of native insulin, thereby preventing its self-assembly. PAD-S treated insulin was biologically active as indicated by its ability to phosphorylate Akt, a protein in the insulin signalling pathway. PAD-S is non-toxic and protects cells from insulin amyloid induced cytotoxicity. The high aqueous solubility and easy synthetic accessibility of PAD-S facilitates its potential use in commercial insulin formulations. Notably, PAD-S successfully disintegrated preformed insulin fibrils to non-toxic smaller fragments. Since the structural and mechanistic features of amyloids are common to several human pathologies, the understanding of the amyloid disaggregation activity of PAD-S will inform the development of small molecule disaggregators for other amyloids.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Yogesh M Gangarde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India; Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
7
|
Ahmed R, Huang J, Lifshitz R, Martinez Pomier K, Melacini G. Structural determinants of the interactions of catechins with Aβ oligomers and lipid membranes. J Biol Chem 2021; 298:101502. [PMID: 34929173 PMCID: PMC8800114 DOI: 10.1016/j.jbc.2021.101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aβ) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aβ oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aβ oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Romi Lifshitz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,For correspondence: Giuseppe Melacini
| |
Collapse
|
8
|
Yadav KK, Ojha M, Pariary R, Arakha M, Bhunia A, Jha S. Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie 2021; 193:64-77. [PMID: 34699915 DOI: 10.1016/j.biochi.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Zinc oxide nanoparticle with negative surface potential (ZnONP) enhances bovine insulin fibrillation. Here, we are exploring ZnONP with positive surface potential (ZnONPUnc) and surface functionalized with tyrosine and tryptophan amino acids to observe the effects of surface potential and surface functional groups on the fibrillation. ZnONPUnc, despite of inversed surface potential, enhances the insulin fibrillation with increase in the interface concentration at physiological pH. Whereas, the interface moderation with the amino acids mitigates the surface-mediated insulin fibrillation propensity. Additionally, the study indicates that the change in interfacial functional groups at ZnONPUnc significantly reverses the interface-mediated destabilization of insulin conformation. The functional groups from the amino acids, like CO, N-H and aromatic functional groups, are anticipated to further stabilize the insulin conformation by forming hydrogen bond and van der Waals interactions with the key amyloidogenic sequences of insulin, A13-A20 from A-chain and B9-B20 from B-chain. Hence, the altered interaction profile, with change in interfacial functional groups, mitigates the interface-mediated insulin fibrillation and the ZnONPUnc-/fibril-mediated cytotoxicity.
Collapse
Affiliation(s)
- Kanti Kusum Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India; Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Monalisha Ojha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan, Bhubaneswar, Odisha, 751003, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
9
|
Chakraborty I, Kar RK, Sarkar D, Kumar S, Maiti NC, Mandal AK, Bhunia A. Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape. ACS Chem Neurosci 2021; 12:2903-2916. [PMID: 34292711 DOI: 10.1021/acschemneuro.1c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Solvent dynamics strongly induce the fibrillation of an amyloidogenic system. Probing the solvation mechanism is crucial as it enables us to predict different proteins' functionalities, such as the aggregation propensity, structural flexibility, and toxicity. This work shows that a straightforward NMR method in conjunction with phenomenological models gives a global and qualitative picture of water dynamics at different concentrations and temperatures. Here, we study amyloid system Aβ40 and its fragment AV20 (A21-V40) and G37L (mutation at Gly37 → Leu of AV20), having different aggregation and toxic properties. The independent validation of this method is elucidated using all-atom classical MD simulation. These two state-of-the-art techniques are pivotal in linking the effect of solvent environment in the near hydration-shell to their aggregation nature. The time-dependent modulation in solvent dynamics probed with the NMR solvent relaxation method can be further adopted to gain insight into amyloidogenesis and link with their toxicity profiles.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Dibakar Sarkar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|