1
|
Mohanad M, Yousef HF, Bahnassy AA. Epigenetic inactivation of DNA repair genes as promising prognostic and predictive biomarkers in urothelial bladder carcinoma patients. Mol Genet Genomics 2022; 297:1671-1687. [PMID: 36076047 PMCID: PMC9596572 DOI: 10.1007/s00438-022-01950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2022] [Indexed: 11/29/2022]
Abstract
We sought to examine epigenetic inactivation of DNA damage repair (DDR) genes as prognostic and predictive biomarkers for urothelial bladder cancer (UBC) as there are currently no reliable prognostic biomarkers that identify UBC patients who would benefit from chemotherapy. Genome-wide DNA methylome using the cancer genome atlas-bladder cancer (TCGA-BLCA) datasets (primary tumors = 374 and normal tissues = 37) was performed for 154 DDR genes. The most two significant differentially methylated genes, Retinoblastoma binding protein 8 (RBBP8) and MutS homologue 4 (MSH4), between primary tumors and normal tissues of TCGA–BLCA were validated by methylation-specific PCR (MSP) in UBC (n = 70) compared to normal tissues (n = 30). RBBP8 and MSH4 expression was measured using qRT-PCR. We developed a predictive model for therapeutic response based on the RBBP8- and MSH4-methylation along with patients’ clinical features. Then, we assessed the prognostic significance of RBBP8 and MSH4. RBBP8- and MSH4 methylation and corresponding gene downregulation significantly associated with muscle-invasive phenotype, prolonged progression-free survival (PFS) and increased susceptibility to cisplatin chemotherapy in UBC. Promoter methylation of RBBP8 and MSH4 was positively correlated with each other and with their corresponding gene repression. The best machine-learning classification model predicted UBC patients’ response to cisplatin-based chemotherapy with an accuracy of 90.05 ± 4.5%. Epigenetic inactivation of RBBP8 and MSH4 in UBC could sensitize patients to DNA-damaging agents. A predictive machine-learning modeling approach based on the clinical features along with RBBP8- and MSH4-methylation might be a promising tool for stratification of UBC responders from nonresponders to chemotherapy.
Collapse
Affiliation(s)
- Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October, Giza, Egypt.
| | - Hend F Yousef
- Tissue Culture and Cytogenetics Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer A Bahnassy
- Tissue Culture and Cytogenetics Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Mozaffari NL, Pagliarulo F, Sartori AA. Human CtIP: A 'double agent' in DNA repair and tumorigenesis. Semin Cell Dev Biol 2020; 113:47-56. [PMID: 32950401 DOI: 10.1016/j.semcdb.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Human CtIP was originally identified as an interactor of the retinoblastoma protein and BRCA1, two bona fide tumour suppressors frequently mutated in cancer. CtIP is renowned for its role in the resection of DNA double-strand breaks (DSBs) during homologous recombination, a largely error-free DNA repair pathway crucial in maintaining genome integrity. However, CtIP-dependent DNA end resection is equally accountable for alternative end-joining, a mutagenic DSB repair mechanism implicated in oncogenic chromosomal translocations. In addition, CtIP contributes to transcriptional regulation of G1/S transition, DNA damage checkpoint signalling, and replication fork protection pathways. In this review, we present a perspective on the current state of knowledge regarding the tumour-suppressive and oncogenic properties of CtIP and provide an overview of their relevance for cancer development, progression, and therapy.
Collapse
Affiliation(s)
- Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Fabio Pagliarulo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Yang L, Yang B, Wang Y, Liu T, He Z, Zhao H, Xie L, Mu H. The CTIP-mediated repair of TNF-α-induced DNA double-strand break was impaired by miR-130b in cervical cancer cell. Cell Biochem Funct 2019; 37:534-544. [PMID: 31418900 PMCID: PMC6852181 DOI: 10.1002/cbf.3430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022]
Abstract
Chemotherapeutic drugs that induce DNA damage have the potential to kill cancer cells, but DNA repair protects cells from damage‐induced cell death. Thus, eliminating DNA repair is a potential approach to overcome cell drug resistance. In this study, we observed that the gene expression of C‐terminal binding protein interacting protein (CTIP) was promoted by TNF‐α stimulation and prevented TNF‐α‐induced double‐strand breaks (DSBs) in the genomes of cervical cancer cells. The putative miR‐130b targeted site within 3′ untranslated region (UTR) of CTIP mRNA was identified through in silico analysis and confirmed based on experimental data. By targeting the CTIP gene, miR‐130b caused the accumulation of DSBs and accelerated cell apoptosis in combination with poly ADP ribose polymerase (PARP) inhibitors. Additionally, overexpression of the CTIP gene elevated cancer cell viability by promoting proliferation while miR‐130b antagonized CTIP‐stimulated cell reproduction. Consequently, miR‐130b destruction of DNA repair should be employed as a strategy to treat cervical cancer. Significance of the study Cervical cancer threatens the health of women all over the world. In this study, we observed that miR‐130b was able to cause the accumulation of DNA double‐strand breaks through suppressing the gene expression of C‐terminal binding protein interacting protein and to accelerate cell apoptosis by preventing DNA damage repairs in cervical cancer cells. As far as we know, the impact of miR‐130b on the DNA double‐strand break repair and on the cell apoptosis induced by the destruction of DNA repair in cervical cancer cells was firstly documented. It is reasonable to believe that miR‐130b destruction of DNA repair may be employed as a strategy to treat cervical cancer in the future.
Collapse
Affiliation(s)
- Lei Yang
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yanli Wang
- Department of Clinical Laboratory, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Tao Liu
- Department of Key Laboratory for Critical Care Medicine, the Ministry of Health, Tianjin, China
| | - Zhankun He
- Department of Gastroenterology, Tianjin First Center Hospital, Tianjin, China
| | - Hejun Zhao
- Department of Endocrinology, Tianjin First Center Hospital, Tianjin, China
| | - Lili Xie
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
4
|
Makharashvili N, Arora S, Yin Y, Fu Q, Wen X, Lee JH, Kao CH, Leung JWC, Miller KM, Paull TT. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 2018; 7:e42733. [PMID: 30523780 PMCID: PMC6296784 DOI: 10.7554/elife.42733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The Sae2/CtIP protein is required for efficient processing of DNA double-strand breaks that initiate homologous recombination in eukaryotic cells. Sae2/CtIP is also important for survival of single-stranded Top1-induced lesions and CtIP is known to associate directly with transcription-associated complexes in mammalian cells. Here we investigate the role of Sae2/CtIP at single-strand lesions in budding yeast and in human cells and find that depletion of Sae2/CtIP promotes the accumulation of stalled RNA polymerase and RNA-DNA hybrids at sites of highly expressed genes. Overexpression of the RNA-DNA helicase Senataxin suppresses DNA damage sensitivity and R-loop accumulation in Sae2/CtIP-deficient cells, and a catalytic mutant of CtIP fails to complement this sensitivity, indicating a role for CtIP nuclease activity in the repair process. Based on this evidence, we propose that R-loop processing by 5' flap endonucleases is a necessary step in the stabilization and removal of nascent R-loop initiating structures in eukaryotic cells.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Sucheta Arora
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Yizhi Yin
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Qiong Fu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Xuemei Wen
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Ji-Hoon Lee
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Chung-Hsuan Kao
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Justin WC Leung
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockUnited States
| | - Kyle M Miller
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Tanya T Paull
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| |
Collapse
|
5
|
Chen H, Shan J, Chen D, Wang R, Qi W, Wang H, Ke Y, Liu W, Zeng X. CtIP promotes G2/M arrest in etoposide-treated HCT116 cells in a p53-independent manner. J Cell Physiol 2018; 234:11871-11881. [PMID: 30478995 DOI: 10.1002/jcp.27824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jin Shan
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dandan Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruoxi Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.,Department of Bioscience, Changchun Normal University, Changchun, China
| | - Hailong Wang
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
6
|
Wang H, Qiu Z, Liu B, Wu Y, Ren J, Liu Y, Zhao Y, Wang Y, Hao S, Li Z, Peng B, Xu X. PLK1 targets CtIP to promote microhomology-mediated end joining. Nucleic Acids Res 2018; 46:10724-10739. [PMID: 30202980 PMCID: PMC6237753 DOI: 10.1093/nar/gky810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Proper DNA double-strand break (DSB) repair is essential for maintaining genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism, which introduces mutations at break sites and contributes to chromosomal translocations and telomere fusions, thus driving carcinogenesis. Mitotic kinases PLK1, CDK1 and Aurora A are important for supporting MMEJ and are often overexpressed in various tumors. However, the functional interplay between these kinases and MMEJ has not been explored. Here, we found that MMEJ is preferentially employed to fix DSBs in cells arrested in mitosis following nocodazole treatment. We further showed that the DSB repair factor CtIP is jointly phosphorylated by CDK1/Aurora A and PLK1. CDK1/Aurora A-mediated CtIP phosphorylation at serine 327 triggers CtIP binding to the PLK1 polo-box domain, which in turn facilitates PLK1 to phosphorylate CtIP mainly at serine 723. A PLK1 phosphor-mimic CtIP mutant fails to initiate extended end resection and is thus unable to mediate homologous recombination and the G2/M checkpoint but can mediate MMEJ. These data imply that PLK1 may target CtIP to promote error-prone MMEJ and inactivate the G2/M checkpoint. These findings have helped elucidate the oncogenic roles of these factors.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhiyu Qiu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bo Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Wu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jianping Ren
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaqing Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zheng Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
7
|
Bonache S, Esteban I, Moles-Fernández A, Tenés A, Duran-Lozano L, Montalban G, Bach V, Carrasco E, Gadea N, López-Fernández A, Torres-Esquius S, Mancuso F, Caratú G, Vivancos A, Tuset N, Balmaña J, Gutiérrez-Enríquez S, Diez O. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol 2018; 144:2495-2513. [PMID: 30306255 DOI: 10.1007/s00432-018-2763-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Few and small studies have been reported about multigene testing usage by massively parallel sequencing in European cancer families. There is an open debate about what genes should be tested, and the actionability of some included genes is under research. METHODS We investigated a panel of 34 known high/moderate-risk cancer genes, including 16 related to breast or ovarian cancer (BC/OC) genes, and 63 candidate genes to BC/OC in 192 clinically suspicious of hereditary breast/ovarian cancer (HBOC) Spanish families without pathogenic variants in BRCA1 or BRCA2 (BRCA1/2). RESULTS We identified 16 patients who carried a high- or moderate-risk pathogenic variant in eight genes: 4 PALB2, 3 ATM, 2 RAD51D, 2 TP53, 2 APC, 1 BRIP1, 1 PTEN and 1 PMS2. These findings led to increased surveillance or prevention options in 12 patients and predictive testing in their family members. We detected 383 unique variants of uncertain significance in known cancer genes, of which 35 were prioritized in silico. Eighteen loss-of-function variants were detected in candidate BC/OC genes in 17 patients (1 BARD1, 1 ERCC3, 1 ERCC5, 2 FANCE, 1 FANCI, 2 FANCL, 1 FANCM, 1 MCPH1, 1 PPM1D, 2 RBBP8, 3 RECQL4 and 1 with SLX4 and XRCC2), three of which also carry pathogenic variants in known cancer genes. CONCLUSIONS Eight percent of the BRCA1/2 negative patients carry pathogenic variants in other actionable genes. The multigene panel usage improves the diagnostic yield in HBOC testing and it is an effective tool to identify potentially new candidate genes.
Collapse
Affiliation(s)
- Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Irene Esteban
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Spain
| | - Alejandro Moles-Fernández
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Laura Duran-Lozano
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Vanessa Bach
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
| | - Neus Gadea
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | | | - Francesco Mancuso
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Ginevra Caratú
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Noemí Tuset
- Medical Oncology Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain.
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain.
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
8
|
Zhang D, Liu H, Lin J, Ye D. Hepatitis B Virus Infection Dampens CtIP Expression in Hepatoma Cell. J Cancer 2018; 9:1182-1187. [PMID: 29675099 PMCID: PMC5907666 DOI: 10.7150/jca.23649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause for hepatocellular carcinoma (HCC). Dysregulation of DNA double-strand break (DSB) repair may explain the pathogenesis of HBV-related HCC. Tumor suppressor CtIP plays a critical role in DSB repair. The purpose of present study was to clarify whether HBV affects CtIP expression in DSB repair of hepatoma cell. HepG2.2.15 was selected as the HBV positive hepatoma cell line, while HepG2 as the HBV negative hepatoma cell line. The two cell lines were treated with bleomycin to induce DSB. Bleomycin treatment could result in DSB by γ-H2AX detection. CtIP gene expression was significantly upregulated after DSB in both HepG2 and HepG2.2.15, while CtIP expression of HepG2.2.15 was higher than that observed in HepG2 before and after DSB. CtIP protein expression was the same pattern as its gene expression. Phosphorylated CtIP (p-CtIP, serine site) was even lower than detectable limit in both HepG2 and HepG2.2.15 before DSB. However, p-CtIP of HepG2.2.15 was significantly lower than that of HepG2 after DSB. These results suggest that HBV could interfere CtIP via enhancing its expression while dampening its phosphorylation, which may disrupt DSB repair pathways and implicate CtIP dysfunction in HBV-related HCC.
Collapse
Affiliation(s)
- Dongxin Zhang
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China.,Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haojing Liu
- Department of Internal Medicine, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China.,Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jusheng Lin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
9
|
Mijnes J, Veeck J, Gaisa NT, Burghardt E, de Ruijter TC, Gostek S, Dahl E, Pfister D, Schmid SC, Knüchel R, Rose M. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/ CtIP is almost exclusively methylated in bladder cancer. Clin Epigenetics 2018; 10:15. [PMID: 29445424 PMCID: PMC5802064 DOI: 10.1186/s13148-018-0447-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
Background Genome-wide studies identified pan-cancer genes and shared biological networks affected by epigenetic dysregulation among diverse tumor entities. Here, we systematically screened for hypermethylation of DNA damage repair (DDR) genes in a comprehensive candidate-approach and exemplarily identify and validate candidate DDR genes as targets of epigenetic inactivation unique to bladder cancer (BLCA), which may serve as non-invasive biomarkers. Methods Genome-wide DNA methylation datasets (2755 CpG probes of n = 7819 tumor and n = 659 normal samples) of the TCGA network covering 32 tumor entities were analyzed in silico for 177 DDR genes. Genes of interest were defined as differentially methylated between normal and cancerous tissues proximal to transcription start sites. The lead candidate gene was validated by methylation-specific PCR (MSP) and/or bisulfite-pyrosequencing in different human cell lines (n = 36), in primary BLCA tissues (n = 43), and in voided urine samples (n = 74) of BLCA patients. Urines from healthy donors and patients with urological benign and malignant diseases were included as controls (n = 78). mRNA expression was determined using qRT-PCR in vitro before (n = 5) and after decitabine treatment (n = 2). Protein expression was assessed by immunohistochemistry (n = 42). R 3.2.0. was used for statistical data acquisition and SPSS 21.0 for statistical analysis. Results Overall, 39 DDR genes were hypermethylated in human cancers. Most exclusively and frequently methylated (37%) in primary BLCA was RBBP8, encoding endonuclease CtIP. RBBP8 hypermethylation predicted longer overall survival (OS) and was found in 2/4 bladder cancer cell lines but not in any of 33 cancer cell lines from entities with another origin like prostate. RBBP8 methylation was inversely correlated with RBBP8 mRNA and nuclear protein expression while RBBP8 was re-expressed after in vitro demethylation. RBBP8 methylation was associated with histological grade in primary BLCA and urine samples. RBBP8 methylation was detectable in urine samples of bladder cancer patients achieving a sensitivity of 52%, at 91% specificity. Conclusions RBBP8 was identified as almost exclusively hypermethylated in BLCA. RBBP8/CtIP has a proven role in homologous recombination-mediated DNA double-strand break repair known to sensitize cancer cells for PARP1 inhibitors. Since RBBP8 methylation was detectable in urines, it may be a complementary marker of high specificity in urine for BLCA detection.
Collapse
Affiliation(s)
- Jolein Mijnes
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jürgen Veeck
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,2Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,3GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nadine T Gaisa
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Eduard Burghardt
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Tim C de Ruijter
- 2Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,3GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sonja Gostek
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Edgar Dahl
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Pfister
- 5Department of Urology, RWTH Aachen University, Aachen, Germany.,6Department of Urology, Uro-Oncology, Robot Assisted and Reconstructive Urologic Surgery, University Hospital Cologne, Cologne, Germany
| | - Sebastian C Schmid
- 7Department of Urology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ruth Knüchel
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Michael Rose
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Reczek CR, Shakya R, Miteva Y, Szabolcs M, Ludwig T, Baer R. The DNA resection protein CtIP promotes mammary tumorigenesis. Oncotarget 2017; 7:32172-83. [PMID: 27058754 PMCID: PMC5078005 DOI: 10.18632/oncotarget.8605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). In addition, however, CtIP has also been implicated in the formation of aberrant chromosomal rearrangements in an MMEJ-dependent manner, an activity that could potentially promote tumor development by increasing genome instability. To clarify whether CtIP acts in vivo to suppress or promote tumorigenesis, we have examined its oncogenic potential in mouse models of human breast cancer. Surprisingly, mice heterozygous for a null Ctip allele did not display an increased susceptibility to tumor formation. Moreover, mammary-specific biallelic CtIP ablation did not elicit breast tumors in a manner reminiscent of BRCA1 loss. Instead, CtIP inactivation dramatically reduced the kinetics of mammary tumorigenesis in mice bearing mammary-specific lesions of the p53 gene. Thus, unlike other repair factors, CtIP is not a tumor suppressor, but has oncogenic properties that can promote tumorigenesis, consistent with its ability to facilitate MMEJ-dependent chromosomal instability. Consequently, inhibition of CtIP-mediated MMEJ may prove effective against tumor types, such as human breast cancer, that display MMEJ-dependent chromosomal rearrangements.
Collapse
Affiliation(s)
- Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Reena Shakya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yana Miteva
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Ludwig
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Richard Baer
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Zhang L, Baladandayuthapani V, Mallick BK, Manyam GC, Thompson PA, Bondy ML, Do KA. Bayesian hierarchical structured variable selection methods with application to MIP studies in breast cancer. J R Stat Soc Ser C Appl Stat 2014; 63:595-620. [PMID: 25705056 DOI: 10.1111/rssc.12053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The analysis of alterations that may occur in nature when segments of chromosomes are copied (known as copy number alterations) has been a focus of research to identify genetic markers of cancer. One high-throughput technique recently adopted is the use of molecular inversion probes (MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional copy number profiles that can be used to ascertain probe-specific copy number alterations in correlative studies with patient outcomes to guide risk stratification and future treatment. We propose a novel Bayesian variable selection method, the hierarchical structured variable selection (HSVS) method, which accounts for the natural gene and probe-within-gene architecture to identify important genes and probes associated with clinically relevant outcomes. We propose the HSVS model for grouped variable selection, where simultaneous selection of both groups and within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution for group selection and group-specific Bayesian lasso hierarchies for variable selection within groups. We provide methods for accounting for serial correlations within groups that incorporate Bayesian fused lasso methods for within-group selection. Through simulations we establish that our method results in lower model errors than other methods when a natural grouping structure exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and probes that are significantly associated with clinically relevant subtypes of breast cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Statistics, Texas A&M University, College Station, Texas, U.S.A
| | | | - Bani K Mallick
- Department of Statistics, Texas A&M University, College Station, Texas, U.S.A
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | | | | | - Kim-Anh Do
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| |
Collapse
|
12
|
Reczek CR, Szabolcs M, Stark JM, Ludwig T, Baer R. The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. ACTA ACUST UNITED AC 2013; 201:693-707. [PMID: 23712259 PMCID: PMC3664708 DOI: 10.1083/jcb.201302145] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In mammalian cells, the phospho-dependent interaction between BRCA1 and CtIP is not required for homology-directed DNA repair or tumor suppression. The CtIP protein facilitates homology-directed repair (HDR) of double-strand DNA breaks (DSBs) by initiating DNA resection, a process in which DSB ends are converted into 3′-ssDNA overhangs. The BRCA1 tumor suppressor, which interacts with CtIP in a phospho-dependent manner, has also been implicated in DSB repair through the HDR pathway. It was recently reported that the BRCA1–CtIP interaction is essential for HDR in chicken DT40 cells. To examine the role of this interaction in mammalian cells, we generated cells and mice that express Ctip polypeptides (Ctip-S326A) that fail to bind BRCA1. Surprisingly, isogenic lines of Ctip-S326A mutant and wild-type cells displayed comparable levels of HDR function and chromosomal stability. Although Ctip-S326A mutant cells were modestly sensitive to topoisomerase inhibitors, mice expressing Ctip-S326A polypeptides developed normally and did not exhibit a predisposition to cancer. Thus, in mammals, the phospho-dependent BRCA1–CtIP interaction is not essential for HDR-mediated DSB repair or for tumor suppression.
Collapse
Affiliation(s)
- Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
13
|
Aynaud MM, Suspène R, Vidalain PO, Mussil B, Guétard D, Tangy F, Wain-Hobson S, Vartanian JP. Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A. J Biol Chem 2012; 287:39182-92. [PMID: 22977230 DOI: 10.1074/jbc.m112.372722] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human polydeoxynucleotide cytidine deaminases APOBEC3A, APOBEC3C, and APOBEC3H are capable of mutating viral DNA in the nucleus, whereas APOBEC3A alone efficiently edits nuclear DNA. Deamination is rapidly followed by excision of uracil residues and can lead to double-stranded breaks. It is not known to which protein networks these DNA mutators belong. Using a yeast two-hybrid screen, we identified the human homolog of Drosophila Tribbles 3, TRIB3, as an interactor for APOBEC3A and APOBEC3C. The interaction was confirmed by co-affinity purification. Co-transfection of APOBEC3A with a TRIB3 expression vector reduced nuclear DNA editing whereas siRNA knockdown of TRIB3 increased the levels of nuclear DNA editing, indicating that TRIB3 functioned as a repressor of A3A. It also repressed A3A-associated γH2AX positive double-stranded breaks. The interaction results in degradation of A3A in a proteasome-independent manner. TRIB3 has been linked to cancer and via its own interactors and links the A3A DNA mutators to the Rb-BRCA1-ATM network. TRIB3 emerges as an important guardian of genome integrity.
Collapse
Affiliation(s)
- Marie-Ming Aynaud
- Molecular Retrovirology Unit, CNRS URA3015, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang H, Shao Z, Shi LZ, Hwang PYH, Truong LN, Berns MW, Chen DJ, Wu X. CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks. J Biol Chem 2012; 287:21471-80. [PMID: 22544744 DOI: 10.1074/jbc.m112.355354] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CtIP (CtBP-interacting protein) associates with BRCA1 and the Mre11-Rad50-Nbs1 (MRN) complex and plays an essential role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair. It has been described that CtIP forms dimers in mammalian cells, but the biological significance is not clear. In this study, we identified a conserved motif in the N terminus of CtIP, which is required for dimer formation. We further showed that CtIP mutants impaired in forming dimers are strongly defective in HR, end resection, and activation of the ataxia telangiectasia and Rad3-related pathway, without notable change of CtIP interactions with BRCA1 or Nbs1. In addition to HR, CtIP dimerization is also required for microhomology-mediated end joining. Live cell imaging of enhanced GFP-tagged CtIP demonstrates that the CtIP dimerization mutant fails to be localized to DSBs, whereas placing a heterologous dimerization motif to the dimerization mutant restores CtIP recruitment to DSBs. These studies suggest that CtIP dimer formation is essential for its recruitment to DSBs on chromatin upon DNA damage. Furthermore, DNA damage-induced phosphorylation of CtIP is significantly reduced in the CtIP dimerization mutants. Therefore, in addition to the C-terminal conserved domains critical for CtIP function, the dimerization motif on the N terminus of CtIP is also conserved and essential for its function in DNA damage responses. The severe repair defects of CtIP dimerization mutants are likely due to the failure in localization to chromosomal DSBs upon DNA damage.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang XJ, Zhang Q. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol Carcinog 2011; 51:500-7. [PMID: 21681822 DOI: 10.1002/mc.20813] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/03/2011] [Accepted: 05/12/2011] [Indexed: 12/12/2022]
Abstract
Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor with oncogenic potential. Immunohistochemistry staining using human breast cancer tissue arrays revealed that 92% of invasive ductal breast cancer cases have CtBP1-positive staining compared to 4% CtBP1-positive in normal breast tissue. To explore the functional impact of CtBP1 in breast cancer, we examined CtBP1's transcriptional regulation of known tumor suppressors, breast cancer susceptibility gene 1 (Brca1), and E-cadherin. We found CtBP1 was recruited to the promoter regions of Brca1 and E-cadherin genes in breast cancer cells. Concomitantly, Brca1 loss was detected in 57% and E-cadherin loss was detected in 76% of human invasive ductal breast cancers, and correlated with CtBP1 nuclear staining in these lesions. Importantly, siRNA knock down of CtBP1 restored Brca1 and E-cadherin expression in breast cancer cell lines, implying CtBP1 down-regulates Brca1 and E-cadherin genes in human breast cancer. This study provides evidence that although genetic loss of Brca1 and E-cadherin are infrequent in breast cancer, they are down-regulated at the transcriptional level by CtBP1 expression. Thus, CtBP1 activation could be a potential biomarker for breast cancer development.
Collapse
Affiliation(s)
- Yu Deng
- Department of Dermatology, University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol 2010; 18:75-9. [PMID: 21131982 PMCID: PMC3471154 DOI: 10.1038/nsmb.1942] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/10/2010] [Indexed: 01/19/2023]
Abstract
Immunoglobulin heavy chain (Igh locus) class-switch recombination (CSR) requires targeted introduction of DNA double strand breaks (DSBs) into repetitive 'switch'-region DNA elements in the Igh locus and subsequent ligation between distal DSBs. Both canonical nonhomologous end joining (C-NHEJ) that seals DNA ends with little or no homology and a poorly defined alternative end joining (A-NHEJ, also known as alt-NHEJ) process that requires microhomology ends for ligation have been implicated in CSR. Here, we show that the DNA end-processing factor CtIP is required for microhomology-directed A-NHEJ during CSR. Additionally, we demonstrate that microhomology joins that are enriched upon depletion of the C-NHEJ component Ku70 require CtIP. Finally, we show that CtIP binds to switch-region DNA in a fashion dependent on activation-induced cytidine deaminase. Our results establish CtIP as a bona fide component of microhomology-dependent A-NHEJ and unmask a hitherto unrecognized physiological role of microhomology-mediated end joining in a C-NHEJ-proficient environment.
Collapse
|
17
|
DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 2010; 20:402-9. [PMID: 20444606 DOI: 10.1016/j.tcb.2010.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 11/23/2022]
Abstract
Maintenance of genome stability depends on efficient, accurate repair of DNA damage. DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage, with the potential to cause mutation, chromosomal rearrangement, and genomic instability that could contribute to cancer. DSB damage can be repaired by various pathways including nonhomologous end-joining (NHEJ) and homologous recombination (HR). However, the cellular mechanisms that regulate the choice of repair pathway are not well understood. Recent studies suggest that the tumor suppressor protein CtIP controls the decision to repair DSB damage by HR. It does so by regulating the initiation of DSB end resection after integrating signals from the DNA damage checkpoint response and cell cycle cues.
Collapse
|
18
|
Abstract
DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.
Collapse
|
19
|
Palijan A, Fernandes I, Verway M, Kourelis M, Bastien Y, Tavera-Mendoza LE, Sacheli A, Bourdeau V, Mader S, White JH. Ligand-dependent corepressor LCoR is an attenuator of progesterone-regulated gene expression. J Biol Chem 2009; 284:30275-87. [PMID: 19744932 DOI: 10.1074/jbc.m109.051201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-dependent corepressor LCoR interacts with the progesterone receptor (PR) and estrogen receptor ERalpha in the presence of hormone. LCoR contains tandem N-terminal PXDLS motifs that recruit C-terminal-binding protein (CtBP) corepressors as well as a C-terminal helix-turn-helix (HTH) domain. Here, we analyzed the function of these domains in coregulation of PR- and ERalpha-regulated gene expression. LCoR and CtBP1 colocalize in nuclear bodies that also contain CtBP-interacting protein CtIP and polycomb group repressor complex marker BMI1. Coexpression of CtBP1 in MCF7 or T47D breast cancer cells augmented corepression by LCoR, whereas coexpression of CtIP did not, consistent with direct interaction of LCoR with CtBP1, but not CtIP. The N-terminal region containing the PXDLS motifs is necessary and sufficient for CTBP1 recruitment and essential for full corepression. However, LCoR function was also strongly dependent on the helix-turn-helix domain, as its deletion completely abolished corepression. LCoR, CtBP, and CtIP were recruited to endogenous PR- and ERalpha-stimulated genes in a hormone-dependent manner. Similarly, LCoR was recruited to estrogen-repressed genes, whereas hormone treatment reduced CtBP1 binding. Small interfering RNA-mediated knockdown of LCoR or CtBP1 augmented expression of progesterone- and estrogen-stimulated reporter genes as well as endogenous progesterone-stimulated target genes. In contrast, their ablation had gene-specific effects on ERalpha-regulated transcription that generally led to reduced gene expression. Taken together, these results show that multiple domains contribute to LCoR function. They also reveal a role for LCoR and CtBP1 as attenuators of progesterone-regulated transcription but suggest that LCoR and CtBP1 can act to enhance transcription of some genes.
Collapse
Affiliation(s)
- Ana Palijan
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Birnbaum D, Sircoulomb F, Imbert J. A reason why the ERBB2 gene is amplified and not mutated in breast cancer. Cancer Cell Int 2009; 9:5. [PMID: 19226453 PMCID: PMC2649042 DOI: 10.1186/1475-2867-9-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/18/2009] [Indexed: 12/15/2022] Open
Abstract
Alterations of receptor-type tyrosine kinases (RTK) are frequent in human cancers. They can result from translocation, mutation or amplification. The ERBB2 RTK is encoded by a gene that is amplified in about 20% breast cancers. The question is: why is this RTK specifically subjected to this type of alteration? We propose that ERBB2 gene amplification is used to overcome repression of its expression by sequence-specific transcription factors.
Collapse
Affiliation(s)
- Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm and Institut Paoli-Calmettes, Marseille, F-13009, France.
| | | | | |
Collapse
|
21
|
Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 2008; 28:3639-51. [PMID: 18378696 DOI: 10.1128/mcb.01828-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.
Collapse
|
22
|
Wu M, Soler DR, Abba MC, Nunez MI, Baer R, Hatzis C, Llombart-Cussac A, Llombart-Bosch A, Aldaz CM. CtIP silencing as a novel mechanism of tamoxifen resistance in breast cancer. Mol Cancer Res 2008; 5:1285-95. [PMID: 18171986 DOI: 10.1158/1541-7786.mcr-07-0126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acquired resistance to the antiestrogen tamoxifen constitutes a major clinical challenge in breast cancer therapy. However, the mechanisms involved are still poorly understood. Using serial analysis of gene expression, we identified CtIP, a BRCA1- and CtBP-interacting protein, as one of the most significantly down-regulated transcripts in estrogen receptor alpha-positive (ER+) MCF-7 tamoxifen-resistant breast cancer cells. We further confirmed the association of CtIP down-regulation with tamoxifen resistance in an additional ER+ breast cancer line (T47D), strengthening the relevance of the phenomenon observed. In additional studies, we found CtIP protein expression in a majority of ER+ breast cancer cell lines that we tested, but no or very little CtIP expression in ER-negative lines. Furthermore, CtIP protein expression status correlates with clinical response to neoadjuvant endocrine therapy, and patients with progressive disease express significantly lower CtIP protein in their primary breast carcinomas than those who respond. Meta-analysis of seven publicly available gene expression microarray data sets showed that CtIP expression is significantly associated with ER, disease-free survival, and breast cancer metastasis status. Importantly, we found that silencing endogenous CtIP in tamoxifen-sensitive breast cancer cells confers tamoxifen resistance. On the other hand, reexpression of CtIP in tamoxifen-resistant breast cancer cells restores sensitivity to the inhibitory growth effects of tamoxifen. Together, our findings indicate that CtIP silencing might be a novel mechanism for the development of tamoxifen resistance in breast cancer, suggesting that CtIP is likely associated with ER function, and that CtIP gene and protein expression may be useful biomarkers for breast cancer prognosis and clinical management.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park Research Division, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | |
Collapse
|