1
|
Sharma A, Somasundaram I, Chabaud MB. CD146 as a prognostic marker in breast cancer: A meta-analysis. J Cancer Res Ther 2024; 20:193-198. [PMID: 38554320 DOI: 10.4103/jcrt.jcrt_738_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/15/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND CD146, a cell adhesion molecule, was first discovered in melanoma. Since then, it has been established as a promoter of tumor progression and metastasis. Many recent clinical studies have associated CD146 overexpression with poor prognosis in various cancers. However, clinical relevance of CD146 in prognosis of breast cancer has been poorly studied. METHODS We performed meta-analysis of data of all clinical studies associated with the prognostic value of CD146 expression in breast cancer. Relevant studies were retrieved from PubMed database as per the inclusion and exclusion criteria, data were extracted independently and carefully by two reviewers with the help of standardized form, and meta-analysis was performed to correlate CD146 expression with molecular subtypes, lymph node metastasis, and overall survival in breast cancer. RESULTS Our findings suggest that CD146 expression is predominantly found in triple-negative breast cancer subtype (pooled odds ratio = 2.98, 95% confidence interval [CI] =2.19-4.05, P < .00001) and breast tumors overexpressing CD146 have a higher risk of lymph node metastasis (pooled relative risk = 1.64, 95% CI = 1.44-1.87, P < .00001). Furthermore, high expression of CD146 was associated with poor prognosis in breast cancer (pooled hazard ratio = 1.51, 95% CI = 1.21-1.87, P = .0002). CONCLUSION Overall results suggested that CD146 may be a potential prognostic marker to predict metastatic potential and disease outcomes in breast cancer and can be used as a therapeutic target.
Collapse
Affiliation(s)
- Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, Centre for Inter Disciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, Centre for Inter Disciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Marcel Blot Chabaud
- INSERM U1263, Centre for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille University Marseille, France
| |
Collapse
|
2
|
Galectin-3 Is a Natural Binding Ligand of MCAM (CD146, MUC18) in Melanoma Cells and Their Interaction Promotes Melanoma Progression. Biomolecules 2022; 12:biom12101451. [PMID: 36291660 PMCID: PMC9599063 DOI: 10.3390/biom12101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma cell adhesion molecule (MCAM, CD146, MUC18) is a heavily glycosylated transmembrane protein and a marker of melanoma metastasis. It is expressed in advanced primary melanoma and metastasis but rarely in benign naevi or normal melanocytes. More and more evidence has shown that activation of the MCAM on cell surface plays a vital role in melanoma progression and metastasis. However, the natural MCAM binding ligand that initiates MCAM activation in melanoma so far remains elusive. This study revealed that galectin-3, a galactoside-binding protein that is commonly overexpressed in many cancers including melanoma, is naturally associated with MCAM on the surface of both skin and uveal melanoma cells. Binding of galectin-3 to MCAM, via O-linked glycans on the MCAM, induces MCAM dimerization and clustering on cell surface and subsequent activation of downstream AKT signalling. This leads to the increases of a number of important steps in melanoma progression of cell proliferation, adhesion, migration, and invasion. Thus, galectin-3 is a natural binding ligand of MCAM in melanoma, and their interaction activates MCAM and promotes MCAM-mediated melanoma progression. Targeting the galectin-3–MCAM interaction may potentially be a useful therapeutic strategy for melanoma treatment.
Collapse
|
3
|
Sandell M, Chireh A, Spyrou A, Grankvist R, Al-Saadi J, Jonsson S, van der Wijngaart W, Stemme G, Holmin S, Roxhed N. Endovascular Device for Endothelial Cell Sampling. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mikael Sandell
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Argyris Spyrou
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Rikard Grankvist
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Jonathan Al-Saadi
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Stefan Jonsson
- Department of Materials Science and Engineering KTH Royal Institute of Technology Brinellvägen 23 100 44 Stockholm Sweden
| | - Wouter van der Wijngaart
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Niclas Roxhed
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| |
Collapse
|
4
|
Lee AY, Jang KH, Jo CH. Minimal Cube Explant Provides Optimal Isolation Condition of Mesenchymal Stem Cells from Umbilical Cord. Tissue Eng Regen Med 2022; 19:793-807. [PMID: 35325405 PMCID: PMC9294096 DOI: 10.1007/s13770-022-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enzymatic digestion and explant method have been widely used for isolating umbilical cord-derived mesenchymal stem cells (UC MSCs), although there is still a strong need for robust protocols for optimal isolation for large-scale stem cell banks. This study aims to establish an explant method for clinical scale production of MSCs from human UC tissue and to characterize UC MSCs isolated and cultured with the explant method. METHODS UC MSCs were isolated by enzymatic digestion, minimal cube explant (MCE) 1-2, MCE 2-4, and MCE 10 and cultured, respectively. Also, human antibody array and basic fibroblast growth factor (bFGF) secretion in conditioned medium (CM) was analyzed. The cells were evaluated initial cell number, colony forming unit-fibroblast (CFU-F), proliferation capacity, CD marker expression, and multi-lineage differentiation. SA-β-gal assay as well as expression of p16, p21 and p53 was performed by RT-PCR. RESULTS MCE 2-4 is the most optimized method for isolation of small umbilical cord-derived fast proliferating cells (smumf cells) with the greatest number. MCE 2-4 had the highest secretion of various bioactive factors including bFGF. The MCE 2-4 provided significantly higher CD146 expression than enzymatic digestion, and that expression was maintained until P20. The gene expression of p16, p21, and p53 of smumf cells did not change until P10 and SA-β-gal activity did not increase until P14. CONCLUSION This study demonstrated that MCE 2-4 provided an optimal environment to isolate MSCs with quantity and quality from human whole UC tissue through secretion of various bioactive factors inherent to UC.
Collapse
Affiliation(s)
- Ah-Young Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Du X, Zhang Q, Wang S, Chen X, Wang Y. MCAM is associated with metastasis and poor prognosis in osteosarcoma by modulating tumor cell migration. J Clin Lab Anal 2021; 36:e24214. [PMID: 34961985 PMCID: PMC8841137 DOI: 10.1002/jcla.24214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although there are standard treatment options for osteosarcoma (OS), the prognoses of patients with OS remain varied. Therefore, it is important to profile OS patients at a high risk of mortality to develop focused interventions. Although tumor biomarkers are closely associated with clinical outcomes, data on prognostic biomarkers for OS remain scarce. Methods We collected RNA expression profiles and clinical data of 90 OS patients from the GEO database (dataset GSE21257 and GSE39055) and 96 patients in the TARGET program. The data were analyzed using univariate Kaplan‐Meier survival analysis to screen candidate gene sets that might be associated with OS survival. Results Our analysis demonstrated that melanoma cell adhesion molecule (MCAM) was associated with overall survival of patients with OS in the three cohorts. The data showed that MCAM was upregulated in OS patients who had metastases within 5 years compared to those without metastases. GO analysis revealed that genes correlated with MCAM were mainly involved in cell migration and wound healing processes. In addition, wound healing assays and gene set enrichment analysis results from RNA sequencing data of small interfering (si)‐MCAM‐transfected OS cells demonstrated that MCAM modulated tumor cell migration. Conclusions Our data demonstrate that MCAM may be a novel prognostic biomarker for OS. MCAM is associated with increased cell migration ability and risk of metastasis, thus leading to poor prognoses in OS patients.
Collapse
Affiliation(s)
- Xiaotian Du
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Siyuan Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Chen
- Key Lab of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Jin L, Gao F, Zhang L, Wang C, Hu L, Fan Z, Xia D. Pleiotropin enhances the osteo/dentinogenic differentiation potential of dental pulp stem cells. Connect Tissue Res 2021; 62:495-507. [PMID: 32580608 DOI: 10.1080/03008207.2020.1779238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Pleiotrophin (PTN) is a heparin-binding growth-associated molecule and expressed in ameloblasts and odontoblasts throughout tooth maturation. Our previous study has shown that PTN expressed more than 20-fold higher in dental tissue than dental stem cells. However, the role of PTN on proliferation and osteo/dentinogenesis of dental pulp stem cells (DPSCs) is unclear. The purpose of the present study was to investigate the role of PTN on the DPSCs' function.Methods: DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) was used to knock down the PTN expression in DPSCs. Real-time RT-PCR, alizarin red staining, quantitative calcium analysis, in vivo transplantation and cell counting kit-8 (CCK8) assay were used to study the function of DPSCs. Possible mechanism was studied by RNA sequencing.Results: After PTN depletion, ALP activity and mineralization ability of DPSCs decreased. Expression of DMP-1 and BSP weakened. Proliferation of DPSCs at 48 h and 72 h was inhibited. Furthermore, 50 pg/mL PTN recombinant protein rescued the impaired osteo/dentinogenic differentiation potential and proliferation ability caused by PTN depletion. In addition, RNA sequencing showed 221 genes were downregulated and 233 genes upregulated in PTN depleted DPSCs. Several genes including BMP2 and IGFBP5 might be associated with PTN function on the DPSCs. P53 and the AMPK signaling pathways were involved. LncRNA analysis displayed 47 significantly upregulated lncRNA and 31 downregulated lncRNA comparing PTN depleted DPSCs with the control.Conclusion: Our research demonstrated that PTN has a positive role in maintaining DPSCs proliferation and osteo/dentinogenic differentiation potential.
Collapse
Affiliation(s)
- Luyuan Jin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Feifei Gao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Lili Zhang
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Hu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dengsheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhu Y, Xu W, Hu W, Wang F, Zhou Y, Xu J, Gong W. Discovery and validation of novel protein markers in mucosa of portal hypertensive gastropathy. BMC Gastroenterol 2021; 21:214. [PMID: 33971821 PMCID: PMC8111717 DOI: 10.1186/s12876-021-01787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Portal hypertension induced esophageal and gastric variceal bleeding is the main cause of death among patients of decompensated liver cirrhosis. Therefore, a standardized, biomarker-based test, to make an early-stage non-invasive risk assessment of portal hypertension, is highly desirable. However, no fit-for-purpose biomarkers have yet been identified. Methods We conducted a pilot study consisting of 5 portal hypertensive gastropathy (PHG) patients and 5 normal controls, sampling the gastric mucosa of normal controls and PHG patients before and after endoscopic cyanoacrylate injection, using label-free quantitative (LFQ) mass spectrometry, to identify potential biomarker candidates in gastric mucosa from PHG patients and normal controls. Then we further used parallel reaction monitoring (PRM) to verify the abundance of the targeted protein. Results LFQ analyses identified 423 significantly differentially expressed proteins. 17 proteins that significantly elevated in the gastric mucosa of PHG patients were further validated using PRM. Conclusions This is the first application of an LFQ-PRM workflow to identify and validate PHG–specific biomarkers in patient gastric mucosa samples. Our findings lay the foundation for comprehending the molecular mechanisms of PHG pathogenesis, and provide potential applications for useful biomarkers in early diagnosis and treatment. Trial registration and ethics approval: Trial registration was completed (ChiCTR2000029840) on February 25, 2020. Ethics Approvals were completed on July 17, 2017 (NYSZYYEC20180003) and February 15, 2020 (NYSZYYEC20200005). Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01787-5.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Fang Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Yan Zhou
- Information Management Section, Bethune International Peace Hospital, Shijiazhuang City, Hebei Province, China
| | - Jianguo Xu
- Department of Liver Disease Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
Diar-Bakirly S, El-Bialy T. Human gingival fibroblasts: Isolation, characterization, and evaluation of CD146 expression. Saudi J Biol Sci 2021; 28:2518-2526. [PMID: 33911963 PMCID: PMC8071911 DOI: 10.1016/j.sjbs.2021.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Gingival fibroblasts (GFs) that exhibit adult stem cell-like characteristics are known as gingival mesenchymal stem cells (GMSCs). Specific mesenchymal stem cell (MSC) markers have not been identified to distinguish GMSCs from GFs. Recently, the cell surface molecule known as cluster of differentiation (CD) 146 has been identified as a potential MSC surface marker. In the present study, we investigated the differentiation potential of GMSCs based on CD146 expression. GFs were isolated by two techniques: tissue explants or enzymatic digestion. GFs were cultured and expanded then magnetically sorted according to CD146 expression. CD146low and CD146high cells were collected, expanded, and then tested for stem cell markers by flow cytometry as well as osteogenic and chondrogenic differentiation potential. The differentiation of these cells was analyzed after 21 days using histology, immunofluorescence, real-time quantitative PCR (qPCR), and glycosaminoglycan (GAG) to DNA ratio (GAG/DNA) assays. Positive histological staining indicated osteogenic differentiation of all groups regardless of the isolation techniques utilized. However, none of the groups demonstrated chondrogenic differentiation, confirmed by the lack of collagen type II in the extracellular matrix (ECM) of GF aggregates. Our data suggest that identification of gingival stem cells based solely on CD146 is not sufficient to properly carry out translational research using gingival fibroblasts for novel therapeutic methods of treating oral disease.
Collapse
Affiliation(s)
- Samira Diar-Bakirly
- Faculty of Medicine and Dentistry - University of Alberta, Mohammed Bin Rashid University of Medicine and Health Sciences, United Arab Emirates
| | - Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, 7-020D Katz Group Centre for Pharmacy and Health Research, Canada
| |
Collapse
|
9
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
10
|
Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling. Cell Death Dis 2021; 12:92. [PMID: 33462195 PMCID: PMC7814016 DOI: 10.1038/s41419-020-03377-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Immune and inflammatory factors have emerged as key pathophysiological mechanisms in the progression of diabetic renal injury. Noncanonical Wnt5a signaling plays an essential role in obesity- or diabetes-induced metabolic dysfunction and inflammation, but its explicit molecular mechanisms and biological function in diabetic nephropathy (DN) remain unknown. In this study, we found that the expression of Wnt5a and CD146 in the kidney and the level of soluble form of CD146 (sCD146) in serum and urine samples were upregulated in DN patients compared to controls, and this alteration was correlated with the inflammatory process and progression of renal impairment. Blocking the activation of Wnt5a signaling with the Wnt5a antagonist Box5 prevented JNK phosphorylation and high glucose-induced inflammatory responses in db/db mice and high glucose-treated HK-2 cells. Similar effects were observed by silencing Wnt5a with small-interfering RNA (siRNA) in cultured HK-2 cells. Knockdown of CD146 blocked Wnt5a-induced expression of proinflammatory cytokines and activation of JNK, which suggests that CD146 is essential for the activation of the Wnt5a pathway. Finally, we confirmed that Wnt5a directly interacted with CD146 to activate noncanonical Wnt signaling in HK-2 cells. Taken together, our findings suggest that by directly binding to CD146, Wnt5a-induced noncanonical signaling is a contributing mechanism for renal tubular inflammation in diabetic nephropathy. The concentration of sCD146 in serum and urine could be a potential biomarker to predict renal outcomes in DN patients.
Collapse
|
11
|
Abou-ElNaga A, El-Chennawi F, Ibrahim Kamel S, Mutawa G. The Potentiality of Human Umbilical Cord Isolated Mesenchymal Stem/Stromal Cells for Cardiomyocyte Generation. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:91-101. [PMID: 33204112 PMCID: PMC7667202 DOI: 10.2147/sccaa.s253108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/01/2020] [Indexed: 01/30/2023]
Abstract
Background The new therapeutic strategy of managing cardiac diseases is based on cell therapy; it highly suggests the use of multipotent mesenchymal stem/stromal cells (MSCs). MSCs widely used in researches are known to be isolated from bone marrow. However, this research seeks to use a human umbilical cord (HUC) as an alternative source of MSCs. Since HUC Wharton's jelly (WJ)-isolated MSCs originate as fetal tissue they are highly preferable for their potential advantages over other adult tissues. Methods The researchers used enzymatic digestion to establish a primary HUC-WJ-isolated MSC line. Then, flow cytometry was used to characterize MSCs and hematopoietic stem cells (HSCs) markers' expression. In addition, the cardiac differentiation capacity of HUC-WJ-isolated MSCs in vitro was investigated by two protocols. Protocol-1 necessitates the dependence on merely 5-azacytidine (5-Aza), whereas in protocol-2, 5-Aza was supported by basic fibroblast growth factor (BFGF). The comparative study between the two protocols was applied by inspecting the ultrastructure of differentiated cells, measuring RT-PCR mRNA cardiac markers and the quantitative detection of cardiac proteins. Results HUC-WJ isolated MSCs were expressed by CD90+ve, CD105+ve, CD106+ve, CD45-ve, and CD146-ve. Remarkable TNNT1, NKX2.5, and Desmin mRNA expression and higher quantitative LDH and cTnI were detected by applying protocol-2. This same protocol-2 induced cardiac morphological features that were revealed by identifying cardiomyocyte-like cells and typical sarcomeres. Conclusion HUC-WJ is proved to be an ethical and effective source of MSCs induced cardiac differentiation, whereas BFGF supports 5-Aza in MSCs-cardiomyocytes differentiation.
Collapse
Affiliation(s)
- Amoura Abou-ElNaga
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Farha El-Chennawi
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Ibrahim Kamel
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Ghada Mutawa
- Department of Basic Science, Faculty of Dentistry, Horus University in Egypt (HUE), New Damietta 34518, Egypt
| |
Collapse
|
12
|
Upregulation of CD146 in Pediatric B-Cell Acute Lymphocytic Leukemia and Its Implications on Treatment Outcomes. J Immunol Res 2020; 2020:9736159. [PMID: 32090132 PMCID: PMC7031726 DOI: 10.1155/2020/9736159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/30/2019] [Indexed: 12/03/2022] Open
Abstract
Background and Aim. We studied through flow cytometry the expression of CD146 on different T cells, and B-cell ALL blasts trying to correlate its expression with different prognostic factors of B-cell ALL and treatment outcomes. Patients and Methods. All pediatric patients with B-cell ALL were subjected to bone marrow examination and cytochemistry, flow cytometric immunophenotyping using monoclonal antibodies utilized for diagnosis of B-ALL including CD34, CD19, CD10, CD22, and intracellular IgM. The diagnosis was based on standard morphologic, cytochemical, and immunophenotypic followed by flow cytometric detection of CD146 expression on blast cells, CD4+, and CD8+ T cells.
Collapse
|
13
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
15
|
Adipose-Derived Stem Cells from Fat Tissue of Breast Cancer Microenvironment Present Altered Adipogenic Differentiation Capabilities. Stem Cells Int 2019; 2019:1480314. [PMID: 31511776 PMCID: PMC6710814 DOI: 10.1155/2019/1480314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into multiple cell types, including adipocytes, osteoblasts, and chondrocytes. The role of adipose-derived stem cells (ADSCs) in cancers is significantly relevant. They seem to be involved in the promotion of tumour development and progression and relapse processes. For this reason, investigating the effects of breast cancer microenvironment on ADSCs is of high importance in order to understand the relationship between tumour cells and the surrounding stromal cells. With the current study, we aimed to investigate the specific characteristics of human ADSCs isolated from the adipose tissue of breast tumour patients. We compared ADSCs obtained from periumbilical fat (PF) of controls with ADSCs obtained from adipose tissue of breast cancer- (BC-) bearing patients. We analysed the surface antigens and the adipogenic differentiation ability of both ADSC populations. C/EBPδ expression was increased in PF and BC ADSCs induced to differentiate compared to the control while PPARγ and FABP4 expressions were enhanced only in PF ADSCs. Conversely, adiponectin expression was reduced in PF-differentiated ADSCs while it was slightly increased in differentiated BC ADSCs. By means of Oil Red O staining, we further observed an impaired differentiation capability of BC ADSCs. To investigate this aspect more in depth, we evaluated the effect of selective PPARγ activation and nutritional supplementation on the differentiation efficiency of BC ADSCs, noting that it was only with a strong differentiation stimuli that the process took place. Furthermore, we observed no response in BC ADSCs to the PPARγ inhibitor T0070907, showing an impaired activation of this receptor in adipose cells surrounding the breast cancer microenvironment. In conclusion, our study shows an impaired adipogenic differentiation capability in BC ADSCs. This suggests that the tumour microenvironment plays a key role in the modulation of the adipose microenvironment located in the surrounding tissue.
Collapse
|
16
|
Li X, Guo W, Zha K, Jing X, Wang M, Zhang Y, Hao C, Gao S, Chen M, Yuan Z, Wang Z, Zhang X, Shen S, Li H, Zhang B, Xian H, Zhang Y, Sui X, Qin L, Peng J, Liu S, Lu S, Guo Q. Enrichment of CD146 + Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics 2019; 9:5105-5121. [PMID: 31410204 PMCID: PMC6691381 DOI: 10.7150/thno.33904] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Heterogeneity of mesenchymal stem cells (MSCs) influences the cell therapy outcome and the application in tissue engineering. Also, the application of subpopulations of MSCs in cartilage regeneration remains poorly characterized. CD146+ MSCs are identified as the natural ancestors of MSCs and the expression of CD146 are indicative of greater pluripotency and self-renewal potential. Here, we sorted a CD146+ subpopulation from adipose-derived mesenchymal stem cells (ADSCs) for cartilage regeneration. Methods: CD146+ ADSCs were sorted using magnetic activated cell sorting (MACS). Cell surface markers, viability, apoptosis and proliferation were evaluated in vitro. The molecular signatures were analyzed by mRNA and protein expression profiling. By intra-articular injections of cells in a rat osteochondral defect model, we assessed the role of the specific subpopulation in cartilage microenvironment. Finally, CD146+ ADSCs were combined with articular cartilage extracellular matrix (ACECM) scaffold for long term (3, 6 months) cartilage repair. Results: The enriched CD146+ ADSCs showed a high expression of stem cell and pericyte markers, good viability, and immune characteristics to avoid allogeneic rejection. Gene and protein expression profiles revealed that the CD146+ ADSCs had different cellular functions especially in regulation inflammation. In a rat model, CD146+ ADSCs showed a better inflammation-modulating property in the early stage of intra-articular injections. Importantly, CD146+ ADSCs exhibited good biocompatibility with the ACECM scaffold and the CD146+ cell-scaffold composites produced less subcutaneous inflammation. The combination of CD146+ ADSCs with ACECM scaffold can promote better cartilage regeneration in the long term. Conclusion: Our data elucidated the function of the CD146+ ADSC subpopulation, established their role in promoting cartilage repair, and highlighted the significance of cell subpopulations as a novel therapeutic for cartilage regeneration.
Collapse
Affiliation(s)
- Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kangkang Zha
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shi Shen
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Haojiang Li
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Bin Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hai Xian
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yuan Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
17
|
CD146 expression in oral lichen planus and oral cancer. Clin Oral Investig 2019; 24:325-332. [PMID: 31102047 DOI: 10.1007/s00784-019-02871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine the CD146/METCAM expression on keratinocytes in normal oral mucosa (NOM), oral lichen planus (OLP), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). SUBJECTS AND METHODS Immunohistochemical examination of CD146 was performed on 80 specimens, divided into 20 cases from each group. The number of CD146+ keratinocytes was quantitatively assessed together with the staining intensity. RESULTS The mean percentage of CD146+ keratinocytes was 19.04±15.32, 59.40±24.48, 60.04±28.87, and 22.13±21.03 in NOM, OLP, OED, and OSCC, respectively. The mean percentages of CD146+ keratinocytes in OLP and OED were significantly higher than those of NOM and OSCC (p≤0.001). Most OED (55%) and OLP (60%) showed strong and moderate staining intensity, respectively, while NOM (50%) and OSCC (45%) predominantly expressed CD146 at mild intensity. CONCLUSIONS This is the first study to examine CD146 expression in OLP and OED. CD146 is upregulated in OLP and OED but downregulated in OSCC. The alteration in CD146 may be involved in the immunoregulatory response of OLP and the early event of oral carcinogenesis. The loss of this protein may underlie the progression of OED into invasive OSCC. CLINICAL RELEVANCE Overexpression of CD146 protein may play a role in the pathophysiology of OLP and OED.
Collapse
|
18
|
Zhang Z, Zheng Y, Wang H, Zhou Y, Tai G. CD146 interacts with galectin-3 to mediate endothelial cell migration. FEBS Lett 2018; 592:1817-1828. [PMID: 29741757 DOI: 10.1002/1873-3468.13083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 10/16/2022]
Abstract
Here, we investigated the role of the cell membrane protein CD146 in galectin-3-mediated endothelial cell migration at the molecular level. Our results show that knocking down CD146 significantly attenuates galectin-3-mediated cell migration. Pull-down assays, gel filtration, and biolayer interferometry further demonstrate that galectin-3 binds to the CD146 ectodomain (eFL) with a KD of ~1.1 μm. To identify the galectin-3-binding site, we used mass spectrometry to show that CD146 eFL has four N-glycosites, with PNGase F treatment indicating that N-glycans define the binding epitope. Galectin-3 likely interacts with Domain 5 on CD146 eFL, because it contains poly-N-acetyllactosamine sites, and deletion of this domain significantly reduces binding. Overall, our findings provide a better understanding of how galectin-3 interacts with cell membrane receptors to mediate endothelial cell migration.
Collapse
Affiliation(s)
- Zhongyu Zhang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yi Zheng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hao Wang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
Dufies M, Nollet M, Ambrosetti D, Traboulsi W, Viotti J, Borchiellini D, Grépin R, Parola J, Giuliano S, Helley-Russick D, Bensalah K, Ravaud A, Bernhard JC, Schiappa R, Bardin N, Dignat-George F, Rioux-Leclercq N, Oudard S, Négrier S, Ferrero JM, Chamorey E, Blot-Chabaud M, Pagès G. Soluble CD146 is a predictive marker of pejorative evolution and of sunitinib efficacy in clear cell renal cell carcinoma. Am J Cancer Res 2018; 8:2447-2458. [PMID: 29721091 PMCID: PMC5928901 DOI: 10.7150/thno.23002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022] Open
Abstract
The objective of the study was to use CD146 mRNA to predict the evolution of patients with non-metastatic clear cell renal cell carcinoma (M0 ccRCC) towards metastatic disease, and to use soluble CD146 (sCD146) to anticipate relapses on reference treatments by sunitinib or bevacizumab in patients with metastatic ccRCC (M1). Methods: A retrospective cohort of M0 patients was used to determine the prognostic role of intra-tumor CD146 mRNA. Prospective multi-center trials were used to define plasmatic sCD146 as a predictive marker of sunitinib or bevacizumab efficacy for M1 patients. Results: High tumor levels of CD146 mRNA were linked to shorter disease-free survival (DFS) and overall survival (OS). ccRCC patients from prospective cohorts with plasmatic sCD146 variation <120% following the first cycle of sunitinib treatment had a longer progression-free survival (PFS) and OS. The plasmatic sCD146 variation did not correlate with PFS or OS for the bevacizumab-based treatment. In vitro, resistant cells to sunitinib expressed high levels of CD146 mRNA and protein in comparison to sensitive cells. Moreover, recombinant CD146 protected cells from the sunitinib-dependent decrease of cell viability. Conclusion: CD146/sCD146 produced by tumor cells is a relevant biological marker of ccRCC aggressiveness and relapse on sunitinib treatment.
Collapse
|
20
|
Single cell polarity in liquid phase facilitates tumour metastasis. Nat Commun 2018; 9:887. [PMID: 29491397 PMCID: PMC5830403 DOI: 10.1038/s41467-018-03139-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 01/19/2023] Open
Abstract
Dynamic polarisation of tumour cells is essential for metastasis. While the role of polarisation during dedifferentiation and migration is well established, polarisation of metastasising tumour cells during phases of detachment has not been investigated. Here we identify and characterise a type of polarisation maintained by single cells in liquid phase termed single-cell (sc) polarity and investigate its role during metastasis. We demonstrate that sc polarity is an inherent feature of cells from different tumour entities that is observed in circulating tumour cells in patients. Functionally, we propose that the sc pole is directly involved in early attachment, thereby affecting adhesion, transmigration and metastasis. In vivo, the metastatic capacity of cell lines correlates with the extent of sc polarisation. By manipulating sc polarity regulators and by generic depolarisation, we show that sc polarity prior to migration affects transmigration and metastasis in vitro and in vivo. Polarisation of metastasising cancer cells in circulation has not been investigated before. Here the authors identify single cell polarity as a distinct polarisation state of single cells in liquid phase, and show that perturbing single cell polarity affects attachment, adhesion, transmigration and metastasis in vitro and in vivo.
Collapse
|
21
|
Qadan MA, Piuzzi NS, Boehm C, Bova W, Moos M, Midura RJ, Hascall VC, Malcuit C, Muschler GF. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Cytotherapy 2018; 20:343-360. [PMID: 29396254 DOI: 10.1016/j.jcyt.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). METHODS Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (PCTP) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. RESULTS Mean [Cell], [CTP] and PCTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm2; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. CONCLUSIONS The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences between cell populations in biological performance. Understanding the underlying reasons for variation in the concentration, prevalence, marker expression and biological potential of CTPs between patients and source tissues and determining the means of managing this variation will contribute to the rational development of cell-based clinical diagnostics and targeted cell-based therapies.
Collapse
Affiliation(s)
- Maha A Qadan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Nicolas S Piuzzi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA; Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA; Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Cynthia Boehm
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wesley Bova
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Malcolm Moos
- FDA/Center for Biologics Evaluation and Research, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, Silver Spring, Maryland, USA
| | - Ronald J Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA; Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
22
|
Ouhtit A, Abdraboh ME, Hollenbach AD, Zayed H, Raj MHG. CD146, a novel target of CD44-signaling, suppresses breast tumor cell invasion. Cell Commun Signal 2017; 15:45. [PMID: 29121955 PMCID: PMC5679321 DOI: 10.1186/s12964-017-0200-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/25/2017] [Indexed: 01/27/2023] Open
Abstract
Background We have previously validated three novel CD44-downstream positively regulated transcriptional targets, including Cortactin, Survivin and TGF-β2, and further characterized the players underlying their separate signaling pathways. In the present study, we identified CD146 as a potential novel target, negatively regulated by CD44. While the exact function of CD146 in breast cancer (BC) is not completely understood, substantial evidence from our work and others support the hypothesis that CD146 is a suppressor of breast tumor progression. Methods Therefore, using molecular and pharmacological approaches both in vitro and in breast tissues of human samples, the present study validated CD146 as a novel target of CD44-signaling suppressed during BC progression. Results Our results revealed that CD44 activation could cause a substantial decrease of CD146 expression with an equally notable converse effect upon CD44-siRNA inhibition. More interestingly, activation of CD44 decreased cellular CD146 and increased soluble CD146 through CD44-dependent activation of MMP. Conclusion Here, we provide a possible mechanism by which CD146 suppresses BC progression as a target of CD44-downstream signaling, regulating neovascularization and cancer cell motility.
Collapse
Affiliation(s)
- Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | - Mohammed E Abdraboh
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Andrew D Hollenbach
- Department of Genetics, Louisiana State University, Health Sciences Center, New Orleans, USA
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - Madhwa H G Raj
- Department of Obstetrics and Gynecology, Louisiana State University, Health Sciences Center, New Orleans, USA
| |
Collapse
|
23
|
Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis. Sci Rep 2017; 7:4223. [PMID: 28652617 PMCID: PMC5484668 DOI: 10.1038/s41598-017-01061-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule, was initially identified as a marker of melanoma progression and metastasis. Recently many clinical studies investigated overexpression of CD146 predict poor prognosis of solid tumor, however, the results was inconclusive, partly due to small numbers of patients included. This present meta-analysis was therefore performed utilizing the results of all clinical studies concerned to determine the prognostic value of CD146 expression in solid tumors. Relevant articles were identified through searching the PubMed, Web of Science and Embase database. In this meta-analysis, 12 studies involving 2,694 participants were included, and we drew the conclusion that strong significant associations between CD146 expression and all endpoints: overall survival (OS) [hazard ratio (HR) = 2.496, 95% confidence interval (95% CI) 2.115–2.946], time to progression (TTP) (HR = 2.445, 95% CI 1.975–3.027). Furthermore, the subgroup analysis revealed that the associations between CD146 overexpression and the outcome endpoints (OS or TTP) were significant in Mongoloid patients and Caucasian patients, as well in patients with lung cancer and digestive system cancer. In conclusion, these results showed that high CD146 was associated with poor survival in human solid tumors. CD146 may be a valuable prognosis predictive biomarker; nevertheless, whether CD146 could be a potential therapeutic target in human solid tumors needs to be further studied.
Collapse
|
24
|
Taghizadeh M, Noruzinia M. Lovastatin Reduces Stemness via Epigenetic Reprograming of BMP2 and GATA2 in Human Endometrium and Endometriosis. CELL JOURNAL 2017; 19:50-64. [PMID: 28367417 PMCID: PMC5241518 DOI: 10.22074/cellj.2016.3894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers. MATERIALS AND METHODS In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4. RESULTS In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group. CONCLUSION These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
Collapse
Affiliation(s)
| | - Mehrdad Noruzinia
- P.O.Box: 11115-331Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
25
|
Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Mallein-Gerin F, Perrier-Groult E, Alliot-Licht B, Farges JC. Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In vivo and Their Evolution upon In vitro Amplification. Front Physiol 2016; 7:512. [PMID: 27877132 PMCID: PMC5099238 DOI: 10.3389/fphys.2016.00512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/19/2016] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) from human dental pulp (DP) can be expanded in vitro for cell-based and regenerative dentistry therapeutic purposes. However, their heterogeneity may be a hurdle to the achievement of reproducible and predictable therapeutic outcomes. To get a better knowledge about this heterogeneity, we designed a flow cytometric strategy to analyze the phenotype of DP cells in vivo and upon in vitro expansion with stem cell markers. We focused on the CD31− cell population to exclude endothelial and leukocytic cells. Results showed that the in vivo CD31− DP cell population contained 1.4% of CD56+, 1.5% of CD146+, 2.4% of CD271+ and 6.3% of MSCA-1+ cells but very few Stro-1+ cells (≤ 1%). CD56+, CD146+, CD271+, and MSCA-1+ cell subpopulations expressed various levels of these markers. CD146+MSCA-1+, CD271+MSCA-1+, and CD146+CD271+ cells were the most abundant DP-MSC populations. Analysis of DP-MSCs expanded in vitro with a medicinal manufacturing approach showed that CD146 was expressed by about 50% of CD56+, CD271+, MSCA-1+, and Stro-1+ cells, and MSCA-1 by 15–30% of CD56+, CD146+, CD271+, and Stro-1+ cells. These ratios remained stable with passages. CD271 and Stro-1 were expressed by <1% of the expanded cell populations. Interestingly, the percentage of CD56+ cells strongly increased from P1 (25%) to P4 (80%) both in all sub-populations studied. CD146+CD56+, MSCA-1+CD56+, and CD146+MSCA-1+ cells were the most abundant DP-MSCs at the end of P4. These results established that DP-MSCs constitute a heterogeneous mixture of cells in pulp tissue in vivo and in culture, and that their phenotype is modified upon in vitro expansion. Further studies are needed to determine whether co-expression of specific MSC markers confers DP cells specific properties that could be used for the regeneration of human tissues, including the dental pulp, with standardized cell-based medicinal products.
Collapse
Affiliation(s)
- Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Lyon 1, UMS3444 BioSciences Gerland-Lyon SudLyon, France; Faculté d'Odontologie, Université de Lyon, Université Lyon 1Lyon, France; Hospices Civils de Lyon, Service d'OdontologieLyon, France
| | - Hugo Fabre
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Lyon 1, UMS3444 BioSciences Gerland-Lyon SudLyon, France; Laboratory of Regenerative Technologies, Department of Biomedical Engineering, University of BaselBasel, Switzerland
| | - Olivier Degoul
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | | | - Colin McGuckin
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Nico Forraz
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Frédéric Mallein-Gerin
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Lyon 1, UMS3444 BioSciences Gerland-Lyon Sud Lyon, France
| | - Emeline Perrier-Groult
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Lyon 1, UMS3444 BioSciences Gerland-Lyon Sud Lyon, France
| | - Brigitte Alliot-Licht
- Institut National De La Santé Et De La Recherche Médicale UMR1064, Faculté d'Odontologie, Centre de Recherche en Transplantation et Immunologie, Université de Nantes Nantes, France
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Lyon 1, UMS3444 BioSciences Gerland-Lyon SudLyon, France; Faculté d'Odontologie, Université de Lyon, Université Lyon 1Lyon, France; Hospices Civils de Lyon, Service d'OdontologieLyon, France
| |
Collapse
|
26
|
Moschouris K, Firoozi N, Kang Y. The application of cell sheet engineering in the vascularization of tissue regeneration. Regen Med 2016; 11:559-70. [PMID: 27527673 PMCID: PMC5007660 DOI: 10.2217/rme-2016-0059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scaffold-free cell sheet engineering (CSE) is a new technology to regenerate injured or damaged tissues, which has shown promising potential in tissue regeneration. CSE uses a thermosensitive surface to form a dense cell sheet that can be detached when temperature decreases. The detached cell sheet can be stacked on top of one another according to the thickness of cell sheet for the specific tissue regeneration application. One of the key challenges of tissue engineering is vascularization. CSE technique provides excellent microenvironment for vascularization since the technique can maintain the intact cell matrix that is crucial for angiogenesis. In this review paper, we will highlight the principle technique of CSE and its application in tissue regeneration.
Collapse
Affiliation(s)
- Kathryn Moschouris
- Department of Biological Sciences, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Negar Firoozi
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
27
|
Jin HJ, Kwon JH, Kim M, Bae YK, Choi SJ, Oh W, Yang YS, Jeon HB. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2016; 5:427-39. [PMID: 26941359 DOI: 10.5966/sctm.2015-0109] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. SIGNIFICANCE One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required. However, long-term growth inevitably induces cellular senescence, which potentially causes poor clinical outcomes by inducing growth arrest and the loss of stem cell properties. Thus, the identification of markers for evaluating the status of MSC senescence during long-term culture may enhance the success of MSC-based therapy. This study provides strong evidence that CD146 is a novel and useful marker for predicting senescence in human umbilical cord blood-derived MSCs (hUCB-MSCs), and CD146 can potentially be applied in quality-control assessments of hUCB-MSC-based therapy.
Collapse
Affiliation(s)
- Hye Jin Jin
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Ji Hye Kwon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Miyeon Kim
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Yun Kyung Bae
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| |
Collapse
|
28
|
Wragg JW, Finnity JP, Anderson JA, Ferguson HJM, Porfiri E, Bhatt RI, Murray PG, Heath VL, Bicknell R. MCAM and LAMA4 Are Highly Enriched in Tumor Blood Vessels of Renal Cell Carcinoma and Predict Patient Outcome. Cancer Res 2016; 76:2314-26. [PMID: 26921326 DOI: 10.1158/0008-5472.can-15-1364] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/01/2016] [Indexed: 12/14/2022]
Abstract
The structure and molecular signature of tumor-associated vasculature are distinct from those of the host tissue, offering an opportunity to selectively target the tumor blood vessels. To identify tumor-specific endothelial markers, we performed a microarray on tumor-associated and nonmalignant endothelium collected from patients with renal cell carcinoma (RCC), colorectal carcinoma, or colorectal liver metastasis. We identified a panel of genes consistently upregulated by tumor blood vessels, of which melanoma cell adhesion molecule (MCAM) and its extracellular matrix interaction partner laminin alpha 4 (LAMA4) emerged as the most consistently expressed genes. This result was subsequently confirmed by immunohistochemical analysis of MCAM and LAMA4 expression in RCC and colorectal carcinoma blood vessels. Strong MCAM and LAMA4 expression was also shown to predict poor survival in RCC, but not in colorectal carcinoma. Notably, MCAM and LAMA4 were enhanced in locally advanced tumors as well as both the primary tumor and secondary metastases. Expression analysis in 18 different cancers and matched healthy tissues revealed vascular MCAM as highly specific in RCC, where it was induced strongly by VEGF, which is highly abundant in this disease. Lastly, MCAM monoclonal antibodies specifically localized to vessels in a murine model of RCC, offering an opportunity for endothelial-specific targeting of anticancer agents. Overall, our findings highlight MCAM and LAMA4 as prime candidates for RCC prognosis and therapeutic targeting. Cancer Res; 76(8); 2314-26. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph W Wragg
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jonathan P Finnity
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jane A Anderson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Henry J M Ferguson
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Emilio Porfiri
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom. Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Edgbaston, Birmingham, United Kingdom
| | - Rupesh I Bhatt
- Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Edgbaston, Birmingham, United Kingdom
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria L Heath
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Roy Bicknell
- Angiogenesis Laboratory, Institutes of Biomedical and Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
29
|
Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas. Proc Natl Acad Sci U S A 2015; 112:E6525-34. [PMID: 26553993 DOI: 10.1073/pnas.1502648112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given the highly heterogeneous character of brain malignancies and the associated implication for its proper diagnosis and treatment, finding biomarkers that better characterize this disease from a molecular standpoint is imperative. In this study, we evaluated CD146 as a potential molecular target for diagnosis and targeted therapy of glioblastoma multiforme (GBM), the most common and lethal brain malignancy. YY146, an anti-CD146 monoclonal antibody, was generated and radiolabeled for noninvasive positron-emission tomography (PET) imaging of orthotopic GBM models. (64)Cu-labeled YY146 preferentially accumulated in the tumors of mice bearing U87MG xenografts, which allowed the acquisition of high-contrast PET images of small tumor nodules (∼ 2 mm). Additionally, we found that tumor uptake correlated with the levels of CD146 expression in a highly specific manner. We also explored the potential therapeutic effects of YY146 on the cancer stem cell (CSC) and epithelial-to-mesenchymal (EMT) properties of U87MG cells, demonstrating that YY146 can mitigate those aggressive phenotypes. Using YY146 as the primary antibody, we performed histological studies of World Health Organization (WHO) grades I through IV primary gliomas. The positive correlation found between CD146-positive staining and high tumor grade (χ(2) = 9.028; P = 0.029) concurred with the GBM data available in The Cancer Genome Atlas (TCGA) and validated the clinical value of YY146. In addition, we demonstrate that YY146 can be used to detect CD146 in various cancer cell lines and human resected tumor tissues of multiple other tumor types (gastric, ovarian, liver, and lung), indicating a broad applicability of YY146 in solid tumors.
Collapse
|
30
|
Zhou Y, Huang H, Yuan LJ, Xiong Y, Huang X, Lin JX, Zheng M. CD146 as an adverse prognostic factor in uterine sarcoma. Eur J Med Res 2015; 20:67. [PMID: 26293576 PMCID: PMC4546164 DOI: 10.1186/s40001-015-0160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Uterine sarcoma is an aggressive malignancy with a poor prognosis. This study aimed to determine the expression of CD146, P53, and Ki-67 in uterine sarcoma and to evaluate their prognostic significance. Methods We retrospectively analyzed the prognosis and clinicopathologic features of 68 patients with uterine sarcoma. Immunohistochemical analyses of CD146, P53, and Ki-67 were performed in tissue samples collected from these patients and their relationship with prognosis was investigated. Results The 5-year overall survival (OS) rate was 46 %. Endometrial stromal sarcoma (ESS) patients had a better prognosis than leiomyosarcoma (LMS) patients, with a 2-year survival rate of 82 %. The membrane and cytoplasm of tumor cells exhibited CD146 overexpression in 8 (32 %) ESS cases, which was less than the 25 (69.4 %) cases observed in LMS and 2 (28.6 %) in MMMT. CD146 overexpression in the membrane and cytoplasm of tumor cells was closely related to lymph node metastasis (P = 0.021) and Ki-67 overexpression (P = 0.0053); there was no significant correlation with age, tumor size, International Federation of Obstetrics and Gynecology stage, or P53 overexpression in LMS. Conclusions CD146, P53, and Ki-67 are overexpressed in uterine sarcoma. CD146 expression correlates with lymph node metastasis and is associated with poor OS in LMS; it may be a potential prognostic marker for LMS.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - He Huang
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Lin-Jing Yuan
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Ying Xiong
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Xin Huang
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Jia-Xin Lin
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Min Zheng
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China. .,Collaborative Innovation Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Abstract
Hepatocellular carcinomas are well-vascularized tumors; the endothelial cells in these tumors have a specific phenotype. Our aim was to develop a new approach for tumor-specific drug delivery with monoclonal antibody targeting of endothelial ligands. CD146, a molecule expressed on the endothelial surface of hepatocellular carcinoma, was identified as a promising candidate for targeting. In the present study, endothelial cells immediately captured circulating anti-CD146 (ME-9F1) antibody, while antibody binding in tumors was significantly higher than in hepatic endothelium. Macroscopically, after intravenous injection, there were no differences in the mean accumulation of anti-CD146 antibody in tumor compared to liver tissue, due to a compensating higher blood vessel density in the liver tissue. Additional blockade of nontumoral epitopes and intra-arterial administration, improved selective antibody capture in the tumor microvasculature and largely prevented antibody distribution in the lung and liver. The potential practical use of this approach was demonstrated by imaging of radionuclide-labeled ME-9F1 antibody, which showed excellent tumor-selective uptake. Our results provide a promising principle for the use of endothelial markers for intratumoral drug delivery. Tumor endothelium–based access might offer new opportunities for the imaging and therapy of hepatocellular carcinoma and other liver malignancies.
Collapse
|
32
|
Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, Ye Z, Chen J, Feng J, Liu F, Wu JY, Yan X. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 2015; 25:275-87. [PMID: 25656845 PMCID: PMC4349246 DOI: 10.1038/cr.2015.15] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis, a process that newly-formed blood vessels sprout from pre-existing ones, is vital for vertebrate development and adult homeostasis. Previous studies have demonstrated that the neuronal guidance molecule netrin-1 participates in angiogenesis and morphogenesis of the vascular system. Netrin-1 exhibits dual activities in angiogenesis: either promoting or inhibiting angiogenesis. The anti-angiogenic activity of netrin-1 is mediated by UNC5B receptor. However, how netrin-1 promotes angiogenesis remained unclear. Here we report that CD146, an endothelial transmembrane protein of the immunoglobulin superfamily, is a receptor for netrin-1. Netrin-1 binds to CD146 with high affinity, inducing endothelial cell activation and downstream signaling in a CD146-dependent manner. Conditional knockout of the cd146 gene in the murine endothelium or disruption of netrin-CD146 interaction by a specific anti-CD146 antibody blocks or reduces netrin-1-induced angiogenesis. In zebrafish embryos, downregulating either netrin-1a or CD146 results in vascular defects with striking similarity. Moreover, knocking down CD146 blocks ectopic vascular sprouting induced by netrin-1 overexpression. Together, our data uncover CD146 as a previously unknown receptor for netrin-1 and also reveal a functional ligand for CD146 in angiogenesis, demonstrating the involvement of netrin-CD146 signaling in angiogenesis during vertebrate development.
Collapse
Affiliation(s)
- Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunxia Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongde Ye
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jane Y Wu
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Endothelial-binding, proinflammatory T cells identified by MCAM (CD146) expression: Characterization and role in human autoimmune diseases. Autoimmun Rev 2015; 14:415-22. [PMID: 25595133 DOI: 10.1016/j.autrev.2015.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
A subset of T cells defined by the cell surface expression of MCAM (CD146) has been identified in the peripheral circulation of healthy individuals. These cells comprise approximately 3% of the pool of circulating T cells, have an effector memory phenotype, and are capable of producing several cytokines. Notably, the MCAM positive cells are enhanced for IL-17 production compared to MCAM negative effector memory T cells. These cells are committed to IL-17 production and do not require in vitro polarization with exogenous cytokines. MCAM positive T cells also demonstrate an increased ability to bind to endothelial monolayers. In numerous autoimmune diseases these cells are found at increased proportions in the peripheral circulation, and at the sites of active inflammation in patients with autoimmune disease, these cells appear in large numbers and are major contributors to IL-17 production. Studies to date have been performed with human subjects and it is uncertain if appropriate mouse models exist for this cell type. These cells could represent early components of the adaptive immune response and serve as targets of therapy in these diseases, although much work remains to be performed in order to discern the exact nature and function of these cells.
Collapse
|
34
|
Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 2014; 7:118-26. [PMID: 25473449 PMCID: PMC4249894 DOI: 10.15283/ijsc.2014.7.2.118] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are adult stem cells which identified by adherence to plastic, expression of cell surface markers including CD44, CD90, CD105, CD106, CD166, and Stro-1, lack of the expression of hematopoietic markers, no immunogenic effect and replacement of damaged tissues. These properties led to development of progressive methods to isolation and characterization of MSCs from various sources for therapeutic applications in regenerative medicine. METHODS We isolated MSC-like cells from testis biopsies, ovary, hair follicle and umbilical cord Wharton's jelly and investigated the expression of specific cell surface antigens using flow cytometry in order to verify stemness properties of these cells. RESULTS All four cell types adhered to plastic culture flask a few days after primary culture. All our cells positively expressed common MSC- specific cell surface markers. Moreover, our results revealed the expression of CD19and CD45 antigens in these cells. CONCLUSION According to our results, high expression of CD44 in spermatogonial stem cells (SSCs), hair follicle stem cells (HFSCs),granulosa cells (GCs)and Wharton's jelly- MSCs (WJ-MSCs)may help them to maintain stemness properties. Furthermore, we suggest that CD105+SSCs, HFSCs and WJ-MSCs revealed the osteogenic potential of these cells. Moreover, high expression of CD90 in SSCs and HFSCs may associate to higher growth and differentiation potential of these cells. Further, the presence of CD19 on SSCs and GCs may help them to efficiency in response to trans-membrane signals. Thus, these four types of MSCs may be useful in clinical applications and cell therapy.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran ; Stem Cell Research Lab, Azarbaijan ART Centre, ACECR East Azarbaijan Branch, Tabriz, Iran
| | - Farideh Ghanbarvand
- Stem Cell Research Lab, Azarbaijan ART Centre, ACECR East Azarbaijan Branch, Tabriz, Iran
| | | | - Mehri Ejtemaei
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Elham Ghadirkhomi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
35
|
Li C, Wang X, Tan J, Wang T, Wang Q. The immunomodulatory properties of periodontal ligament stem cells isolated from inflamed periodontal granulation. Cells Tissues Organs 2014; 199:256-65. [PMID: 25471814 DOI: 10.1159/000367986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is currently the main cause of tooth loss and as yet there is no appropriate method for establishing a functional and predictable periodontal regeneration. Tissue engineering involving seed cells provides a new prospect for periodontal regeneration. While periodontal ligament stem cells (PDLSCs) are a good choice for seed cells, it is not always possible to obtain the patients' own PDLSCs. We and others have found a type of stromal cells from inflamed periodontal granulation. These cells displayed similar differentiation properties to PDLSCs. Inflammation has a profound influence on the immunomodulatory properties of mesenchymal stem cells, which may affect therapeutic outcome. In this study, we assessed the immunomodulatory characteristics of these inflamed human (ih)PDLSCs. Along with the similarity in cell surface marker expressions, they also displayed immunomodulatory properties comparable to those in healthy human (hh)PDLSCs. Both hhPDLSCs and ihPDLSCs can suppress the proliferation and secretion of IFN-γ in peripheral blood mononuclear cells by indirect soluble mediators and direct cell-cell contact. Albeit with some quantitative variances, the gene expressions of inducible nitric oxide synthases, indoleamine 2,3 dioxygenase, cyclooxygenase-2, TNF-α-induced protein 6 and IL-10 in ihPDLSCs displayed similar patterns as those in hhPDLSCs. Taken together, our results suggest that ihPDLSCs can provide a promising alternative to hhPDLSCs in terms of evident similarities in immunomodulatory properties as well as their easier accessibility and availability.
Collapse
Affiliation(s)
- Chenghua Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
36
|
Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301279. [PMID: 25110670 PMCID: PMC4119697 DOI: 10.1155/2014/301279] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 01/27/2023]
Abstract
Engineering three-dimensional (3D) vascularized constructs remains a challenge due to the inability to form rich microvessel networks. In this study we engineered a prevascularized 3D cell sheet construct for tissue regeneration using human bone marrow-derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells as cell sources. hMSCs were cultured to form a thick cell sheet, and human umbilical vein endothelial cells (HUVECs) were then seeded on the hMSCs sheet to form networks. The single prevascularized HUVEC/hMSC cell sheet was folded to form a 3D construct by a modified cell sheet engineering technique. In vitro results indicated that the hMSCs cell sheet promoted the HUVECs cell migration to form networks in horizontal and vertical directions. In vivo results showed that many blood vessels grew into the 3D HUVEC/hMSC cell sheet constructs after implanted in the subcutaneous pocket of immunodeficient mice. The density of blood vessels in the prevascularized constructs was higher than that in the nonprevascularized constructs. Immunohistochemistry staining further showed that in vitro preformed human capillaries in the prevascularized constructs anastomosed with the host vasculature to form functional blood vessels. These results suggest the promising potential of this 3D prevascularized construct using hMSCs cell sheet as a platform for wide applications in engineering vascularized tissues.
Collapse
|
37
|
Li Y, Yu JM, Zhan XM, Liu LL, Jin N, Zhang YX. Correlation of CD146 expression and clinicopathological characteristics in esophageal squamous cell carcinoma. Oncol Lett 2014; 8:859-863. [PMID: 25009662 PMCID: PMC4081421 DOI: 10.3892/ol.2014.2227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022] Open
Abstract
CD146, a cell adhesion molecule, is found in normal and tumor tissues. The level of its expression has been found to directly correlate with tumor progression and metastatic potential. The objective of this study was to investigate the expression of CD146 in esophageal squamous cell carcinoma (ESCC) and its correlation with clinicopathological parameters. Tumor specimens were collected from 63 patients with ESCC who underwent complete resection. We analyzed the CD146 expression levels in ESCC by immunohistochemistry. The expression of CD146 was detected and it was observed to correlate with clinicopathological parameters. Sixty-three cases of normal squamous mucosa were included for comparison. CD146 expression was identified in 46.0% (29/63) of the ESCC samples, and no positive (weak to moderate or moderate to strong) expression was found in the normal squamous epithelium samples (χ2=27.248; P<0.0001). CD146 expression was associated with lymph node metastasis (χ2=5.117; P=0.024) and advanced clinical stage (χ2=4.661; P=0.031). CD146 expression was one of the significant predictors of survival (hazard ratio, 2.838; 95% confidence interval 1.102–7.305). The overexpression of the CD146 gene was one of the important phenotypes and characteristics in ESCC carcinomatous change. We found that CD146 expression was associated with lymph node metastasis and advanced clinical stage, and was an indicator of poor prognosis in ESCC patients. CD146 may prove to be an important tumor marker for the individualized treatment for ESCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China ; Department of Radiation Oncology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Xue-Mei Zhan
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Li-Li Liu
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ning Jin
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yan-Xia Zhang
- Department of Radiation Oncology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
38
|
Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br J Cancer 2014; 111:149-56. [PMID: 24892449 PMCID: PMC4090744 DOI: 10.1038/bjc.2014.286] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Mature circulating endothelial cells (CEC) are surrogate markers of endothelial damage. CEC measured in patients with advanced cancer are thought not only to derive from damaged normal vasculature (n-CEC), but also from damaged (t-CEC). Therefore, assays that allow the discrimination between these two putative types of CEC are thought to improve the specificity of the enumeration of CEC in cancer. Methods: Identification of tumour-associated endothelial markers (TEM) by comparing antigen expression on normal vs t-CEC and assess the presence of t-CEC in peripheral blood of cancer patients by incorporating TEM in our novel flow cytometry-based CEC detection assay. Results: No difference in antigen expression between normal and malignant endothelial cells (ECs) was found for CD54, CD109, CD137, CD141, CD144 and CXCR7. In contrast, overexpression for CD105, CD146, CD276 and CD309 was observed in tumour ECs compared with normal ECs. CD276 was most differentially expressed and chosen as a marker for further investigation. CD276-expressing CEC were significantly higher in 15 patients with advanced colorectal cancer (median 9 (range 1–293 cell per 4 ml); P<0.005), in 83 patients with a glioblastoma multiforme (median 10 (range 0–804); P<0.0001) and in 14 patients with advanced breast cancer (median 14 (range 0–390) P<0.05) as compared with 24 healthy individuals (median 3 (range 0–11)). Of all patients with malignancies, 58% had CD276+ CEC counts above the ULN (8 cell per 4 ml). Conclusions: The present study shows that CD276 can be used to discriminate ECs from malignant tissue from ECs from normal tissue. In addition, CD276+ CEC do occur in higher frequencies in patients with advanced cancer.
Collapse
|
39
|
Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J, Vénissac N, Sanfiorenzo C, Ferrua B, Marquette CH, Mouroux J, Hofman P. Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 2014; 110:1236-43. [PMID: 24473396 PMCID: PMC3950863 DOI: 10.1038/bjc.2014.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Previous studies indicate that endothelial injury, as demonstrated by the presence of circulating endothelial cells (CECs), may predict clinical outcome in cancer patients. In addition, soluble CD146 (sCD146) may reflect activation of angiogenesis. However, no study has investigated their combined clinical value in patients undergoing resection for non-small cell lung cancer (NSCLC). Methods: Data were collected from preoperative blood samples from 74 patients who underwent resection for NSCLC. Circulating endothelial cells were defined, using the CellSearch Assay, as CD146+CD105+CD45−DAPI+. In parallel, sCD146 was quantified using an ELISA immunoassay. These experiments were also performed on a group of 20 patients with small-cell lung cancer, 60 healthy individuals and 23 patients with chronic obstructive pulmonary disease. Results: The CEC count and the plasma level of sCD146 were significantly higher in NSCLC patients than in the sub-groups of controls (P<0.001). Moreover, an increased CEC count was associated with higher levels of sCD146 (P=0.010). Both high CEC count and high sCD146 plasma level at baseline significantly correlated with shorter progression-free survival (P<0.001, respectively) and overall survival (P=0.005; P=0.009) of NSCLC patients. Conclusions: The present study provides supportive evidence to show that both a high CEC count and a high sCD146 level at baseline correlate with poor prognosis and may be useful for the prediction of clinical outcome in patients undergoing surgery for NSCLC.
Collapse
Affiliation(s)
- M Ilie
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - E Long
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - V Hofman
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France [3] Tumor Biobank, Pasteur Hospital, Nice, France
| | - E Selva
- Tumor Biobank, Pasteur Hospital, Nice, France
| | - C Bonnetaud
- Tumor Biobank, Pasteur Hospital, Nice, France
| | - J Boyer
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - N Vénissac
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Thoracic Surgery, Pasteur Hospital, Nice, France
| | - C Sanfiorenzo
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Pneumology, Pasteur Hospital, Nice, France
| | - B Ferrua
- Inserm C3M, Archet II Hospital, Nice, France
| | - C-H Marquette
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Pneumology, Pasteur Hospital, Nice, France
| | - J Mouroux
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Thoracic Surgery, Pasteur Hospital, Nice, France
| | - P Hofman
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France [3] Tumor Biobank, Pasteur Hospital, Nice, France
| |
Collapse
|
40
|
Mesri M, Birse C, Heidbrink J, McKinnon K, Brand E, Bermingham CL, Feild B, FitzHugh W, He T, Ruben S, Moore PA. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues. PLoS One 2013; 8:e78885. [PMID: 24236063 PMCID: PMC3827283 DOI: 10.1371/journal.pone.0078885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.
Collapse
Affiliation(s)
- Mehdi Mesri
- Celera, Alameda, California, United States of America
- * E-mail:
| | - Charlie Birse
- Celera, Alameda, California, United States of America
| | | | | | - Erin Brand
- Celera, Alameda, California, United States of America
| | | | - Brian Feild
- Celera, Alameda, California, United States of America
| | | | - Tao He
- Celera, Alameda, California, United States of America
| | - Steve Ruben
- Celera, Alameda, California, United States of America
| | - Paul A. Moore
- Celera, Alameda, California, United States of America
| |
Collapse
|
41
|
Jaszberenyi M, Schally AV, Block NL, Nadji M, Vidaurre I, Szalontay L, Rick FG. Inhibition of U-87 MG glioblastoma by AN-152 (AEZS-108), a targeted cytotoxic analog of luteinizing hormone-releasing hormone. Oncotarget 2013; 4:422-32. [PMID: 23518876 PMCID: PMC3717305 DOI: 10.18632/oncotarget.917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent tumor of the central nervous system in adults and has a dismal clinical outcome, which necessitates the development of new therapeutic approaches. We investigated in vivo the action of the targeted cytotoxic analog of luteinizing hormone releasing hormone, AN-152 (AEZS-108) in nude mice (Ncr nu/nu strain) bearing xenotransplanted U-87 MG glioblastoma tumors. We evaluated in vitro the expression of LHRH receptors, proliferation, apoptosis and the release of oncogenic and tumor suppressor cytokines. Clinical and U-87 MG samples of glioblastoma tumors expressed LHRH receptors. Treatment of nude mice with AN-152, once a week at an intravenous dose of 413 nmol/20g, for six weeks resulted in 76 % reduction in tumor growth. AN-152 nearly completely abolished tumor progression and elicited remarkable apoptosis in vitro. Genomic (RT-PCR) and proteomic (ELISA, Western blot) studies revealed that AN-152 activated apoptosis, as reflected by the changes in p53 and its regulators and substrates, inhibited cell growth, and elicited changes in intermediary filament pattern. AN-152 similarly reestablished contact regulation as demonstrated by expression of adhesion molecules and inhibited vascularization, as reflected by the transcription of angiogenic factors. Our findings suggest that targeted cytotoxic analog AN-152 (AEZS-108) should be considered for a treatment of glioblastomas.
Collapse
|
42
|
Wang P, Luo Y, Duan H, Xing S, Zhang J, Lu D, Feng J, Yang D, Song L, Yan X. MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol 2013; 33:3689-3699. [PMID: 23878390 PMCID: PMC3753872 DOI: 10.1128/mcb.00343-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022] Open
Abstract
CD146, an endothelial biomarker, has been shown to be aberrantly upregulated during pathological angiogenesis and functions as a coreceptor for vascular endothelial growth factor receptor 2 (VEGFR-2) to promote disease progression. However, the regulatory mechanisms of CD146 expression during angiogenesis remain unclear. Using a microRNA screening approach, we identified a novel negative regulator of angiogenesis, microRNA 329 (miR-329), that directly targeted CD146 and inhibited CD146-mediated angiogenesis in vitro and in vivo. Endogenous miR-329 expression was downregulated by VEGF and tumor necrosis factor alpha (TNF-α), resulting in the elevation of CD146 in endothelial cells. Upregulation of CD146 facilitated an endothelial response to VEGF-induced SRC kinase family (SKF)/p38 mitogen-activated protein kinase (MAPK)/NF-κB activation and consequently promoted endothelial cell migration and tube formation. Our animal experiments showed that treatment with miR-329 repressed excessive CD146 expression on blood vessels and significantly attenuated neovascularization in a mouse model of pathological angiogenesis. Our findings provide the first evidence that CD146 expression in angiogenesis is regulated by miR-329 and suggest that miR-329 could present a potential therapeutic tool for the treatment of angiogenic diseases.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu Xing
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianlin Zhang
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Lu
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lina Song
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Russell KC, Tucker HA, Bunnell BA, Andreeff M, Schober W, Gaynor AS, Strickler KL, Lin S, Lacey MR, O'Connor KC. Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng Part A 2013; 19:2253-66. [PMID: 23611563 DOI: 10.1089/ten.tea.2012.0649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. Sc(LO)NG2(HI) and Sc(LO)NG2(HI)CD146(HI) MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5-2.2 times the value for the parental controls. The Sc(LO) gate enriches for rapidly dividing cells. Addition of the NG2(HI) gate increases cell survival to 1.5 times the parental control. Further addition of the CD146(HI) gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications.
Collapse
Affiliation(s)
- Katie C Russell
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Okazaki Y, Nagai H, Chew SH, Li J, Funahashi S, Tsujimura T, Toyokuni S. CD146 and insulin-like growth factor 2 mRNA-binding protein 3 predict prognosis of asbestos-induced rat mesothelioma. Cancer Sci 2013; 104:989-95. [PMID: 23621518 DOI: 10.1111/cas.12185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/21/2013] [Accepted: 04/25/2013] [Indexed: 11/27/2022] Open
Abstract
Malignant mesothelioma (MM), which is associated with asbestos exposure, is one of the most deadly tumors in humans. Early MM is concealed in the serosal cavities and lacks specific clinical symptoms. For better treatment, early detection and prognostic markers are necessary. Recently, CD146 and insulin-like growth factor 2 mRNA-binding protein 3 (IMP3) were reported as possible positive markers of MM to distinguish from reactive mesothelia in humans. However, their application on MM of different species and its impact on survival remain to be elucidated. To disclose the utility of these molecules as early detection and prognostic markers of MM, we injected chrysotile or crocidolite intraperitoneally to rats, thus obtaining 26 peritoneal MM and establishing 11 cell lines. We immunostained CD146 and IMP3 using paraffin-embedded tissues and cell blocks and found CD146 and IMP3 expression in 58% (15/26) and 65% (17/26) of MM, respectively, but not in reactive mesothelia. There was no significant difference in both immunostainings for overexpression among the three histological subtypes of MM and the expression of CD146 and IMP3 was proportionally associated. Furthermore, the overexpression of CD146 and/or IMP3 was proportionally correlated with shortened survival. These results suggest that CD146 and IMP3 are useful diagnostic and prognostic markers of MM.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Jaszberenyi M, Schally AV, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Rick FG. Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol 2013; 8:281-90. [PMID: 23371031 DOI: 10.1007/s11523-013-0264-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
Abstract
Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-β-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFβ, and TGFβ, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.
Collapse
|
46
|
Zhang H, Zhang J, Wang Z, Lu DI, Feng J, Yang D, Chen X, Yan X. CD146 is a potential marker for the diagnosis of malignancy in cervical and endometrial cancer. Oncol Lett 2013; 5:1189-1194. [PMID: 23599761 PMCID: PMC3629048 DOI: 10.3892/ol.2013.1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/14/2013] [Indexed: 11/12/2022] Open
Abstract
Cluster of differentiation 146 (CD146) is an endothelial cell adhesion molecule which is overexpressed in various types of malignant cancer, including ovarian cancer. However, whether CD146 is overexpressed in another two types of gynecological cancer, cervical cancer and endometrial cancer, remains unclear. In the present study, we showed that CD146 expression levels were higher in cells from cervical cancer and endometrial cancer compared with their corresponding normal tissues, using anti-CD146 mouse antibody AA4 (mAb AA4) and that mAb AA4 exhibited a high performance for specificity, sensitivity and positive predictive value in the detection of these two types of cancer. CD146 expression was positively and significantly correlated with the pathological subtype of cervical cancer and with the histological grade and depth of myometrial invasion in endometrial cancer. In addition, we confirmed that CD146 is present in the majority of blood vessels in cervical and endometrial cancer, suggesting that CD146 may be actively implicated in the metastasis of cervical and endometrial cancer via the vascular system. Thus, this study provides insights for further development of CD146 mAb in the detection of gynecological malignant cancer types and implies that a combined treatment strategy of anti-CD146 immunotherapy with other traditional chemo- or radiotherapy treatments may be a promising approach against cervical and endometrial cancer.
Collapse
Affiliation(s)
- Haofeng Zhang
- Department of Obstetrics and Gynecology, Capital Medical University Affiliated Beijing Anzhen Hospital, Institute of Beijing Heart, Lung and Blood Vessel Diseases, Chaoyang, Beijing 100029
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Aberrant genes promoter methylation in neural crest-derived tumors. Int J Biol Markers 2012; 27:e389-94. [PMID: 23125005 DOI: 10.5301/jbm.2012.9766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 11/20/2022]
Abstract
Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids. MCAM methylation levels were significantly higher in lung carcinoids tumors (p=0.001), suggesting that this alteration may represent a molecular biomarker in this tumor type.
Collapse
|
48
|
Jouve N, Despoix N, Espeli M, Gauthier L, Cypowyj S, Fallague K, Schiff C, Dignat-George F, Vély F, Leroyer AS. The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells. J Biol Chem 2012; 288:2571-9. [PMID: 23223580 DOI: 10.1074/jbc.m112.418848] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD146 is a highly glycosylated junctional adhesion molecule, expressed on human vascular endothelial cells and involved in the control of vessel integrity. Galectin-1 is a lectin produced by vascular cells that can binds N- and O-linked oligosaccharides of cell membrane glycoproteins. Because both CD146 and Galectin-1 are involved in modulation of cell apoptosis, we hypothesized that Galectin-1 could interact with CD146, leading to functional consequences in endothelial cell apoptosis. We first characterized CD146 glycosylations and showed that it is mainly composed of N-glycans able to establish interactions with Galectin-1. We demonstrated a sugar-dependent binding of recombinant CD146 to Galectin-1 using both ELISA and Biacore assays. This interaction is direct, with a K(D) of 3.10(-7) M, and specific as CD146 binds to Galectin-1 and not to Galectin-2. Moreover, co-immunoprecipitation experiments showed that Galectin-1 interacts with endogenous CD146 that is highly expressed by HUVEC. We observed a Galectin-1-induced HUVEC apoptosis in a dose-dependent manner as demonstrated by Annexin-V/7AAD staining. Interestingly, both down-regulation of CD146 cell surface expression using siRNA and antibody-mediated blockade of CD146 increase this apoptosis. Altogether, our results identify Galectin-1 as a novel ligand for CD146 and this interaction protects, in vitro, endothelial cells against apoptosis induced by Galectin-1.
Collapse
Affiliation(s)
- Nathalie Jouve
- Aix-Marseille Université, INSERM, UMR-S 1076, 13385 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mendes LF, Pirraco RP, Szymczyk W, Frias AM, Santos TC, Reis RL, Marques AP. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One 2012; 7:e41051. [PMID: 22829909 PMCID: PMC3400580 DOI: 10.1371/journal.pone.0041051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/16/2012] [Indexed: 12/11/2022] Open
Abstract
In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like (CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture medium with TGF-β1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet, suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.
Collapse
Affiliation(s)
- Luís F. Mendes
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Wojciech Szymczyk
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Ana M. Frias
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Tírcia C. Santos
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
50
|
Stopp S, Bornhäuser M, Ugarte F, Wobus M, Kuhn M, Brenner S, Thieme S. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells. Haematologica 2012; 98:505-13. [PMID: 22801967 DOI: 10.3324/haematol.2012.065201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.
Collapse
Affiliation(s)
- Sabine Stopp
- Medical Clinic and Policlinic I, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|