1
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Genetic alterations of Keap1 confers chemotherapeutic resistance through functional activation of Nrf2 and Notch pathway in head and neck squamous cell carcinoma. Cell Death Dis 2022; 13:696. [PMID: 35945195 PMCID: PMC9363464 DOI: 10.1038/s41419-022-05126-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
Keap1 mutations regulate Nrf2 activity and lead to chemoresistance in cancers. Yet the underlying molecular mechanisms of chemoresistance are poorly explored. By focusing and genotyping head and neck squamous cell carcinoma (HNSCC) that had available pathologic and clinical data, we provide evidence that Keap1 displays frequent alterations (17%) in HNSCC. Functional loss of Keap1 results in significant activation of Nrf2 and promotes cancer cell growth, proliferation, and elevated cancer stem cell (CSCs) self-renewal efficiency and resistance to oxidative stress. Furthermore, decreased Keap1 activity in these cells increased nuclear accumulation of Nrf2 and activation of the Notch pathway, causing enhanced transcriptional alterations of antioxidants, xenobiotic metabolism enzymes, and resistance to chemotherapeutic treatment. Limiting the Nrf2 activity by either Keap1 complementation or by Nrf2 silencing increased the sensitivity to chemotherapy in Keap1-mutated cells and repressed the CSC self-renewal activity. Our findings suggest that Keap1 mutations define a distinct disease phenotype and the Keap1-Nrf2 pathway is one of the leading molecular mechanisms for clinical chemotherapeutic resistance. Targeting this pathway may provide a potential and attractive personalized treatment strategy for overcoming chemotherapeutic resistance conferred by Keap1 mutations.
Collapse
|
3
|
Kobayashi H, Imanaka S, Shigetomi H. Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis. Oncol Lett 2022; 23:80. [PMID: 35111249 PMCID: PMC8771630 DOI: 10.3892/ol.2022.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in molecular genetics have expanded our understanding of ovarian cancer. High levels of reactive oxygen species (ROS) and upregulation of antioxidant genes are common characteristic features of human cancers. This review reconsiders novel therapeutic strategies for ovarian cancer by focusing on redox homeostasis. A literature search was performed for preclinical and clinical studies published between January 1998 and October 2021 in the PubMed database using a combination of specific terms. ROS serves a central role in tumor suppression and progression by inducing DNA damage and mutations, genomic instability, and aberrant anti- and pro-tumorigenic signaling. Cancer cells increase their antioxidant capacity to neutralize the extra ROS. Additionally, antioxidants, such as CD44 variant isoform 9 (CD44v9) and nuclear factor erythroid 2-related factor 2 (Nrf2), mediate redox homeostasis in ovarian cancer. Furthermore, studies conducted on different cancer types revealed the dual role of antioxidants in tumor progression and inhibition. However, in animal models, genetic loss of antioxidant capacity in the host cannot block cancer initiation and progression. Host-derived antioxidant systems are essential to suppress carcinogenesis, suggesting that antioxidants serve a pivotal role in suppressing cancer development. By contrast, antioxidant activation in cancer cells confers aggressive phenotypes. Antioxidant inhibitors can promote cancer cell death by enhancing ROS levels. Concurrent inhibition of CD44v9 and Nrf2 may trigger apoptosis induction, potentiate chemosensitivity and enhance antitumor activities through the ROS-activated p38/p21 pathway. Antioxidants may have tumor-promoting and -suppressive functions. Therefore, an improved understanding of the role of antioxidants in redox homeostasis and developing antioxidant-specific inhibitors is necessary for treating ovarian cancer.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Aska Ladies Clinic, Nara 634-0001, Japan
| |
Collapse
|
4
|
Badmann S, Mayr D, Schmoeckel E, Hester A, Buschmann C, Beyer S, Kolben T, Kraus F, Chelariu-Raicu A, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. AKR1C1/2 inhibition by MPA sensitizes platinum resistant ovarian cancer towards carboplatin. Sci Rep 2022; 12:1862. [PMID: 35115586 PMCID: PMC8814148 DOI: 10.1038/s41598-022-05785-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
In recurrent epithelial ovarian cancer (EOC) most patients develop platinum-resistance. On molecular level the NRF2 pathway, a cellular defense mechanism against reactive oxygen species, is induced. In this study, we investigate AKR1C1/2, target of NRF2, in a well-established EOC collective by immunohistochemistry and in a panel of ovarian cancer cell lines including platinum-resistant clones. The therapeutic effect of carboplatin and MPA as monotherapy or in combination was assessed by functional assays, using OV90 and OV90cp cells. Molecular mechanisms of action of MPA were investigated by NRF2 silencing and AKR activity measurements. Immunohistochemical analysis revealed that AKR1C1/2 is a key player in the development of chemoresistance and an independent indicator for short PFS (23.5 vs. 49.6 months, p = 0.013). Inhibition of AKR1C1/2 by MPA led to a concentration- and time-dependent decline of OV90 viability and to an increased response to CP in vitro. By NRF2 silencing, however, the effects of MPA treatment were reduced. Concludingly, our data suggest that a combination therapy of carboplatin and MPA might be a promising therapeutic approach to increase response rates of EOC patients, which should be explored in clinical context.
Collapse
Affiliation(s)
- Susann Badmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Fabian Kraus
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| |
Collapse
|
5
|
Ahmed SHH, Gonda T, Hunyadi A. Medicinal chemistry inspired by ginger: exploring the chemical space around 6-gingerol. RSC Adv 2021; 11:26687-26699. [PMID: 35480015 PMCID: PMC9037716 DOI: 10.1039/d1ra04227k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe) has been used as a spice and as a traditional remedy since ancient times, especially in traditional Chinese medicine. It has been applied as a treatment for many diseases either alone or in combination with other remedies. Many studies were conducted on ginger and its constituents and a wide array of bioactivities were reported, e.g., antioxidant, anti-inflammatory, antiemetic, and anticancer activity. Most of these had been correlated to gingerols and shogaols, the most abundant secondary metabolites in ginger. This inspired several research groups to explore the biomedical value of the chemical space around these compounds, and many of their synthetic or semi-synthetic analogues have been prepared and studied for various bioactivities. Thanks to this, many valuable structure activity relationships have been revealed for such compounds. Herein, we provide a brief summary on the synthetic derivatization efforts that had so far been implemented on 6-gingerol, the main constituent of fresh ginger. This review covers 160 natural, semisynthetic, or synthetic 6-gingerol derivatives and their reported bioactivities. Structure and reported bioactivities of semi-synthetic and synthetic 6-gingerol derivatives.![]()
Collapse
Affiliation(s)
- Sara Hassan Hassan Ahmed
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Faculty of Pharmacy, University of Khartoum 1996 Khartoum Sudan
| | - Tímea Gonda
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Interdisciplinary Centre for Natural Products, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| |
Collapse
|
6
|
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants (Basel) 2021; 10:antiox10050789. [PMID: 34067625 PMCID: PMC8155918 DOI: 10.3390/antiox10050789] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from cancer biopsies highlights the possible correlation between HO-1 expression, pathological features, and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression; understanding the correlation between HO-1 and clinical data might guide the therapeutic choice and improve the outcome of patients in terms of prognosis and life quality.
Collapse
|
7
|
Kankia IH, Paramasivan P, Elcombe M, Langdon SP, Deeni YY. Nuclear factor erythroid 2-related factor 2 modulates HER4 receptor in ovarian cancer cells to influence their sensitivity to tyrosine kinase inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:187-203. [PMID: 36046141 PMCID: PMC9400752 DOI: 10.37349/etat.2021.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
Aim: Nuclear factor erythroid 2-related factor 2 (NRF2) is a key component in the cell’s response to oxidative and electrophilic stress and is a transcription factor regulating the expression of a collection of anti-oxidative and cytoprotective genes. Human epidermal growth factor receptor 4 (HER4/erbB4) regulates growth and differentiation in many cancer types. Here, NRF2 and HER4 receptor interactions were investigated in a panel of ovarian cancer cell lines. Methods: Pharmacological [tert-butylhydroquinone (tBHQ) and retinoid/rexinoid, bexarotene] and genetic [small interfering RNA (siRNA)] manipulations were used to activate or inhibit NRF2 function in the cell line panel (PE01, OVCAR3, SKOV3). Activity of the HER-targeted tyrosine kinase inhibitors, erlotinib (ERL) and lapatinib (LAP), was evaluated after NRF2 activation. Results: While tBHQ increased the levels of both phosphorylated-NRF2 (pNRF2) and HER4 in PE01, OVCAR3 and SKOV3 cells, bexatorene and NRF2-target siRNA treatment decreased pNRF2 and total HER4 levels. The tBHQ-dependent pharmacological activation of NRF2 attenuated the therapeutic effectiveness of ERL and LAP. Analyses of gene expression data from a HER4 driven reporter system and in vitro or in vivo cancer models, support NRF2 regulation of HER4 expression. Conclusions: These results support the presence of signaling interaction between the NRF2 and HER4 receptor pathways and suggest that intervention modulating this cross-talk could have anticancer therapeutic value.
Collapse
Affiliation(s)
- Ibrahim H. Kankia
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK 3Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Poornima Paramasivan
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Matthew Elcombe
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Yusuf Y. Deeni
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK 4Department of Microbiology and Biotechnology, Faculty of Science, Federal University Dutse, Dutse PMB 7156, Nigeria
| |
Collapse
|
8
|
Gomes VJ, Rezeck Nunes P, Haworth SM, Sandrim VC, Peraçoli JC, Peraçoli MTS, Carlström M. Monocytes from preeclamptic women previously treated with silibinin attenuate oxidative stress in human endothelial cells. Hypertens Pregnancy 2021; 40:124-132. [PMID: 33586558 DOI: 10.1080/10641955.2021.1884258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: To investigate whether the supernatant from monocytes of preeclamptic and normotensive pregnant women, cultured in vitro with silibinin, can modulate oxidative stress in HUVEC.Methods: Concentrations of IL-1β, IL-10, and TNF-α in monocyte culture supernatants were determined by ELISA. HUVEC and their supernatant cultures were employed for determination of NO, nitrite and nitrate, lipid peroxidation, and hemeoxygenase-1 (HO-1).Results: HUVEC treatment with supernatant of preeclamptic monocytes cultured with silibinin produced increased levels of nitrite, reduced lipid peroxidation, and increased HO-1.Conclusion: Supernatant of monocytes from preeclamptic women induce oxidative stress in HUVEC which can be reduced by silibinin treatment.Abbreviations: DAF-FMTM, Diaminofluorescein-FM; EDTA, Ethylenediaminetetraacetic acid; HO-1, heme oxygenase-1; HPLC, high-performance liquid chromatography; HUVEC, human umbilical vein endothelial cell; MDA, malondialdehyde; NO, nitric oxide; NT, normotensive; PE, preeclampsia; ROS, reactive oxygen species; Sb, silibinin.
Collapse
Affiliation(s)
- Virgínia Juliani Gomes
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Priscila Rezeck Nunes
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Valéria Cristina Sandrim
- Department of Biological and Chemical Sciences, Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - José Carlos Peraçoli
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Maria Terezinha S Peraçoli
- Department of Biological and Chemical Sciences, Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Badi RM, Khaleel EF, El-Bidawy MH, Satti HH, Mostafa DG. Exendin-4 Induces Cytotoxic Autophagy in Two Ovarian Cancer Cell Lines through Inhibition of Mtorc1 Mediated by Activation of AMPK and Suppression of Akt. Folia Biol (Praha) 2020; 66:186-203. [PMID: 34087975 DOI: 10.14712/fb2020066050186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activation of autophagy suppresses ovarian cancer (OC). This in vitro study investigated whether the anti-tumour effect of exendin-4 against OC involves modulation of autophagy and figured out the possible mechanisms of action. SKOV-3 and OVCAR-3 cells (1 × 105/ml) were cultured in DMEM medium and treated with exendin-4 in the presence or absence of chloroquine (CQ), an autophagy inhibitor. In some cases, cells were also treated with exendin- 4 with or without pre-treatment with compound C (CC), an AMPK inhibitor, or insulin-like growth factor (IGF-1), a PI3K/Akt activator. Exendin-4 increased expression of beclin-1 and LC3I/II, suppressed expression of p62, reduced cell survival, migration, and invasion, and increased cell apoptosis and LDH release in both SKOV-3 and OVCAR-3 cells. Besides, exendin-4 reduced phosphorylation of mTORC1, 6SK, 4E-BP1, and Akt but increased phosphorylation of AMPK in both cell lines. These effects were associated with down-regulation of Bcl-2, suppression of nuclear phosphorylation of NF-κB p65, and increased expression of Bax and cleaved caspases 3/8. Chloroquine completely prevented the inhibitory effects of exendin-4 on the cell survival, Bcl-2, NF-κB, and cell invasiveness and abolished its stimulation of cell apoptosis and LDH release. Moreover, only the combined treatment with IGF-1 and CC completely abolished the observed effect of exendin-4 on the expression of beclin-1, LC3I/II, p62, as well as on cell survival, apoptosis, and LDH release. Exendin-4 exhibits a potent anti-tumour cytotoxic effect in SKOV-3 and OVCAR-3 cells by activating the markers of autophagy, mediated by activation of AMPK and inhibition of Akt.
Collapse
Affiliation(s)
- R M Badi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - E F Khaleel
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M H El-Bidawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of BMS, Division of Physiology, College of Medicine, Prince Sattam Ibn Abdulaziz University, Al-Kharj, Saudi Arabia
| | - H H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - D G Mostafa
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Hester A, Zeder-Göß C, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology. Cancer Manag Res 2019; 11:7673-7684. [PMID: 31616183 PMCID: PMC6699153 DOI: 10.2147/cmar.s210004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to investigate the potential prognostic impact of nuclear factor erythroid 2-related factor 2 (NRF2) and progesterone receptor A (PRA)/progesterone receptor B (PRB) in ovarian cancer patients which might be the rationale for putative new treatment strategies. Patients and methods The presence of NRF2 and PRA/PRB was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining of NRF2 and PRA/PRB was rated using the semi-quantitative immunoreactive score (IR score, Remmele’s score) and correlated to clinical and pathological data. NRF2 and PRA/PRB expression were compared with respect to the overall survival (OS). Results NRF2 staining was different in both, the cytoplasm and nucleus between the histological subtypes (p=0.001 and p=0.02, respectively). There was a significant difference in the PRA expression comparing all histological subtypes (p=0.02). Histological subtypes showed no significant differences in the PRB expression. A strong correlation of cytoplasmic NRF2 and PRA expression was detected (cc=0.247, p=0.003) as well as of cytoplasmic NRF2 and PRB expression (cc=0.25, p=0.003), confirmed by immunofluorescence double staining. Cytoplasmic NRF2 expression was associated with a longer OS (median 50.6 vs 32.5 months; p=0.1) as it was seen for PRA expression (median 63.4 vs 33.1 months; p=0.08), although not statistically significant. In addition, high PRB expression (median 80.4 vs 32.5 months; p=0.04) and concurrent expression of cytoplasmic NRF2 and PRA were associated with a significantly longer OS (median 109.7 vs 30.6 months; p=0.02). The same relationship was also noted for NRF2 and PRB with improved OS for patients expressing both cytoplasmic NRF2 and PRB (median 153.5 vs 30.6 months; p=0.009). Silencing of NFE2L2 induced higher mRNA expression of PGR in the cancer cell line OVCAR3 (p>0.05) confirming genetic interactions of NRF2 and PR. Conclusion In this study, the combination of cytoplasmic NRF2 and high PRA/PRB expression was demonstrated to be associated with improved overall survival in ovarian cancer patients. Further understanding of interactions within the NRF2/AKR1C1/PR pathway could open new additional therapeutic approaches.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Kleinschmidt EG, Miller NLG, Ozmadenci D, Tancioni I, Osterman CD, Barrie AM, Taylor KN, Ye A, Jiang S, Connolly DC, Stupack DG, Schlaepfer DD. Rgnef promotes ovarian tumor progression and confers protection from oxidative stress. Oncogene 2019; 38:6323-6337. [PMID: 31308489 DOI: 10.1038/s41388-019-0881-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 11/09/2022]
Abstract
Ovarian cancer is the fifth-leading cause of cancer death among women. The dissemination of ovarian tumors and growth as spheroids accompanies late-stage disease. In cell culture, ovarian tumor cell spheroids can exhibit elevated resistance to environmental stressors, such as reactive oxygen species. Homeostatic balance of the antioxidant response is a protective mechanism that prevents anoikis, a form of programmed cell death. Signaling pathways activated by integrin receptors suppress anoikis. Rgnef (ARHGEF28/p190RhoGEF) is a guanine nucleotide exchange factor that is activated downstream of integrins. We find that Rgnef protein levels are elevated in late-stage serous ovarian cancer, high Rgnef mRNA levels are associated with decreased progression-free and overall survival, and genomic ARHGEF28 loss is associated with increased patient survival. Using transgenic and transplantable Rgnef knockout mouse models, we find that Rgnef is essential for supporting three-dimensional ovarian spheroid formation in vitro and tumor growth in mice. Using RNA-sequencing and bioinformatic analyses, we identify a conserved Rgnef-supported anti-oxidant gene signature including Gpx4, Nqo1, and Gsta4; common targets of the NF-kB transcription factor. Antioxidant treatment enhanced growth of Rgnef-knockout spheroids and Rgnef re-expression facilitated NF-κB-dependent tumorsphere survival. These studies reveal a new role for Rgnef in ovarian cancer to facilitate NF-κB-mediated gene expression protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Elizabeth G Kleinschmidt
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.,Biomedical Sciences Graduate Program, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Nichol L G Miller
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.,Pfizer Inc., La Jolla, CA, 92121, USA
| | - Duygu Ozmadenci
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Isabelle Tancioni
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Carlos Díaz Osterman
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Allison M Barrie
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Kristin N Taylor
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Aaron Ye
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Shulin Jiang
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | | | - Dwayne G Stupack
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - David D Schlaepfer
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 2019; 26:2300-2313. [PMID: 30778200 DOI: 10.1038/s41418-019-0303-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) is one of the master regulators that control hundreds of genes containing antioxidant response elements (AREs). The NRF2-ARE pathway plays a complex role in colorectal cancer (CRC). NRF2 activity is known to be regulated by KEAP1-CUL3 E3 ligase-mediated ubiquitination, indicating the importance of deubiquitination regulation. However, the deubiquitinase (DUB) of NRF2 remains unknown. Here, by screening a DUB library, we identified DUB3 as a DUB that remarkably stabilized NRF2. Further experiments demonstrated that DUB3 promoted NRF2 stability and transcriptional activity by decreasing the K48-linked ubiquitination of NRF2. Coimmunoprecipitation studies revealed interactions between NRF2 and DUB3, as well as between KEAP1 and DUB3, indicating that NRF2, DUB3, and KEAP1 formed a large functional complex. Importantly, ectopic expression of DUB3 caused NRF2-dependent chemotherapy resistance in colon cancer cell lines. Thus, to the best of our knowledge, our findings are the first to identify DUB3 as a NRF2 DUB and may provide a new strategy against chemotherapy resistance in CRC and other NRF2-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ze-Yan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Huan Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shang-Ze Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Rongfu Tu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Fan Jia
- Renmin Hospital of Wuhan University, Hubei General Hospital, Wuhan, 430072, P. R. China
| | - Zhe Zheng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xue-Min Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
13
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Interaction of ERα and NRF2 Impacts Survival in Ovarian Cancer Patients. Int J Mol Sci 2018; 20:ijms20010112. [PMID: 30597961 PMCID: PMC6337731 DOI: 10.3390/ijms20010112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) regulates cytoprotective antioxidant processes. In this study, the prognostic potential of NRF2 and its interactions with the estrogen receptor α (ERα) in ovarian cancer cells was investigated. NRF2 and ERα protein expression in ovarian cancer tissue was analyzed as well as mRNA expression of NRF2 (NFE2L2) and ERα (ESR1) in four ovarian cancer and one benign cell line. NFE2L2 silencing was carried out to evaluate a potential interplay between NRF2 and ERα. Cytoplasmic NRF2 expression as inactive form had significantly higher expression in patients with low-grade histology (p = 0.03). In the serous cancer subtype, high cytoplasmic NRF2 expression (overall survival (OS), median 50.6 vs. 29.3 months; p = 0.04) and high ERα expression (OS, median 74.5 vs. 27.1 months; p = 0.002) was associated with longer overall survival as well as combined expression of both inactive cytoplasmic NRF2 and ERα in the whole cohort (median 74.5 vs. 37.7 months; p = 0.04). Cytoplasmic NRF2 expression showed a positive correlation with ERα expression (p = 0.004). NFE2L2 was found to be highly expressed in the ovarian cancer cell lines OVCAR3, UWB1.289, and TOV112D. Compared with the benign cell line HOSEpiC, ESR1 expression was reduced in all ovary cancer cell lines (all p < 0.001). Silencing of NFE2L2 induced a higher mRNA expression of ESR1 in the NFE2L2 downregulated cancer cell lines OVCAR3 (p = 0.003) and ES2 (p < 0.001), confirming genetic interactions of NRF2 and ERα. In this study, both inactive cytoplasmic NRF2 and high ERα expression were demonstrated to be associated with improved survival in ovarian cancer patients. Further understanding of interactions within the estradiol⁻ERα⁻NRF2 pathway could better predict the impact of endocrine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, 81377 LMU Munich, Germany.
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, 81377 LMU Munich, Germany.
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
14
|
Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3181-3197. [PMID: 30288023 PMCID: PMC6161735 DOI: 10.2147/dddt.s172612] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major cell defense mechanism against oxidative and xenobiotic stress is mediated by the Nrf2/Keap1 signaling pathway. The Nrf2/Keap1 pathway regulates gene expression of many cytoprotective and detoxifying enzymes, thus playing a pivotal role in maintaining redox cellular homeostasis. Many diseases including cancer have been closely related to impaired Nrf2 activity. Targeting Nrf2 and modulating its activity represents a novel modern strategy for cancer chemoprevention and therapy. In this review, different design strategies used for the development of Nrf2 modulators are described in detail. Moreover, the main focus is on important and recently developed Nrf2 activators and inhibitors, their in vitro and in vivo studies, and their potential use as chemopreventive agents and/or cancer therapeutics.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia,
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Hou D, Liu Z, Xu X, Liu Q, Zhang X, Kong B, Wei JJ, Gong Y, Shao C. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol 2018; 17:99-111. [PMID: 29684820 PMCID: PMC6006521 DOI: 10.1016/j.redox.2018.03.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
PARP inhibitors have been widely tested in clinical trials, especially for the treatment of breast cancer and ovarian cancer, and were shown to be highly successful. Because PARP primarily functions in sensing and repairing DNA strand breaks, the therapeutic effect of PARP inhibition is generally believed to be attributed to impaired DNA repair. We here report that oxidative stress is also increased by PARP inhibition and mediates the antitumor effect. We showed that PARP1 is highly expressed in specimens of high grade serous ovarian carcinoma and its activity is required for unperturbed proliferation of ovarian cancer cells. Inhibition or depletion of PARP leads to not only an increase in DNA damage, but also an elevation in the levels of reactive oxygen species (ROS). Importantly, antioxidant N-acetylcysteine (NAC) significantly attenuated the induction of DNA damage and the perturbation of proliferation by PARP inhibition or depletion. We further showed that NADPH oxidases 1 and 4 were significantly upregulated by PARP inhibition and were partially responsible for the induction of oxidative stress. Depletion of NOX1 and NOX4 partially rescued the growth inhibition of PARP1-deficient tumor xenografts. Our findings suggest that in addition to compromising the repair of DNA damage, PARP inhibition or depletion may exert extra antitumor effect by elevating oxidative stress in ovarian cancer cells. PARP1 is overexpressed in ovarian cancer. PARP inhibition increases oxidative stress and oxidative DNA damage. PARP inhibition increases ROS by upregulating NOX1 and NOX4. Oxidative stress mediates the antitumor effect of PARP inhibition.
Collapse
Affiliation(s)
- Dong Hou
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiuhua Xu
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education/Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China; The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Ren Ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Hyter S, Hirst J, Pathak H, Pessetto ZY, Koestler DC, Raghavan R, Pei D, Godwin AK. Developing a genetic signature to predict drug response in ovarian cancer. Oncotarget 2018; 9:14828-14848. [PMID: 29599910 PMCID: PMC5871081 DOI: 10.18632/oncotarget.23663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
There is a lack of personalized treatment options for women with recurrent platinum-resistant ovarian cancer. Outside of bevacizumab and a group of poly ADP-ribose polymerase inhibitors, few options are available to women that relapse. We propose that efficacious drug combinations can be determined via molecular characterization of ovarian tumors along with pre-established pharmacogenomic profiles of repurposed compounds. To that end, we selectively performed multiple two-drug combination treatments in ovarian cancer cell lines that included reactive oxygen species inducers and HSP90 inhibitors. This allowed us to select cell lines that exhibit disparate phenotypes of proliferative inhibition to a specific drug combination of auranofin and AUY922. We profiled altered mechanistic responses from these agents in both reactive oxygen species and HSP90 pathways, as well as investigated PRKCI and lncRNA expression in ovarian cancer cell line models. Generation of dual multi-gene panels implicated in resistance or sensitivity to this drug combination was produced using RNA sequencing data and the validity of the resistant signature was examined using high-density RT-qPCR. Finally, data mining for the prevalence of these signatures in a large-scale clinical study alluded to the prevalence of resistant genes in ovarian tumor biology. Our results demonstrate that high-throughput viability screens paired with reliable in silico data can promote the discovery of effective, personalized therapeutic options for a currently untreatable disease.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ziyan Y. Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rama Raghavan
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dong Pei
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
17
|
Perna A, De Luca A, Adelfi L, Pasquale T, Varriale B, Esposito T. Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:63. [PMID: 29448931 PMCID: PMC5815247 DOI: 10.1186/s12906-018-2125-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The thyroid gland is one of the largest endocrine glands in the body. The vast majority of TCs (> 90%) originate from follicular cells and are defined as differentiated thyroid cancers (DTC) and the two histological subtypes are the papillary TC with its variants and the follicular TC. Curcumin possesses a wide variety of biological functions, and thanks to its properties, it has gained considerable attention due to its profound medicinal values (Prasad, Gupta, Tyagi, and Aggarwal, Biotechnol Adv 32:1053-1064, 2014). We have undertaken the present work in order to define the possible role of curcumin in modulating the genetic expression of cell markers and to understand the effectiveness of this nutraceutical in modulating the regression of cancer phenotype. METHODS As a template we used the TPC-1 cells treated with the different extracts of turmeric, and examined the levels of expression of different markers (proliferative, inflammatory, antioxidant, apoptotic). RESULTS Treatment with the three different curcumin extracts displays anti-inflammatory, antioxidant properties and it is able to influence cell cycle with slightly different effects upon the extracts. Furthermore curcumin is able to influence cell metabolic activity vitality. CONCLUSIONS In conclusion curcumin has the potential to be developed as a safe therapeutic but further studies are needed to verify its antitumor ability in vivo.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Laura Adelfi
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Tammaro Pasquale
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Bruno Varriale
- Department of Experimental Medicine, Molecular Genetics Laboratory, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy.
| | - Teresa Esposito
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
18
|
The Role of Redox-Regulating Enzymes in Inoperable Breast Cancers Treated with Neoadjuvant Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2908039. [PMID: 29348788 PMCID: PMC5733970 DOI: 10.1155/2017/2908039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Although validated predictive factors for breast cancer chemoresistance are scarce, there is emerging evidence that the induction of certain redox-regulating enzymes may contribute to a poor chemotherapy effect. We investigated the possible association between chemoresistance and cellular redox state regulation in patients undergoing neoadjuvant chemotherapy (NACT) for breast cancer. In total, 53 women with primarily inoperable or inflammatory breast cancer who were treated with NACT were included in the study. Pre-NACT core needle biopsies and postoperative tumor samples were immunohistochemically stained for nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), thioredoxin (Trx), and peroxiredoxin I (Prx I). The expression of all studied markers increased during NACT. Higher pre-NACT nuclear Prx I expression predicted smaller size of a resected tumor (p = 0.00052; r = −0.550), and higher pre-NACT cytoplasmic Prx I expression predicted a lower amount of evacuated nodal metastasis (p = 0.0024; r = −0.472). Pre-NACT nuclear Trx expression and pre-NACT nuclear Keap1 expression had only a minor prognostic significance as separate factors, but when they were combined, low expression for both antibodies before NACT predicted dismal disease-free survival (log-rank p = 0.0030). Our results suggest that redox-regulating enzymes may serve as potential prognostic factors in primarily inoperable breast cancer patients.
Collapse
|
19
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
20
|
Schisandra sphenanthera extract (Wuzhi Tablet) protects against chronic-binge and acute alcohol-induced liver injury by regulating the NRF2-ARE pathway in mice. Acta Pharm Sin B 2017; 7:583-592. [PMID: 28924552 PMCID: PMC5595297 DOI: 10.1016/j.apsb.2017.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse leads to alcoholic liver disease and no effective therapy is currently available. Wuzhi Tablet (WZ), a preparation of extract from Schisandra sphenanthera that is a traditional hepato-protective herb, exerted a significant protective effect against acetaminophen-induced liver injury in our recent studies, but whether WZ can alleviate alcohol-induced toxicity remains unclear. This study aimed to investigate the contribution of WZ to alcohol-induced liver injury by using chronic-binge and acute models of alcohol feeding. The activities of ALT and AST in serum were assessed as well as the level of GSH and the activity of SOD in the liver. The expression of CYP2E1 and proteins in the NRF2-ARE signaling pathway including NRF2, GCLC, GCLM, HO-1 were measured, and the effect of WZ on NRF2 transcriptional activity was determined. We found that both models resulted in liver steatosis accompanied by increased transaminase activities, but that liver injury was significantly attenuated by WZ. WZ administration also inhibited CYP2E1 expression induced by alcohol, and elevated the level of GSH and the activity of SOD in the liver. Moreover, the NRF2-ARE signaling pathway was activated by WZ and the target genes were all upregulated. Furthermore, WZ significantly activated NRF2 transcriptional activity. Collectively, our study demonstrates that WZ protected against alcohol-induced liver injury by reducing oxidative stress and improving antioxidant defense, possibly by activating the NRF2-ARE pathway.
Collapse
Key Words
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ARE, antioxidant response element
- AST, aspartate aminotransferase
- Alcoholic liver injury
- CYP2E1, cytochrome P450 2E1 enzyme
- EtOH, ethanol
- GCLC, glutamate–cysteine ligase catalytic subunit
- GCLM, glutamate–cysteine ligase modifier subunit
- GSH, glutathione
- H&E, hematoxylin and eosin
- HO-1, heme oxygenase-1
- NRF2, nuclear factor erythroid 2-related factor 2
- NRF2-ARE
- Oxidative stress
- SOD, superoxide dismutase
- Schisandra sphenanthera
- WZ, Wuzhi Tablet.
- Wuzhi Tablet
Collapse
|
21
|
Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants (Basel) 2017; 6:antiox6020029. [PMID: 28475131 PMCID: PMC5488009 DOI: 10.3390/antiox6020029] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
The upregulation of heme oxygenase-1 (HO-1) is one of the most important mechanisms of cell adaptation to stress. Indeed, the redox sensitive transcription factor Nrf2 is the pivotal regulator of HO-1 induction. Through the antioxidant, antiapoptotic, and antinflammatory properties of its metabolic products, HO-1 plays a key role in healthy cells in maintaining redox homeostasis and in preventing carcinogenesis. Nevertheless, several lines of evidence have highlighted the role of HO-1 in cancer progression and its expression correlates with tumor growth, aggressiveness, metastatic and angiogenetic potential, resistance to therapy, tumor escape, and poor prognosis, even though a tumor- and tissue-specific activity has been observed. In this review, we summarize the current literature regarding the pro-tumorigenic role of HO-1 dependent tumor progression as a promising target in anticancer strategy.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Sabrina Piras
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Umberto M Marinari
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Lorenzo Moretta
- Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy.
| | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Anna Lisa Furfaro
- Giannina Gaslini Institute, IRCCS, Via Gerolamo Gaslini 5, Genoa 16147, Italy.
| |
Collapse
|
22
|
Mostafavi-Pour Z, Ramezani F, Keshavarzi F, Samadi N. The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Oncol Lett 2017; 13:1965-1973. [PMID: 28454351 DOI: 10.3892/ol.2017.5619] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022] Open
Abstract
The balance between the production and elimination of reactive oxygen species (ROS) is essential in determining whether cells survive or undergo apoptosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) may act as a sensor for electrophilic stress, thus regulating the intracellular antioxidant response. The present study investigated the role of vitamin C (VC) and quercetin (Q) in the induction of Nrf2-mediated oxidative stress in cancer cells. An MTT assay was conducted to examine the anti-proliferative effects of VC and Q. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to determine the messenger RNA (mRNA) and protein expression of Nrf2, respectively. The activity of nicotinamide adenine dinucleotide phosphate dehydrogenase quinone 1, heme oxygenase 1, glutathione peroxidase, glutathione reductase and reduced glutathione were measured by spectrophotometric analysis. Intracellular generation of ROS was determined using 2'-7'-dichlorodihydrofluorescein diacetate fluorescent probes. The results demonstrated that the cytotoxicity (50% inhibitory concentration) of VC and Q were 271.6-480.1 and 155.1-232.9 µM, respectively. Additionally, there was a significant decrease in the expression of Nrf2 mRNA and protein levels following the treatment of breast cancer cells with VC and Q (P=0.024). Following treatment with VC and Q, the nuclear/cytosolic Nrf2 ratio was reduced by 1.7-fold in MDA-MB 231 cells, 2-fold in MDA-MB 468 cells, 1.4-fold in MCF-7 cells and 1.2 fold in A549 cells. Sequential treatment with VC and Q decreased endogenous production of ROS in a dose-dependent manner (P=0.027). The results of the current study suggest that VC and Q treatment may be developed as an adjuvant for patients with cancer and overexpression of Nrf2.
Collapse
Affiliation(s)
- Zohreh Mostafavi-Pour
- Department of Biochemistry, Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran.,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Fatemeh Ramezani
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Fatemeh Keshavarzi
- Department of Biochemistry, Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| |
Collapse
|
23
|
Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage. Int J Mol Sci 2016; 17:ijms17070997. [PMID: 27347930 PMCID: PMC4964373 DOI: 10.3390/ijms17070997] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol’s ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy.
Collapse
|
24
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
25
|
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1958174. [PMID: 26697129 PMCID: PMC4677237 DOI: 10.1155/2016/1958174] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.
Collapse
|
26
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
27
|
Bayer JL, Spitz DR, Christensen D, McCormick ML, Farley D, DeGeest K, Damoush L, Aust S, Sood AK, Lutgendorf SK. Biobehavioral and neuroendocrine correlates of antioxidant enzyme activity in ovarian carcinoma. Brain Behav Immun 2015; 50:58-62. [PMID: 25989110 PMCID: PMC4631681 DOI: 10.1016/j.bbi.2015.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/01/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022] Open
Abstract
Increased levels of reactive oxygen species (ROS) such as superoxide anions and hydrogen peroxide have been reported in many cancer cells and they have been implicated in carcinogenesis and tumor progression. Antioxidant enzymes, such as Manganese Superoxide Dismutase (MnSOD or SOD2) and Glutathione Peroxidase-1 (GPx1), act coordinately to neutralize ROS. These enzymes are also thought to contribute to cancer cell resistance to conventional radio-chemo-therapies. Although some relationships have been reported between psychosocial factors and the regulation of antioxidant enzymes, little is known about these relationships in the context of cancer progression. The current study investigated the levels of MnSOD and GPx1in confirmed serous, high-grade tumor tissue from 60 ovarian cancer patients, and explored the relationship between the activity of these enzymes, the levels of tumor norepinephrine (NE), and patient mood as determined via pre-operative questionnaires. MnSOD activity was positively related to depressed mood (p=0.025) and tumor NE (p=0.023). In contrast, GPx1 activity was inversely related to fatigue (p=0.015) and tumor NE (p=0.009), and was positively associated with vigor (p=0.024). These findings suggest that psychological state and adrenergic signaling are linked with antioxidant enzyme activity in ovarian cancer and may have implications for patient treatments and outcomes.
Collapse
Affiliation(s)
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, United States; Holden Comprehensive Cancer Center, University of Iowa, United States
| | | | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, United States; Holden Comprehensive Cancer Center, University of Iowa, United States
| | - Donna Farley
- Department of Pharmacology, University of Iowa, United States
| | - Koen DeGeest
- Oregon Health and Sciences University, United States
| | - Laila Damoush
- Department of Pathology, University of Iowa, United States
| | - Samantha Aust
- Department of Psychology, University of Iowa, United States
| | - Anil K Sood
- Departments of Gynecologic Oncology, Cancer Biology, and Center for RNA Interference and Noncoding RNA, University of Texas, M.D. Anderson Cancer Center, United States
| | - Susan K Lutgendorf
- Department of Psychology, University of Iowa, United States; Holden Comprehensive Cancer Center, University of Iowa, United States; Department of Obstetrics and Gynecology, University of Iowa, United States; Department of Urology, University of Iowa, United States.
| |
Collapse
|
28
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
29
|
van der Wijst MGP, Huisman C, Mposhi A, Roelfes G, Rots MG. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol 2015; 9:1259-73. [PMID: 25841766 DOI: 10.1016/j.molonc.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and siRNA studies assigned Nrf2 as therapeutic target. However, the cancer-protective role of Nrf2 in healthy cells highlights the requirement for an adequate therapeutic window. We engineered artificial transcription factors to assess the role of Nrf2 in healthy (OSE-C2) and malignant ovarian cells (A2780). Successful NRF2 up- and downregulation correlated with decreased, respectively increased, sensitivity toward oxidative stress. Inhibition of NRF2 reduced the colony forming potential to the same extent in wild-type and BRCA1 knockdown A2780 cells. Only in BRCA1 knockdown A2780 cells, the effect of Nrf2 inhibition could be enhanced when combined with PARP inhibitors. Therefore, we propose that this combination therapy of PARP inhibitors and Nrf2 inhibition can further improve treatment efficacy specifically in BRCA1 mutant cancer cells without acquiring the side-effects associated with previously studied Nrf2 inhibition combinations with either chemotherapy or radiation. Our findings stress the dual role of Nrf2 in carcinogenesis, while offering approaches to exploit Nrf2 as a potent therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Monique G P van der Wijst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Christian Huisman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| |
Collapse
|