1
|
Tolentino-Molina BX, Loaeza-Loaeza J, Ortega-Soto A, Castro-Coronel Y, Fernández-Tilapa G, Hernández-Sotelo D. Hsa_circ_0009910 knockdown in HeLa cells increases miR‑198 expression levels and decreases c‑Met expression levels and cell viability. Oncol Lett 2025; 29:74. [PMID: 39650233 PMCID: PMC11622005 DOI: 10.3892/ol.2024.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024] Open
Abstract
Cervical cancer (CC) is considered a public health problem. Circular RNAs (circRNAs) serve important roles in different types of cancer, including CC. However, the mechanisms used by circRNAs to facilitate CC progression are currently unclear. The present study analyzed the effects of hsa_circ_0009910 knockdown on microRNA (miRNA/miR)-198 and mesenchymal-epithelial transition factor (c-Met) expression levels and its impact on apoptosis and the viability of HeLa cells. Differentially expressed circRNAs in CC were identified using analysis of circRNA microarray data. Bioinformatics analysis was performed to predict circRNA-microRNA (miRNA) and miRNA-mRNA interactions. The knockdown of hsa_circ_0009910 in HeLa cells was performed using small interfering RNA and the expression levels of hsa_circ_0009910, miR-198 and c-Met were assessed using reverse transcription-quantitative PCR. The viability and apoptosis of HeLa cells were evaluated using MTT, neutral red uptake and ApoLive-Glo™ multiplex assays. Hsa_circ_0009910 was significantly upregulated in HeLa cells and the knockdown of hsa_circ_0009910 increased miRNA-198 expression levels, reduced c-Met expression levels and decreased cellular viability, but not apoptosis, in HeLa cells. Overall, these results indicated that hsa_circ_0009910 could act as a molecular sponge of miRNA-198 and contribute to the upregulation of c-Met expression levels. The hsa_circ_0009910/miRNA-198/c-Met interaction network affects the viability, but not apoptosis, of HeLa cells. Based on this mechanism, the present study suggests that hsa_circ_0009910 may be a promising biomarker for CC.
Collapse
Affiliation(s)
- Bernardo Xavier Tolentino-Molina
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Jaqueline Loaeza-Loaeza
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Arturo Ortega-Soto
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Yaneth Castro-Coronel
- Laboratory of Cytopathology and Histochemistry, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
2
|
Meng Q, Xiang H, Wang Y, Hu K, Luo X, Wang J, Chen E, Zhang W, Chen J, Chen X, Wang H, Ju Z, Song Z. Exosomes containing circSCP2 in colorectal cancer promote metastasis via sponging miR-92a-1-5p and interacting with PTBP1 to stabilize IGF2BP1. Biol Direct 2024; 19:130. [PMID: 39702234 DOI: 10.1186/s13062-024-00571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Exosomes have emerged as significant biomarkers for multiple diseases, including cancers. Circular RNAs (circRNAs), abundant in exosomes, are involved in regulating cancer development. However, the regulatory function and the underlying molecular mechanism of hsa_circ_0006906 (circSCP2) in colorectal cancer (CRC) metastasis remain unclear. A competing endogenous RNA microarray was used to analyze circRNA expression in serum exosomes in patients with CRC at early and late stages. circSCP2 expression was evaluated using qRT-PCR. The biological functions of circSCP2 in CRC were assessed through in vitro and in vivo experiments. The molecular mechanism of circSCP2 was explored using western blotting, RNA pulldown, RNA immunoprecipitation, luciferase assays, and relative rescue experiments. circSCP2 expression was significantly elevated in CRC tissues, with higher levels in serum exosomes correlating with advanced TNM stages. circSCP2 knockdown inhibited CRC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Mechanistically, circSCP2 sponged miR-92a-1-5p to increase insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) expression. Additionally, circSCP2 directly bound to and stabilized polypyrimidine tract binding protein 1 (PTBP1) by inhibiting protein ubiquitination, resulting in IGF2BP1 mRNA stabilization and enhanced CRC migration and invasion. Our findings demonstrate that circSCP2 regulates the miR-92a-1-5p/IGF2BP1 pathway, promotes PTBP1/IGF2BP1 interaction, and accelerates CRC progression. Exosomal circSCP2 is a promising circulating biomarker for CRC prognosis and needs further therapeutic investigation.
Collapse
Affiliation(s)
- Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Yijing Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Kepeng Hu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Xin Luo
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Thyroid and Breast Surgery, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, 318000, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Wei Zhang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Seyedi D, Espandar N, Hojatizadeh M, Mohammadi Y, Sadri F, Rezaei Z. Noncoding RNAs in rheumatoid arthritis: modulators of the NF-κB signaling pathway and therapeutic implications. Front Immunol 2024; 15:1486476. [PMID: 39530095 PMCID: PMC11550995 DOI: 10.3389/fimmu.2024.1486476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint inflammation and gradual tissue destruction. New research has shown how important noncoding RNAs (ncRNAs) are for changing immune and inflammatory pathways, such as the WNT signaling pathway, which is important for activating synovial fibroblasts and osteoblasts to work. This article examines the current understanding of several ncRNAs, such as miRNAs, lncRNAs, and circRNAs, that influence NF-κB signaling in the pathogenesis of RA. We investigate how these ncRNAs impact NF-κB signaling components, altering cell proliferation, differentiation, and death in joint tissues. The paper also looks at how ncRNAs can be used as potential early detection markers and therapeutic targets in RA because they can change important pathogenic pathways. This study highlights the therapeutic potential of targeting ncRNAs in RA therapy techniques, with the goal of reducing inflammation and stopping disease progression. This thorough analysis opens up new possibilities for understanding the molecular foundations of RA and designing novel ncRNA-based treatments.
Collapse
Affiliation(s)
- Dina Seyedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmadin Espandar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
4
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
5
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
6
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yu H, Liu P, Chen T. CircIFFO1 suppresses tumor growth and metastasis of cutaneous squamous cell carcinoma by targeting the miR-424-5p/NFIB axis. Arch Dermatol Res 2023; 315:2585-2596. [PMID: 37405427 DOI: 10.1007/s00403-023-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a severe malignancy derived from the skin. Circular RNAs (circRNAs) play an important role in the pathological process of many malignant tumors. Moreover, circIFFO1 is reported to be down-regulated in CSCC tissues compared with non-lesional skin tissues. This study aimed to explore the specific role and potential mechanism of circIFFO1 in CSCC progression. Cell proliferation ability was analyzed by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and colony-formation assays. Cell cycle progression and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by transwell assays. The interaction between microRNA-424-5p (miR-424-5p) and circIFFO1 or nuclear factor I/B (NFIB) was validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft tumor assay and immunohistochemistry (IHC) assay were employed to analyze the tumorigenesis in vivo. CircIFFO1 level was down-regulated in CSCC tissues and cell lines. CircIFFO1 overexpression suppressed the proliferation, migration, invasion, and promoted apoptosis of CSCC cells. CircIFFO1 acted as a molecular sponge for miR-424-5p. The anti-tumor effects mediated by circIFFO1 overexpression in CSCC cells could be reversed by miR-424-5p overexpression. miR-424-5p interacted with the 3' untranslated region (3'UTR) of Nuclear Factor I/B (NFIB). miR-424-5p knockdown suppressed the malignant behaviors of CSCC cells, and NFIB knockdown counteracted the anti-tumor effects of miR-424-5p absence in CSCC cells. Additionally, circIFFO1 overexpression restrained xenograft tumor growth in vivo. CircIFFO1 suppressed the malignant behaviors of CSCC by mediating the miR-424-5p/NFIB axis, which provided new insights into the pathogenesis of CSCC.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pathology, Huangdao District Central Hospital, Qingdao, China
| | - Penglin Liu
- Department of Anorectal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianli Chen
- Department of Dermatology, Huangdao District Central Hospital, No. 9 Huangpujiang Road, Huangdao District, Qingdao City, 266555, Shandong Province, China.
| |
Collapse
|
8
|
Fang G, Xu D, Zhang T, Qiu L, Gao X, Wang G, Miao Y. Effects of hsa_circ_0074854 on colorectal cancer progression, construction of a circRNA-miRNA-mRNA network, and analysis of immune infiltration. J Cancer Res Clin Oncol 2023; 149:15439-15456. [PMID: 37644235 PMCID: PMC10620273 DOI: 10.1007/s00432-023-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Circular RNAs have been demonstrated to be closely associated with the onset and metastasis of colorectal cancer. However, the roles and clinical diagnostic value of most circRNAs in colorectal cancer remain unclear. METHODS We detected the differential expression of circRNAs in CRC tissues and cells and investigated their relationship in conjunction with clinical pathological features. Additionally, we performed cellular functional experiments in CRC cell lines to explore the functions of circRNAs. To further validate the potential ceRNA network, qPCR was performed to assess the expression of miRNA and mRNA in CRC cells after differential expression of circRNAs knockdown. Furthermore, database analysis was utilized to explore the relationship between the predicted mRNAs and immune infiltration in CRC. RESULTS Our research findings indicate a positive correlation between hsa_circ_0074854 expression and advanced clinical pathological features, as well as an unfavorable prognosis. Knockdown of hsa_circ_0074854 was observed to inhibit proliferation and migration capabilities of colorectal cancer cells, affecting the cell cycle progression, and simultaneously promoting apoptosis. A competing endogenous RNA mechanism may exist among circRNAs, miRNAs, and mRNAs. Furthermore, the expression of target genes displayed correlations with the abundance of certain immune cells. CONCLUSION We propose a novel ceRNA network and evaluate the interplay between target genes and immune cells, providing novel insights for the diagnosis and targeted therapy of CRC.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, 222002, Jiangsu, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China.
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China.
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China.
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
9
|
Xie H, Huang Y, Zhan Y. Construction of a novel circRNA-miRNA-ferroptosis related mRNA network in ischemic stroke. Sci Rep 2023; 13:15077. [PMID: 37699956 PMCID: PMC10497552 DOI: 10.1038/s41598-023-41028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Molecule alterations are important to explore the pathological mechanism of ischemic stroke (IS). Ferroptosis, a newly recognized type of regulated cell death, is related to IS. Identification of the interactions between circular RNA (circRNA), microRNA (miRNA) and ferroptosis related mRNA may be useful to understand the molecular mechanism of IS. The circRNA, miRNA and mRNA transcriptome data in IS, downloaded from the Gene Expression Omnibus (GEO) database, was used for differential expression analysis. Ferroptosis related mRNAs were identified from the FerrDb database, followed by construction of circRNA-miRNA-ferroptosis related mRNA network. Enrichment and protein-protein interaction analysis of mRNAs in circRNA-miRNA-mRNA network was performed, followed by expression validation by reverse transcriptase polymerase chain reaction and online dataset. A total of 694, 41 and 104 differentially expressed circRNAs, miRNAs and mRNAs were respectively identified in IS. Among which, dual specificity phosphatase 1 (DUSP1), nuclear receptor coactivator 4 (NCOA4) and solute carrier family 2 member 3 (SLC2A3) were the only three up-regulated ferroptosis related mRNAs. Moreover, DUSP1, NCOA4 and SLC2A3 were significantly up-regulated in IS after 3, 5 and 24 h of the attack. Based on these three ferroptosis related mRNAs, 4 circRNA-miRNA-ferroptosis related mRNA regulatory relationship pairs were identified in IS, including hsa_circ_0071036/hsa_circ_0039365/hsa_circ_0079347/hsa_circ_0008857-hsa-miR-122-5p-DUSP1, hsa_circ_0067717/hsa_circ_0003956/hsa_circ_0013729-hsa-miR-4446-3p-SLC2A3, hsa_circ_0059347/hsa_circ_0001414/hsa_circ_0049637-hsa-miR-885-3p-SLC2A3, and hsa_circ_0005633/hsa_circ_0004479-hsa-miR-4435-NCOA4. In addition, DUSP1 is involved in the signaling pathway of fluid shear stress and atherosclerosis. Relationship of regulatory action between circRNAs, miRNAs and ferroptosis related mRNAs may be associated with the development of IS.
Collapse
Affiliation(s)
- Huirong Xie
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Clinical Research Center for Neurological Diseases, 289 Kuocang Road, Lishui, 323000, Zhejiang, China.
| | - Yijie Huang
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Clinical Research Center for Neurological Diseases, 289 Kuocang Road, Lishui, 323000, Zhejiang, China
| | - Yanli Zhan
- Cerebrovascular Research Laboratory, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Clinical Research Center for Neurological Diseases, 289 Kuocang Road, Lishui, 323000, Zhejiang, China
| |
Collapse
|
10
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Wu K, Tan J, Yang C. Recent advances and application value of circRNA in neuroblastoma. Front Oncol 2023; 13:1180300. [PMID: 37091173 PMCID: PMC10116045 DOI: 10.3389/fonc.2023.1180300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Neuroblastoma (NB) is children’s most prevalent solid malignant tumor, accounting for 15% of childhood cancer mortality. Non-coding RNA is important in NB pathogenesis. As a newly identified non-coding RNA, abnormal regulation (abnormal up-regulation or down-regulation) of the circRNAs expression is implicated in the tumorigenesis of various tumors, including NB. CircRNAs primarily regulate the expression of microRNA (miRNA) target genes by microRNA (miRNA) sponge adsorption. Clinical evidence suggests that the expression of certain circRNAs is associated with the prognosis and clinical features of NB and hence may be exploited as a biomarker or therapeutic target. This review examines circRNAs that have been demonstrated to play a function in NB.
Collapse
Affiliation(s)
- Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Juan Tan
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chao Yang,
| |
Collapse
|
12
|
Karami Fath M, Shafieyari S, Ardalani N, Moumivand F, Kaviani Charati H, Zareei M, Mansoori Nia A, Zokaei M, Barati G. Hypoxia-circular RNA crosstalk to promote breast cancer. Pathol Res Pract 2023; 244:154402. [PMID: 36921546 DOI: 10.1016/j.prp.2023.154402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The expression of hypoxia-inducible factors (HIFs), particularly HIF-1, plays a major role in the adaptation of solid tumors to hypoxic conditions. The activation of the HIF pathway results in an expression of genes involved in the promotion of cell growth, proliferation, vascularization, metastasis, and therapeutic resistance. Circular RNA (CircRNA) is considered as a major regulator of gene expression. CircRNAs could regulate the HIF-1 pathway in cancer cells. In addition, they might be regulated by the HIF-1 pathway to promote cancer progression. Therefore, the crosstalk between hypoxia and circRNA might be involved in the pathogenesis of cancers, including breast cancer. In this review, we discussed the function of HIF-related circRNAs in the progression, angiogenesis, metabolic reprogramming, and stemness maintenance of breast cancer. In addition, the correlation between HIF-related circRNAs and clinical features of breast cancer is reviewed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saba Shafieyari
- Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasim Ardalani
- Faculty of Medicine, Islamic Azad University, Sari Branch, Sari, Iran
| | - Farzane Moumivand
- Faculty of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Zareei
- Faculty of Medicine, Islamic Azad University, Sari Branch, Sari, Iran
| | | | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
13
|
Chen Y, Zhang Y. CircDLG1 promotes malignant development of non-small cell lung cancer through regulation of the miR-630/CENPF axis. Strahlenther Onkol 2023; 199:169-181. [PMID: 35748916 DOI: 10.1007/s00066-022-01965-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to be crucial modulatory molecules in the etiology of non-small cell lung cancer (NSCLC). This study aimed to probe the precise role and mechanism of circRNA discs large MAGUK scaffold protein 1 (circDLG1) in the malignant progression of NSCLC. METHODS The abundances of circDLG1, miR-630, and centromere protein F (CENPF) mRNAs were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was tested in 3‑(4, 5‑dimethylthiazol-2-yl)-2, 5‑diphenyltetrazolium bromide (MTT) assay and 5‑ethynyl-2'-deoxyuridine (EdU)-incorporation assay. Cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were assessed by transwell assay. Western blot was exploited to examine the levels of all proteins. The interaction between miR-630 and circDLG1 or CENPF was verified by dual-luciferase reporter, RNA pull-down, and/or RNA immunoprecipitation assays. Tumor xenograft assay and immunohistochemistry (IHC) were executed for the role of circDLG1 in tumor growth in vivo. RESULTS CircDLG1 and CENPF were highly expressed in NSCLC, while miR-630 was downregulated. CircDLG1 silencing repressed proliferation, migration, and invasion, and expedited apoptosis of NSCLC cells in vitro. Mechanistically, circDLG1 deficiency modulated NSCLC cell malignant development through interacting with miR-630. Furthermore, CENPF was targeted by miR-630, and circDLG1 could positively control CENPF expression through acting as an miR-630 sponge. Furthermore, CENPF overexpression reversed the repressive impacts of circDLG1 inhibition in the malignant behaviors of NSCLC cells. Besides, circDLG1 interference hindered tumor growth in vivo. CONCLUSION CircDLG1 knockdown could impede NSCLC advancement through modulating the miR-630/CENPF axis, manifesting as a promising molecular target for NSCLC treatment.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, 110022, Tiexi District, Shenyang, Liaoning Province, China.
| |
Collapse
|
14
|
Zhou JG, Liang R, Wang HT, Jin SH, Hu W, Frey B, Fietkau R, Hecht M, Ma H, Gaipl US. Identification and characterization of circular RNAs as novel putative biomarkers to predict anti-PD-1 monotherapy response in metastatic melanoma patients - Knowledge from two independent international studies. Neoplasia 2023; 37:100877. [PMID: 36696838 PMCID: PMC9879779 DOI: 10.1016/j.neo.2023.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Melanoma is the most aggressive skin malignancy with high morbidity. Anti-programmed cell death protein 1 (PD-1) monotherapy has been applied in metastatic melanoma. However, still most of the patients do not respond to anti-PD-1 and the availability of the present approved biomarkers therefore is limited. Here we combined the transcriptomic and clinical data of 163 advanced melanoma patients receiving anti-PD-1 from NIH Melanoma Genome Sequencing Project (phs000452, 122 patients) as the training and internal validation cohort, and Melanoma Institute Australia cohort (PRJEB23709, 41 patients) as the external validation cohort, respectively. Circular RNAs (circRNAs) are an evolutionarily conserved novel class of noncoding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome and were used based on RNAseq data for our analyses. 74,243 circular RNAs (circRNAs) were identified with NCLscan and CIRCexplorer2. Thereof, 70 circRNAs significantly associated with progression-free survival and overall survival. Further, a prognostic circRNAs signature consisting of HSA_CIRCpedia_1497, HSA_CIRCpedia_12559, HSA_CIRCpedia_43640, HSA_CIRCpedia_43070, and HSA_CIRCpedia_21660 could be determined with LASSO regression. This signature was a prognostic factor of overall survival and progression-free survival among the analyzed advanced melanoma patients. The concordance indexes (C-index of OStraining: 0.61, C-index of PFStraining: 0.68) also confirmed its credibility and accuracy. First enrichment analysis indicated that immune response and pathways related to tumor immune microenvironment were enriched. In conclusion, we succeeded to construct and validate novel prognostic circRNAs signature for advanced melanoma patients treated with anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jian-Guo Zhou
- Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rui Liang
- Biomedical Engineering College of Bioengineering, Chongqing University, Chongqing, China
| | - Hai-Tao Wang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Su-Han Jin
- Department of Orthodontic, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Wei Hu
- Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg, Germany
| | - Hu Ma
- Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany,Corresponding author at: Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054 Erlangen, Germany.
| |
Collapse
|
15
|
Chen D, Chou FJ, Chen Y, Huang CP, Tian H, Wang Y, Niu Y, You B, Yeh S, Xing N, Chang C. Targeting the radiation-induced ARv7-mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin increases prostate cancer radiosensitivity. J Exp Clin Cancer Res 2022; 41:235. [PMID: 35918767 PMCID: PMC9347162 DOI: 10.1186/s13046-022-02287-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Radiation therapy (RT) with androgen deprivation therapy (ADT) is an effective therapy to suppress the locally advanced prostate cancer (PCa). However, we unexpectedly found that RT could also induce the androgen receptor splice variant 7 (ARv7) expression to decrease the radiosensitivity. Methods The study was designed to target ARv7 expression with Quercetin or ARv7-shRNA that leads to enhancing and increasing the radiation sensitivity to better suppress the PCa that involved the modulation of the circNHS/miR-512-5p/XRCC5 signaling. Results Mechanism studies revealed that RT-induced ARv7 may function via altering the circNHS/miR-512-5p/XRCC5 signaling to decrease the radiosensitivity. Results from preclinical studies using multiple in vitro cell lines and in vivo mouse models concluded that combining RT with the small molecule of Quercetin to target full-length AR and ARv7 could lead to better efficacy to suppress PCa progression. Conclusion Together, these results suggest that ARv7 may play key roles to alter the PCa radiosensitivity, and targeting this newly identified ARv7 mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin may help physicians to develop a novel RT to better suppress the progression of PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02287-4.
Collapse
|
16
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
17
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
18
|
Wang S, Li W, Yang L, Yuan J, Wang L, Li N, Zhao H. CircPVT1 facilitates the progression of oral squamous cell carcinoma by regulating miR-143-3p/SLC7A11 axis through MAPK signaling pathway. Funct Integr Genomics 2022; 22:891-903. [PMID: 35624316 DOI: 10.1007/s10142-022-00865-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor occurring in the oral cavity. Circular RNAs (circRNAs) play a crucial regulatory role in many cancers. This study aimed to investigate the function of circRNA plasmacytoma variant translocation 1 (PVT1) (circPVT1) in OSCC and its potential mechanism. The levels of circPVT1, solute carrier family 7 member 11 (SLC7A11), and microRNA-143-3p (miR-143-3p) were examined by quantitative real-time PCR (qRT-PCR) or western blot assay. Cell proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, and transwell assay. The levels of apoptosis and proliferation-related proteins were examined by western blot. The targeting relationship between miR-143-3p and circPVT1 or SLC7A11 was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The levels of mitogen-activated protein kinase (MAPK) pathway-related proteins were measured by western blot. Xenograft assay was used to assess tumor growth in vivo. CircPVT1 and SLC7A11 were upregulated, while miR-143-3p was downregulated in OSCC tissues and cells. Silencing of circPVT1 or SLC7A11 suppressed proliferation, migration, and invasion and promoted apoptosis in OSCC cells. CircPVT1 upregulated SLC7A11 expression via sponging miR-143-3p. SLC7A11 upregulation alleviated the effect of circPVT1 knockdown on OSCC cell progression. Besides, circPVT1 modulated MAPK signaling pathway by regulating miR-143-3p. Moreover, circPVT1 knockdown inhibited tumor growth in vivo. Knockdown of circPVT1 impeded OSCC progression via the miR-143-3p/SLC7A11 axis through MAPK signaling pathway.
Collapse
Affiliation(s)
- Shiliang Wang
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China
| | - Wenlu Li
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China
| | - Long Yang
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China
| | - Jianqiao Yuan
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China
| | - Lin Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Li
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China
| | - Hongyu Zhao
- Department of Dentistry, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 450018, Henan Province, China.
| |
Collapse
|
19
|
Carvalho TM, Brasil GO, Jucoski TS, Adamoski D, de Lima RS, Spautz CC, Anselmi KF, Ozawa PMM, Cavalli IJ, Carvalho de Oliveira J, Gradia DF, Ribeiro EMDSF. MicroRNAs miR-142-5p, miR-150-5p, miR-320a-3p, and miR-4433b-5p in Serum and Tissue: Potential Biomarkers in Sporadic Breast Cancer. Front Genet 2022; 13:865472. [PMID: 35846122 PMCID: PMC9280295 DOI: 10.3389/fgene.2022.865472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, and establishing biomarkers is essential to patient management. We previously described that extracellular vesicle–derived miRNAs (EV-miRNAs) miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p in serum discriminated BC from control samples, either alone or combined in a panel. Using these previously described markers, we intend to evaluate whether the same markers identified in EVs are also potential biomarkers in tissue and serum. Expression analysis using RT-qPCR was performed using serum of 67 breast cancer patients (BC-S), 19 serum controls (CT), 83 fresh tumor tissues (BC-T), and 29 adjacent nontumor tissue samples (NT). In addition, analysis from The Cancer Genome Atlas (TCGA) data (832 BC-T and 136 NT) was performed. In all comparisons, we found concordant high expression levels of miR-320a and miR-4433b-5p in BC-S compared to CT in both EVs and cell-free miRNAs (cf-miRNAs). Although miR-150-5p and miR-142-5p were not found to be differentially expressed in serum, panels including these miRNAs improved sensitivity and specificity, supporting our previous findings in EVs. Fresh tissue and data from the TCGA database had, in most comparisons, an opposite behavior when compared to serum and EVs: lower levels of all miRNAs in BC-T than those in NT samples. TCGA analyses revealed reduced expression levels of miR-150-5p and miR-320a-3p in BC-T than those in NT samples and the overexpression of miR-142-5p in BC-T, unlike our RT-qPCR results from tissue in the Brazilian cohort. The fresh tissue analysis showed that all miRNAs individually could discriminate between BC-T and NT in the Brazilian cohort, with high sensitivity and sensibility. Furthermore, combining panels showed higher AUC values and improved sensitivity and specificity. In addition, lower levels of miR-320a-3p in serum were associated with poor overall survival in BC Brazilian patients. In summary, we observed that miR-320a and miR-4433b-5p distinguished BC from controls with high specificity and sensibility, regardless of the sample source. In addition, lower levels of miR-150-5p and higher levels of miR-142-5p were statistically significant biomarkers in tissue, according to TCGA. When combined in panels, all combinations could distinguish BC patients from controls. These results highlight a potential application of these miRNAs as BC biomarkers.
Collapse
Affiliation(s)
- Tamyres Mingorance Carvalho
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Guillermo Ortiz Brasil
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Douglas Adamoski
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Sao Paulo, Brazil
| | | | | | | | - Patricia Midori Murobushi Ozawa
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Iglenir João Cavalli
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- *Correspondence: Enilze Maria de Souza Fonseca Ribeiro,
| |
Collapse
|
20
|
Du J, Jia F, Wang L. Advances in the Study of circRNAs in Hematological Malignancies. Front Oncol 2022; 12:900374. [PMID: 35795049 PMCID: PMC9250989 DOI: 10.3389/fonc.2022.900374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Circular RNAs (circRNAs) are non–protein-coding RNAs that have a circular structure and do not possess a 5` cap or 3` poly-A tail. Their structure is more stable than that of linear RNAs, and they are difficult to deform via hydrolysis. Advancements in measurement technology such as RNA sequencing have enabled the detection of circRNAs in various eukaryotes in both in vitro and in vivo studies. The main function of circRNAs involves sponging of microRNAs (MiRNAs) and interaction with proteins associated with physiological and pathological processes, while some circRNAs are involved in translation. circRNAs act as tumor suppressors or oncogenes during the development of many tumors and are emerging as new diagnostic and prognostic biomarkers. They also affect resistance to certain chemotherapy drugs such as imatinib. The objective of this review is to investigate the expression and clinical significance of circRNAs in hematological malignancies. We will also explore the effect of circRNAs on proliferation and apoptosis in hematological malignancy cells and their possible use as biomarkers or targets to determine prognoses. The current literature indicates that circRNAs may provide new therapeutic strategies for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Jingyi Du
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Feiyu Jia
- Department of Education and Teaching, Linyi People’s Hospital, Linyi, China
- *Correspondence: Lijuan Wang, ; Feiyu Jia,
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, China
- Linyi Key Laboratory of Tumor Biology, Linyi, China
- *Correspondence: Lijuan Wang, ; Feiyu Jia,
| |
Collapse
|
21
|
Liu J, Huang J, Cheng X, Liao Z, Gao X. miR-556-3p/Disabled Homolog 2-Interacting Protein (dab2ip) Promotes Cancer Progression by Down-Regulating Bcl-2-Like Protein 11 (BIM) Expression in Colorectal Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major threat affecting human health. Studies have shown that miR-556-3p can regulate dab2ip and promote tumor deterioration, and up-regulation of BIM inhibits CRC cell progression. However, the interaction between miR-556-3p/dab2ip and BIM in CRC is unknown.
We examined miR-556-3p expression in CRC tissues and cells by RT-qPCR. The impact of miR-556-3p/dab2ip and BIM on CRC cell behaviors were assessed by western blot, transwell and MTT assay. miR-556-3p was highly expressed in CRC and its overexpression increased CRC cell proliferation and migration
as well as up-regulated dab2ip and Ki-67 expression. Besides, miR-556-3p could target the BIM and overexpressed miR-556-3p decreased BIM expression. However, silencing of BIM abrogated the impact of overexpressed miR-556-3p on CRC cell proliferation and migration. In conclusion, miR-556-3p/dab2ip
promotes cell growth by down-regulating the expression of BIM, thereby promoting the progression of CRC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Jingping Huang
- Department of Nutrition, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Cheng
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Zuowei Liao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Gao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| |
Collapse
|
22
|
Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther 2022; 234:108123. [PMID: 35121000 DOI: 10.1016/j.pharmthera.2022.108123] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The present review aimed to outline different types of RNAs in cancer diagnostics and treatment, and to provide novel insights into their clinical applications. RNAs, including mRNA, long non-coding (lnc)RNA, circular (circ)RNA and micro (mi)RNA, are now increasingly utilized in the diagnosis and treatment of various cancers. Each aforementioned type of RNA possess their own unique characteristics and could be aberrantly expressed as diagnostic markers or therapeutic targets in different cancers. In addition to mRNAs, which have become a promising alternative in cancer diagnostics and therapy, the uses of lncRNA, circRNA and miRNA in predictive tumor diagnostics and therapy has rapidly increased in recent years. In the present review, the mechanisms of mRNA, lncRNA, circRNA and miRNA in regulating and participating in the development of different cancers were determined, and their potential capacity in cancer diagnostics and therapy were investigated. In addition, the present review analyzed the assoaciations between different RNAs and their subsequent potential in cancer prediction and treatment.
Collapse
|
23
|
Peng H, Xing J, Wang X, Ding X, Tang X, Zou J, Wang S, Liu Y. Circular RNA circNUP214 Modulates the T Helper 17 Cell Response in Patients With Rheumatoid Arthritis. Front Immunol 2022; 13:885896. [PMID: 35686126 PMCID: PMC9170918 DOI: 10.3389/fimmu.2022.885896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) are important transcriptional regulators of genome expression that participate in the pathogenesis of human diseases. Mechanistically, circRNAs, as competitive endogenous RNAs (ceRNAs), can sponge microRNAs (miRNAs) with miRNA response elements. A previous study identified that hsa_circ_0089172 (circNUP214) is abnormally expressed in Hashimoto's thyroiditis. However, the role of circNUP214 in rheumatoid arthritis (RA) remains unclear. In total, 28 RA patients and 28 healthy controls were enrolled in this study. We found that circNUP214 is an abundant and stable circRNA in RA patients that can potentially differentiate RA patients from healthy subjects. Additionally, the elevated levels of IL-23R positively correlated with circNUP214 expression. The knockdown of circNUP214 resulted in the reduction of IL-23R at both transcriptional and translational levels in human CD4+ T cells. The proportion of circulating Th17 cells and the transcript levels of IL-17A were increased in RA patients and were both positively correlated with IL-23R expression. Moreover, positive correlations between the transcript levels of circNUP214 and the percentage of Th17 cells and the transcript levels of IL-17A were observed in RA patients. The downregulation of circNUP214 decreased the proportion of Th17 cells and the transcript levels of IL-17A in vitro. Furthermore, circNUP214 functioned as a ceRNA for miR-125a-3p in RA patients. Taken together, our results indicate that elevated levels of circNUP214 contribute to the Th17 cell response in RA patients.
Collapse
Affiliation(s)
- Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xuehua Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Junli Zou
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
24
|
Li D, Yan L, Zhang J, Gu F. Circular RNA hsa_circ_0004396 acts as a sponge of miR-615-5p to promote non-small cell lung cancer progression and radioresistance through the upregulation of P21-Activated Kinase 1. J Clin Lab Anal 2022; 36:e24463. [PMID: 35500159 PMCID: PMC9169218 DOI: 10.1002/jcla.24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUNDS CircRNA hsa_circ_0004396 has been confirmed to be upregulated in human non-small cell lung cancer (NSCLC). The aim of his study was to evaluate its mechanism in the radioresistance and progression of NSCLC. METHODS Hsa_circ_0004396, miR-615-5p, and P21-Activated Kinase 1 (PAK1) were measured by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The binding between miR-615-5p and hsa_circ_0004396 or PAK1 was predicted by circinteractome or Targetscan, as verified by dual-luciferase reporter assay and RIP assay. Proliferation, clonogenicity capacity, cell cycle progression, apoptosis, migration, and invasion were assessed by CCK-8, colony formation, flow cytometry, and Transwell assay. Bcl-2, Bcl-2 associated protein X (Bax), MMP-2, and PAK1 protein levels were detected using western blot assay. In addition, in vivo function of hsa_circ_0004396 was evaluated by tumor xenograft assay. RESULTS Hsa_circ_0004396 and PAK1 levels were upregulated, while miR-615-5p was declined in NSCLC. Hsa_circ_0004396 silencing inhibited NSCLC cell malignant behavior and induced radiosensitivity. Hsa_circ_0004396 functions as a molecular sponge of miR-615-5p to regulate PAK1 expression. Moreover, hsa_circ_0004396 knockdown inhibited NSCLC tumor growth in vivo. CONCLUSION Our findings demonstrated that hsa_circ_0004396 promoted NSCLC development and radioresistance through the miR-615-5p/PAK1 axis, which might provide a new therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Thoracic Surgery, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| | - Lin Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junhan Zhang
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Feng Gu
- Department of Aspiration Oncology, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Circular RNA TLK1 Exerts Oncogenic Functions in Hepatocellular Carcinoma by Acting as a ceRNA of miR-138-5p. JOURNAL OF ONCOLOGY 2022; 2022:2415836. [PMID: 35359342 PMCID: PMC8964207 DOI: 10.1155/2022/2415836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
Abstract
Mounting evidence has shown that circular RNAs (circRNAs) function as key regulators in carcinogenesis and cancer progression, and this study is aimed at investigating the regulatory functions of circRNA TLK1 (circ-TLK1) in hepatocellular carcinoma (HCC). We observed that circ-TLK1 was highly expressed in HCC samples, and its high expression was closely associated with poor clinicopathological variables of HCC patients. The results of functional experiments revealed that knockdown of circ-TLK1 remarkably inhibited the proliferation, migration, invasion, and EMT of HCC cells, while circ-TLK1 overexpression promoted these malignant behaviors. Moreover, we noted that circ-TLK1 was capable of binding to miR-138-5p and upregulating its target gene, SOX4 in HCC. Based on rescue assays, miR-138-5p inhibition partially suppressed the effects of circ-TLK1 knockdown on the malignant behaviors of HCC cells. In short, this study is the first to indicate that circ-TLK1 functions as an oncogene in HCC progression partly through acting as a ceRNA of miR-138-5p, which may be a promising target for HCC therapy.
Collapse
|
26
|
Liu Y, Ao X, Yu W, Zhang Y, Wang J. Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:50-72. [PMID: 34938606 PMCID: PMC8645422 DOI: 10.1016/j.omtn.2021.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, with high morbidity and mortality. Non-small cell lung cancer (NSCLC) is a major pathological type of LC and accounts for more than 80% of all cases. Circular RNAs (circRNAs) are a large class of non-coding RNAs (ncRNAs) with covalently closed-loop structures, a high abundance, and tissue-specific expression patterns. They participate in various pathophysiological processes by regulating complex gene networks involved in proliferation, apoptosis, migration, and epithelial-to-mesenchymal transition (EMT), as well as metastasis. A growing number of studies have revealed that the dysregulation of circRNAs contributes to many aspects of cancer progression, such as its occurrence, metastasis, and recurrence, suggesting their great potential as efficient and specific biomarkers in the diagnosis, prognosis, and therapeutic targeting of NSCLC. In this review, we systematically elucidate the characteristics, biogenesis, and functions of circRNAs and focus on their molecular mechanisms in NSCLC progression. Moreover, we highlight their clinical implications in NSCLC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
27
|
Wang J, Zhou L, Chen B, Yu Z, Zhang J, Zhang Z, Hu C, Bai Y, Ruan X, Wang S, Ouyang J, Wu A, Zhao X. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J Transl Med 2022; 20:58. [PMID: 35101080 PMCID: PMC8805259 DOI: 10.1186/s12967-022-03240-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Background Colon cancer is a common malignant tumor of the digestive tract, and its incidence is ranked third among gastrointestinal tumors. The present study aims to investigate the role of a novel circular RNA (circCSPP1) in colon cancer and its underlying molecular mechanisms. Methods Bioinformatics analysis and reverse transcription-quantitative PCR were used to detect the expression levels of circCSPP1 in colon cancer tissues and cell lines. The effects of circCSPP1 on the behavior of colon cancer cells were investigated using CCK-8, transwell and clonogenic assays. Bioinformatics analysis along with luciferase, fluorescence in situ hybridization and RNA pull-down assays were used to reveal the interaction between circCSPP1, microRNA (miR)-431, Rho associated coiled-coil containing protein kinase 1 (ROCK1) and zinc finger E-box binding homeobox 1 (ZEB1). Results It was found that circCSPP1 expression was significantly upregulated in colon cancer tissues and cell lines. Overexpression of circCSPP1 significantly promoted the proliferation, migration and invasion of colon cancer cells, whereas silencing of circCSPP1 exerted opposite effects. Mechanistically, circCSPP1 was found to bind with miR-431. In addition, ROCK1 and ZEB1 were identified as the target genes of miR-431. Rescue experiments further confirmed the interaction between circCSPP1, miR-431, ROCK1 and ZEB1. Moreover, circCSPP1 promoted the expression level of ROCK1, cyclin D1, cyclin-dependent kinase 4, ZEB1 and Snail, and lowered the E-cadherin expression level. Conclusion Taken together, the findings of the present study indicated that circCSPP1 may function as a competing endogenous RNA in the progression of colon cancer by regulating the miR-431/ROCK1 and miR-431/ZEB1 signaling axes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03240-x.
Collapse
|
28
|
Huang Z, Wang C, Zhao X. circFIG 4 drives the carcinogenesis and metastasis of esophagus cancer via the miR-493-5p/E2F3 axis. Thorac Cancer 2022; 13:783-794. [PMID: 35083866 PMCID: PMC8930455 DOI: 10.1111/1759-7714.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Background Esophageal cancer (EC) is a highly malignant tumor of the digestive tract. Circular RNAs (circRNAs) have been verified to play a regulatory role in the occurrence and progression of different cancers, including EC. This research aimed to investigate the role and molecular mechanism of circFIG 4 in EC progression. Methods The analyses of circFIG 4, miR‐493‐5p, and neuro‐oncological ventral antigen 2 levels were administrated by quantitative real‐time polymerase chain reaction. The characteristics of circFIG 4 were determined by Ribonuclease R assay and Actinomycin D assay. Cell proliferation was assessed via colony formation assay and 5‐ethynyl‐2′‐deoxyuridine incorporation assay. Cell cycle distribution and apoptosis were evaluated by flow cytometry. Western blot was performed to assess protein expression. The targeted interaction among circFIG 4, miR‐493‐5p, and E2F transcription factor 3 (E2F3) were validated using dual‐luciferase reporter or RNA immunoprecipitation assays. Results circFIG 4 was overtly upregulated in EC and was relatively stable in EC cells. circFIG 4 knockdown impeded proliferation, migration, and invasion and expedited apoptosis in EC cells. circFIG 4 served as a miR‐493‐5p sponge to act in the development of EC. Furthermore, circFIG 4 modulated EC progression via targeting miR‐493‐5p and miR‐493‐5p suppressed EC progression via targeting E2F3. circFIG 4 modulated E2F3 expression through acting as a sponge of miR‐493‐5p. Moreover, circFIG 4 knockdown inhibited EC tumorigenesis by targeting miR‐493‐5p/E2F3 axis tumor growth in vivo. Conclusion circFIG 4 silence mitigated EC malignant progression at least partly by mediating the miR‐493‐5p/E2F3 pathway, highlighting new biomarkers and therapeutic targets for EC treatment.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Thoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Chunyue Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Xin Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, China
| |
Collapse
|
29
|
Wang H, Shan S, Wang H, Wang X. CircATXN7 contributes to the progression and doxorubicin resistance of breast cancer via modulating miR-149-5p/HOXA11 pathway. Anticancer Drugs 2022; 33:e700-e710. [PMID: 34845164 DOI: 10.1097/cad.0000000000001243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breast cancer is a frequent tumor threatening the health of women. Circular RNAs (circRNAs) play vital roles in cancer progression and chemoresistance. Herein, we mainly investigate the role and potential mechanism of circRNA ataxin 7 (circATXN7; circ_0066436) in breast cancer. RNA expression levels were detected via quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Cell viability and half inhibitory concentration (IC50) of doxorubicin were assessed by cell counting kit-8 (CCK-8) method. Cell proliferation, migration and invasion were determined by CCK-8, 5-ethynyl-2'-deoxyuridine, colony formation and transwell assays. The binding relationship between microRNA-149-5p (miR-149-5p) and circATXN7 or homeobox A11 (HOXA11) was validated via dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenograft assay was conducted to analyze the effect of circATXN7 on doxorubicin resistance of breast cancer. CircATXN7 and HOXA11 levels were enhanced, whereas miR-149-5p level was declined in breast cancer tissues and cells. CircATXN7 silencing suppressed breast cancer development and doxorubicin resistance. Additionally, circATXN7 upregulated HOXA11 via absorbing miR-149-5p, thereby inducing breast cancer cell progression and reducing doxorubicin sensitivity. Besides, depletion of circATXN7 enhanced doxorubicin sensitivity in vivo. Interference of circATXN7 inhibited breast cancer progression and doxorubicin resistance via mediating miR-149-5p/HOXA11 axis, which might provide a possible biomarker for breast cancer therapy.
Collapse
Affiliation(s)
- Hualong Wang
- Department of Thyroid and Breast Surgery, Xian Yang Central Hospital, Xianyang, Shanxi, China
| | | | | | | |
Collapse
|
30
|
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, Chen Y, Chang S, Feng X, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Hou G, Wei Y, Li S, Qin Y, Jin Z. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer 2021; 20:158. [PMID: 34863211 PMCID: PMC8642992 DOI: 10.1186/s12943-021-01457-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA), a subclass of non-coding RNA, plays a critical role in cancer tumorigenesis and metastasis. It has been suggested that circRNA acts as a microRNA sponge or a scaffold to interact with protein complexes; however, its full range of functions remains elusive. Recently, some circRNAs have been found to have coding potential. METHODS To investigate the role of circRNAs in gastric cancer (GC), parallel sequencing was performed using five paired GC samples. Differentially expressed circAXIN1 was proposed to encode a novel protein. FLAG-tagged circRNA overexpression plasmid construction, immunoblotting, mass spectrometry, and luciferase reporter analyses were applied to confirm the coding potential of circAXIN1. Gain- and loss-of-function studies were conducted to study the oncogenic role of circAXIN1 and AXIN1-295aa on the proliferation, migration, invasion, and metastasis of GC cells in vitro and in vivo. The competitive interaction between AXIN1-295aa and adenomatous polyposis coli (APC) was investigated by immunoprecipitation analyses. Wnt signaling activity was observed using a Top/Fopflash assay, real-time quantitative RT-PCR, immunoblotting, immunofluorescence staining, and chromatin immunoprecipitation. RESULTS CircAXIN1 is highly expressed in GC tissues compared with its expression in paired adjacent normal gastric tissues. CircAXIN1 encodes a 295 amino acid (aa) novel protein, which was named AXIN1-295aa. CircAXIN1 overexpression enhances the cell proliferation, migration, and invasion of GC cells, while the knockdown of circAXIN1 inhibits the malignant behaviors of GC cells in vitro and in vivo. Mechanistically, AXIN1-295aa competitively interacts with APC, leading to dysfunction of the "destruction complex" of the Wnt pathway. Released β-catenin translocates to the nucleus and binds to the TCF consensus site on the promoter, inducing downstream gene expression. CONCLUSION CircAXIN1 encodes a novel protein, AXIN1-295aa. AXIN1-295aa functions as an oncogenic protein, activating the Wnt signaling pathway to promote GC tumorigenesis and progression, suggesting a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yin Peng
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yidan Xu
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaojing Zhang
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Shiqi Deng
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuan Yuan
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaonuan Luo
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Md Tofazzal Hossain
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District Beijing, 100049 People’s Republic of China ,grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518000 People’s Republic of China , Department of Statistics, Bangabandhu Sheikh Mujibur Rahaman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Xiaohui Zhu
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Kaining Du
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Fan Hu
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yang Chen
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Shanshan Chang
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xianling Feng
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC, 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Stephen J. Meltzer
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Gangqiang Hou
- grid.440238.9Department of Medical Image Center, Kangning Hospital, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Yanjie Wei
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District Beijing, 100049 People’s Republic of China
| | - Song Li
- Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518000, People's Republic of China.
| | - Zhe Jin
- Guangdong Provincial Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, 3688 Nanhai Avenue, Nanshan, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
31
|
Sun Q, Liang R, Li M, Zhou H. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitro via reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis. J Pharm Pharmacol 2021; 74:861-868. [PMID: 34850057 DOI: 10.1093/jpp/rgab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs) have been demonstrated to play important roles in acute pancreatitis (AP). Herein, this study aimed to investigate the role and mechanism of circRNAs utrophin (circ_UTRN) in AP. METHODS In vitro cultured rat pancreatic acinar cell line AR42J was exposed to caerulein (10 nmol/L) to mimic an AP cell model. The levels of circ_UTRN and microRNA (miR)-320-3p and protein tyrosine kinase 2 (PTK2) were examined using quantitative real-time polymerase chain reaction and Western blot assays. Cell apoptosis was analysed by flow cytometry and Western blot assays. ELISA was employed to detect the levels of tumour necrosis factor-α (TNF-α), IL-1β and IL-6. The binding interaction between miR-320-3p and circ_UTRN or PTK2 was verified using dual-luciferase reporter assay. KEY FINDINGS The expression of circ_UTRN was decreased by caerulein in pancreatic acinar cells, ectopic overexpression of circ_UTRN reduced inflammation and promoted apoptosis in caerulein-mediated pancreatic acinar cells. In a mechanical study, circ_UTRN served as a sponge of miR-320-3p, and miR-320-3p directly targeted PTK2. Rescue assay suggested that the promotion of apoptosis and inhibition of inflammation induced by circ_UTRN re-expression in caerulein-mediated pancreatic acinar cells were partially abolished by miR-320-3p overexpression or PTK2 knockdown. Besides that, miR-320-3p inhibition impaired caerulein-induced cell apoptosis arrest and inflammation via targeting PTK2. CONCLUSIONS Up-regulation of circ_UTRN in pancreatic acinar cells attenuates caerulein-evoked cell apoptosis arrest and inflammation enhancement via miR-320-3p/PTK2, suggesting that circ_UTRN/miR-320-3p/PTK2 axis might be engaged in caerulein-induced AP.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Gastroenterology, Shangdong Province Third Hospital, Jinan City, Shandong Province, China
| | - Ran Liang
- Nancun Community Health Service Center of Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Mingdong Li
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| | - Hua Zhou
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
32
|
Jiang Z, Hu H, Hu W, Hou Z, Liu W, Yu Z, Liang Z, Chen S. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer. Cancer Cell Int 2021; 21:596. [PMID: 34742305 PMCID: PMC8572430 DOI: 10.1186/s12935-021-02290-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023] Open
Abstract
Aim Previous studies have reported that circular RNA (circRNA) is associated with the pathogenesis of CRC. This study was designed to reveal the mechanism of circ-ring finger protein 121 (circ-RNF121) in colorectal cancer (CRC). Materials and methods The levels of circ-RNF121, microRNA-1224-5p (miR-1224-5p) and forkhead box M1 (FOXM1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was detected by western blot. Cell proliferation was analyzed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell colony formation assays. Flow cytometry analysis was performed to investigate cell apoptosis. Cell migration and invasion were investigated by transwell and wound-healing assays. Cell glycolysis was detected using glucose, lactate and ADP/ATP ratio assay kits. The binding relationship between miR-1224-5p and circ-RNF121 or FOXM1 was predicted by starBase online database, and identified by dual-luciferase reporter assay. The impacts of circ-RNF121 silencing on tumor formation in vivo were disclosed by in vivo tumor formation assay. Key findings Circ-RNF121 and FOXM1 expression were dramatically upregulated, while miR-1224-5p expression was downregulated in CRC tissues or cells compared with control groups. Circ-RNF121 silencing repressed cell proliferation, migration, invasion and glycolysis but induced cell apoptosis in CRC, which were attenuated by miR-1224-5p inhibitor. Additionally, circ-RNF121 acted as a sponge of miR-1224-5p and miR-1224-5p bound to FOXM1. Circ-RNF121 silencing inhibited tumor growth in vivo. Furthermore, circ-RNF121 was secreted through being packaged into exosomes. Significance The finding provided a novel insight into studying circRNA-mediated CRC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02290-3.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Hao Hu
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wenli Hu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zehui Hou
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Wei Liu
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Zhuomin Yu
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Zhiqiang Liang
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery, Laboratory of Colorectal and Pelvic Floor Diseases, Supported By National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangdong Provincial Key, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 YuanCun, 2nd Heng Road, Guangzhou, 510655, Guangdong Province, China.
| |
Collapse
|
33
|
Bazhabayi M, Qiu X, Li X, Yang A, Wen W, Zhang X, Xiao X, He R, Liu P. CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. J Cell Mol Med 2021; 25:10248-10256. [PMID: 34668628 PMCID: PMC8572792 DOI: 10.1111/jcmm.16963] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
CircRNAs (circular RNA) are reported to regulate onset and progress multiple cancers. Nonetheless, the function along with the underlying mechanisms of circRNAs in HER-2-positive breast cancer (BC) remains unclear. CircRNA microarrays were performed to elucidate expression profiles of HER-2-positive BC cells. circRNA levels were quantified using qRT-PCR assay. Various in vitro along with in vivo assays were employed to further explore the effects of circGFRA1 in the progress of HER-2-positive BC and interactions of circGFRA1, miR-1228 and AIFM2 in Her-2-positive BC. CircGFRA1 was remarkably upregulated in HER-2-positive BC. Knockdown of circGFRA1 could attenuate HER-2-positive BC progression by inhibiting the proliferation, infiltration and migratory ability of HER-2-positive BC cells. Through ceRNA mechanism, circGFRA1 could bind to miR-1228 and alleviate inhibitory activity of miR-1228 on targeted gene AIFM2. In summary, circGFRA1-miR-1228-AIFM2 axis regulates HER-2-positive BC. CircGFRA1 is a novel promising treatment option for HER-2-positive BC.
Collapse
Affiliation(s)
- Meiheban Bazhabayi
- Department of Breast OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xingsheng Qiu
- Department of Radiation OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xing Li
- Department of Breast OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Anli Yang
- Department of Breast OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wei Wen
- Department of PathologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xiaoli Zhang
- Department of PathologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xiangsheng Xiao
- Department of Breast OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rongfang He
- Department of PathologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Peng Liu
- Department of Breast OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
34
|
Omid-Shafaat R, Moayeri H, Rahimi K, Menbari MN, Vahabzadeh Z, Hakhamaneshi MS, Nouri B, Ghaderi B, Abdi M. Serum Circ-FAF1/Circ-ELP3: A novel potential biomarker for breast cancer diagnosis. J Clin Lab Anal 2021; 35:e24008. [PMID: 34545638 PMCID: PMC8605127 DOI: 10.1002/jcla.24008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Background Recently, measurement of serum circular RNAs (circRNAs) as a non‐invasive tumor marker has been considered more. We designed the present study to investigate the diagnostic efficiency of serum Circ‐ELP3 and Circ‐FAF1, separately and simultaneously, for diagnosis of patients with breast cancer. Methods Seventy‐eight female patients diagnosed as primary breast cancer participated in this study. We measured the level of circRNAs in serum specimens of the studied subjects. A receiver operating characteristic (ROC) curve was plotted and the diagnostic efficiency for both circRNAs was determined. Results Compared to non‐cancerous controls, Circ‐ELP3 was upregulated in breast cancer patients (p‐value = 0.004). On the other hand, serum Circ‐FAF1 was seen to be decreased in breast cancer patients than controls (p‐value = 0.001). According to ROC curve results, the area under the curve (AUC) for Circ‐ELP3 and Circ‐FAF1 was 0.733 and 0.787, respectively. Furthermore, the calculated sensitivity and specificity for Circ‐ELP3 and Circ‐FAF1 were 65, 64% and 77, 74%, respectively. Merging both circRNAs increased the diagnostic efficiency, with a better AUC, sensitivity and specificity values of 0.891, 96 and 62%, respectively. Conclusion Briefly, our results revealed the high diagnostic value for combined circRNAs panel, including Circ‐ELP3 and Circ‐FAF1 as a non‐invasive marker, in detection of breast carcinomas.
Collapse
Affiliation(s)
- Ramtin Omid-Shafaat
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hassan Moayeri
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad-Saied Hakhamaneshi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
35
|
Liu YJ, Wang HJ, Xue ZW, Cheang LH, Tam MS, Li RW, Li JR, Hou HG, Zheng XF. Long noncoding RNA H19 accelerates tenogenic differentiation by modulating miR-140-5p/VEGFA signaling. Eur J Histochem 2021; 65:3297. [PMID: 34494412 PMCID: PMC8447539 DOI: 10.4081/ejh.2021.3297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rotator cuff tear (RCT) is a common tendon injury, but the mechanisms of tendon healing remain incompletely understood. Elucidating the molecular mechanisms of tenogenic differentiation is essential to develop novel therapeutic strategies in clinical treatment of RCT. The long noncoding RNA H19 plays a regulatory role in tenogenic differentiation and tendon healing, but its detailed mechanism of action remains unknown. To elucidate the role of H19 in tenogenic differentiation and tendon healing, tendon-derived stem cells were harvested from the Achilles tendons of Sprague Dawley rats and a rat model of cuff tear was established for the exploration of the function of H19 in promoting tenogenic differentiation. The results showed that H19 overexpression promoted, while H19 silencing suppressed, tenogenic differentiation of tendon-derived stem cells (TDSCs). Furthermore, bioinformatic analyses and a luciferase reporter gene assay showed that H19 directly targeted and inhibited miR-140-5p to promote tenogenic differentiation. Further, inhibiting miR-140-5p directly increased VEGFA expression, revealing a novel regulatory axis between H19, miR-140-5p, and VEGFA in modulating tenogenic differentiation. In rats with RTC, implantation of H19-overexpressing TDSCs at the lesion promoted tendon healing and functional recovery. In general, the data suggest that H19 promotes tenogenic differentiation and tendon-bone healing by targeting miR-140-5p and increasing VEGFA levels. Modulation of the H19/miR-140-5p/VEGFA axis in TDSCs is a new potential strategy for clinical treatment of tendon injury.
Collapse
Affiliation(s)
- You-Jie Liu
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Hua-Jun Wang
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Zhao-Wen Xue
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Lek-Hang Cheang
- IAN WO Medical Center, Macau Special Administrative Region, Macau.
| | - Man-Seng Tam
- Macau Medical Science and Technology Research Association, Macau.
| | - Ri-Wang Li
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Jie-Ruo Li
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Hui-Ge Hou
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Xiao-Fei Zheng
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| |
Collapse
|
36
|
Xi J, Xi Y, Zhang Z, Hao Y, Wu F, Bian B, Hao G, Li W, Zhang S. Hsa_circ_0060937 accelerates non-small cell lung cancer progression via modulating miR-195-5p/HMGB3 pathway. Cell Cycle 2021; 20:2040-2052. [PMID: 34470585 DOI: 10.1080/15384101.2021.1969203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) exert a critical effect on tumorigenesis and development. Our research aimed to clarify the function and underlying mechanism of circ_0060937 inNSCLC. The concentrations of circ_0060937, miR-195-5p and high-mobility group box 3 (HMGB3) were monitored via qRT-PCR and western blot assays. Additionally, cell proliferation, apoptosis, migration and invasion were assessed using CCK-8, colony formation, flow cytometry and transwell assays. Glycolysis was evaluated via detecting glucose uptake and lactate product. The association between miR-195-5p and circ_0060937/HMGB3 were validated using dual-luciferase reporter, RNA pull-down and RIP assays. Furthermore,in vivo experiment was performed to analyze tumorigenesis.Circ_0060937 and HMGB3 levels were elevated, whereas miR-195-5p level was dropped in NSCLC. Circ_0060937 down-regulation restrainedNSCLC cell proliferation, migration, invasion and glycolysis, and triggered apoptosis. Knockdown of circ_0060937 restrained NSCLC development via absorbing miR-195-5p. Circ_0060937 silencing inhibited NSCLC progression by mediating HMGB3. Besides, circ_0060937 depletion suppressed tumor growth in vivo.Circ_0060937 knockdown hindered NSCLC development and glycolysis via regulating miR-195-5p/HMGB3 pathway.
Collapse
Affiliation(s)
- Junfeng Xi
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yunfeng Xi
- Department of Dermatology, The First Hospital of Yulin City, Yulin, China
| | - Zhibin Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yanhong Hao
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Fei Wu
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Burong Bian
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Guangjun Hao
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Weiwei Li
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Harper KL, Mottram TJ, Whitehouse A. Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers (Basel) 2021; 13:4180. [PMID: 34439334 PMCID: PMC8391132 DOI: 10.3390/cancers13164180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The majority of RNAs transcribed from the human genome have no coding capacity and are termed non-coding RNAs (ncRNAs). It is now widely accepted that ncRNAs play key roles in cell regulation and disease. Circular RNAs (circRNAs) are a form of ncRNA, characterised by a closed loop structure with roles as competing endogenous RNAs (ceRNAs), protein interactors and transcriptional regulators. Functioning as key cellular regulators, dysregulated circRNAs have a significant impact on disease progression, particularly in cancer. Evidence is emerging of specific circRNAs having oncogenic or tumour suppressive properties. The multifaceted nature of circRNA function may additionally have merit as a novel therapeutic target, either in treatment or as a novel biomarker, due to their cell-and disease-state specific expression and long-term stability. This review aims to summarise current findings on how circRNAs are dysregulated in cancer, the effects this has on disease progression, and how circRNAs may be targeted or utilised as future potential therapeutic options.
Collapse
Affiliation(s)
| | | | - Adrian Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.L.H.); (T.J.M.)
| |
Collapse
|
38
|
Du W, Wang L, Liao Z, Wang J. Circ_0085289 Alleviates the Progression of Periodontitis by Regulating let-7f-5p/SOCS6 Pathway. Inflammation 2021; 44:1607-1619. [PMID: 33710445 DOI: 10.1007/s10753-021-01445-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Periodontitis is a common chronic inflammation that often occurs in adults. Circular RNAs (circRNAs) play a vital role in inflammation-related diseases. However, the role and potential basis of hsa_circ_0085289 in periodontitis remain unknown. Periodontal ligament cells (PDLCs) were exposed to lipopolysaccharide (LPS) to mimic periodontitis. The levels of circ_0085289, let-7f-5p, and suppressor of cytokine signaling 6 (SOCS6) were determined using qRT-PCR and western blot. The release of inflammatory cytokines was measured via enzyme-linked immunosorbent assay (ELISA). Cell viability and apoptosis were determined using Cell Counting Kit-8, flow cytometry, Caspase-3 Assay Kit, and western blot assays. The association between let-7f-5p and circ_0085289/SOCS6 was validated via dual-luciferase reporter, RNA pull-down, and RIP assays. Circ_0085289 and SOCS6 levels were reduced, and let-7f-5p level was increased in periodontitis patients and LPS-treated PDLCs. LPS stimulation caused PDLC injury and circ_0085289 downregulation. Moreover, circ_0085289 upregulation or let-7f-5p downregulation diminished LPS-triggered PDLC injury. Besides, circ_0085289 promoted SOCS6 expression by absorbing let-7f-5p. Circ_0085289 alleviated LPS-stimulated PDLC injury via targeting let-7f-5p. Moreover, let-7f-5p targeted SOCS6 to affect LPS-resulted PDLC injury. Circ_0085289 alleviated PDLC injury induced by LPS stimulation via modulating let-7f-5p/SOCS6 axis, suggesting a promising biomarker for periodontitis treatment.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China.
| | - Li Wang
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Zhen Liao
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Juan Wang
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| |
Collapse
|
39
|
Zhang H, Zhang B, Chen Y, Zhang Y, Qian M, Yuan L, Shen Y, Yang H. Downregulated hsa_circ_0036988 promotes proliferation and metastasis in oral squamous cell carcinoma. Cancer Biomark 2021; 31:375-383. [PMID: 33896837 DOI: 10.3233/cbm-210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND As a novel class of endogenous ncRNAs, Circular RNAs (circRNAs) have been verified to be involved in the carcinogenesis and tumor progression. OBJECTIVE This study aimed to investigate the potential function of a candidate circRNA hsa_circ_0036988 in oral squamous cell carcinoma (OSCC). METHODS The altered expression of hsa_circ_0036988 was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in OSCC samples and OSCC cell lines. The associations between the levels of hsa_circ_0036988 and the clinicopathological features were statistically analysed. The function of hsa_circ_0036988 in OSCC were evaluated via a series of in vitro experiments by using constructed plasmids or siRNA. Western blotting assays were conducted to evaluate changes in protein expression levels. RESULTS Hsa_circ_0036988 was significantly downregulated in OSCC tissues compared with adjacent normal tissues. While low expression of hsa_circ_0036988 was highly correlated with lymph nodes metastasis. Overexpression or knockdown of hsa_circ_0036988 significantly affected the proliferation, migration and invasion of OSCC cells. Furthermore, the altered expression of hsa_circ_0036988 have an impact on the epithelial-to-mesenchymal transition (EMT)-related protein expression levels. CONCLUSIONS Our findings indicated that hsa_circ_0036988 may affect cell proliferation, migration and invasion by regulating EMT progress, which might provide a therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China
| | - Biru Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ying Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Min Qian
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China
| | - Lin Yuan
- Institute of Precision of Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Zhou PL, Wu Z, Zhang W, Xu M, Ren J, Zhang Q, Sun Z, Han X. Circular RNA hsa_circ_0000277 sequesters miR-4766-5p to upregulate LAMA1 and promote esophageal carcinoma progression. Cell Death Dis 2021; 12:676. [PMID: 34226522 PMCID: PMC8257720 DOI: 10.1038/s41419-021-03911-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Growing evidence has indicated that circular RNAs (circRNAs) play a pivotal role as functional RNAs in diverse cancers. However, most circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined, and the underlying molecular mechanisms mediated by circRNAs are largely unclear. Here, we screened human circRNA expression profiles in ESCC tissues and found significantly increased expression of hsa_circ_0000277 (termed circPDE3B) in ESCC tissues and cell lines compared to the normal controls. Moreover, higher circPDE3B expression in patients with ESCC was correlated with advanced tumor-node-metastasis (TNM) stage and dismal prognosis. Functional experiments demonstrated that circPDE3B promoted the tumorigenesis and metastasis of ESCC cells in vitro and in vivo. Mechanistically, bioinformatics analysis, a dual-luciferase reporter assay, and anti-AGO2 RNA immunoprecipitation showed that circPDE3B could act as a competing endogenous RNA (ceRNA) by harboring miR-4766-5p to eliminate the inhibitory effect on the target gene laminin α1 (LAMA1). In addition, LAMA1 was significantly upregulated in ESCC tissues and was positively associated with the aggressive oncogenic phenotype. More importantly, rescue experiments revealed that the oncogenic role of circPDE3B in ESCC is partly dependent on the miR-4766-5p/LAMA1 axis. Furthermore, bioinformatics analysis combined with validation experiments showed that epithelial-mesenchymal transition (EMT) activation was involved in the oncogenic functions of the circPDE3B-miR-4766-5p/LAMA1 axis in ESCC. Taken together, we demonstrate for the first time that the circPDE3B/miR-4766-5p/LAMA1 axis functions as an oncogenic factor in promoting ESCC cell proliferation, migration, and invasion by inducing EMT, implying its potential prognostic and therapeutic significance in ESCC.
Collapse
Affiliation(s)
- Peng Li Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengyang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhanguo Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
41
|
Zhang G, Liu Y, Yang J, Wang H, Xing Z. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via miR-1/MAP3K1 axis. J Gene Med 2021; 24:e3376. [PMID: 34191363 DOI: 10.1002/jgm.3376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Circular RNAs (circRNAs) are crucial regulators in tumor occurrence and progression, and circRNAs are enriched and stable in exosomes. This study aimed to explore the role and potential mechanism of cancer-derived exosomal circ_0081234 in prostate cancer (PCa). METHODS Exosomes were extracted using the ExoQuick Precipitation Kit. The levels of circ_0081234, miR-1 and mitogen-activated protein kinase kinase kinase 1 (MAP 3K1) were examined using qRT-PCR or western blot. Cell migration and invasion were evaluated via transwell assay. The protein levels of N-cadherin, Vimentin and E-cadherin were detected by western blot. The interaction between miR-1 and circ_0081234 or MAP 3K1 was verified via dual-luciferase reporter assay and RNA pull-down assay. RESULTS Circ_0081234 level was increased in PC a tissues with spinal metastasis (SM) in comparison to primary PCa tissues without SM. Exosomal circ_0081234 promoted the migration, invasion and epithelial-mesenchymal transition (EMT) of PCa cells. Knockdown of circ_0081234 blocked PCa cell progression via regulating miR-1. In addition, miR-1 overexpression suppressed PCa cell progression by repressing MAP 3K1. Moreover, circ_0081234 increased MAP 3K1 level via sponging miR-1. Depletion of circ_0081234 inhibited tumor growth in vivo. CONCLUSION Exosomal circ_0081234 promoted migration, invasion and EMT of PCa cells by regulating the miR-1/MAP 3K1 axis.
Collapse
Affiliation(s)
- Guangyao Zhang
- Department of General Surgery, Huiji Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yibin Liu
- Department of Emergency Surgery, Huiji Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianhui Yang
- Department of General Surgery, Huiji Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Wang
- Department of General Surgery, Huiji Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Xing
- Medical office, Huiji Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Wang YW, Xu Y, Wang YY, Zhu J, Gao HD, Ma R, Zhang K. Elevated circRNAs circ_0000745, circ_0001531 and circ_0001640 in human whole blood: Potential novel diagnostic biomarkers for breast cancer. Exp Mol Pathol 2021; 121:104661. [PMID: 34139239 DOI: 10.1016/j.yexmp.2021.104661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/06/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Increasing studies have shown that circular RNAs (circRNAs) have great diagnostic potential in cancer. Here, we examined whether the blood circRNAs could be promising candidates as diagnostic biomarkers in breast cancer. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect levels of five circRNAs (circ_0000501, circ_0000745, circ_0001531, circ_0001640 and circ_0001978) in 129 patients with breast cancer, 19 patients with benign breast tumor and 13 healthy controls. The diagnostic accuracy of circRNAs was assessed using the receiver operating characteristic (ROC) curve. A circRNA-miRNA-mRNA network was constructed based on bioinformatic analysis. RESULTS QRT-PCR validated that circ_0000745, circ_0001531 and circ_0001640 were upregulated in breast cancer, compared with benign tumor and healthy control. ROC curve analysis revealed that circ_0000745, circ_0001531 and circ_0001640 had good diagnostic potential. Notably, a signature comprising the three circRNAs showed better diagnostic potential, with the area under curve (AUC) of 0.9130 (P < 0.0001). And a circRNA-miRNA-mRNA network revealed that the circRNAs could participate in complex regulated network and thus involve in cancer development and progression. CONCLUSIONS Taken together, our findings support the potential of circ_0000745, circ_0001531, circ_0001640 and the three-circRNA signature as biomarkers for breast cancer diagnosis.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Yao Xu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Yan-Yan Wang
- Health Management Center, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Hai-Dong Gao
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China; Department of General Surgery, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao 266035, People's Republic of China
| | - Rong Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China.
| |
Collapse
|
43
|
He Y, Zhang H, Deng J, Cai Z, Gu M, Zhao C, Guo Y. The functions of fluoxetine and identification of fluoxetine-mediated circular RNAs and messenger RNAs in cerebral ischemic stroke. Bioengineered 2021; 12:2364-2376. [PMID: 34098829 PMCID: PMC8806530 DOI: 10.1080/21655979.2021.1935403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fluoxetine is used to improve cognition, exercise ability, depression, and neurological functions in patients with cerebral ischemic stroke. Circular RNAs (circRNAs) play important regulatory roles in multiple diseases. However, studies regarding the fluoxetine-mediated circRNA-microRNA-messenger RNA (mRNA) axis have not been conducted. This study is aim to investigate the functions of fluoxetine and identification of fluoxetine-mediated circRNAs and mRNAs in cerebral ischemic stroke. The middle cerebral artery occlusion (MCAO) rat models were successfully established at fisrt, and then rats were intraperitoneally injected with 10-mg/kg fluoxetine hydrochloride for 14 d. Afterward, the cerebral infarction area was evaluated using triphenyltetrazolium chloride staining. High-throughput sequencing was adopted to screen the differential circRNAs and mRNAs. The candidate circRNAs, mRNAs, and potential microRNAs were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). In addtion, microRNA and circRNA binding was verified using the dual-luciferase reporter assay. Results revealed that fluoxetine markedly diminished the cerebral infarction area in rats after MCAO. The circRNAs and mRNAs were differentially expressed, which includes 879 circRNAs and 815 mRNAs between sham and MCAO groups, respectively, and 958 circRNAs and 838 mRNAs between MCAO and fluoxetine groups, respectively. In which, circMap2k1 and Pidd1 expression was significantly increased in the MCAO group but suppressed after fluoxetine treatment. Moreover, circMap2k1 directly binds with miR-135b-5p. Taken together, we verified that fluoxetine could improve brain injury after cerebral ischemic stroke. Moreover, the circMap2k1/miR-135b-5p/Pidd1 axis is potentially involved in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yitao He
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hui Zhang
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jian Deng
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhili Cai
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mei Gu
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyong Zhao
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yi Guo
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Zhang Q, Feng Y, Feng J, Zhang J, Huang L. Circ_0013359 facilitates the tumorigenicity of melanoma by regulating miR-136-5p/RAB9A axis. Open Life Sci 2021; 16:482-494. [PMID: 34056112 PMCID: PMC8142382 DOI: 10.1515/biol-2021-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/22/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background Circular RNAs play crucial roles in tumor occurrence and progression. This research aimed to explore the role and potential mechanism of hsa_circ_0013359 (circ_0013359) in melanoma. Methods The levels of circ_0013359, microRNA-136-5p (miR-136-5p), and member RAS oncogene family (RAB9A) in melanoma tissues and cells were detected using quantitative reverse transcriptase-polymerase chain reaction or western blot. Cell proliferation, apoptosis, cell cycle, cell migration, and invasion were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, colony formation assay, flow cytometry, and transwell assay. Glycolysis was determined by detecting glucose consumption, lactate production, and extracellular acidification rate. The levels of hexokinase 2 and lactate dehydrogenase A were examined by western blot. The targeting relationship between miR-136-5p and circ_0013359 or RAB9A was confirmed by dual-luciferase reporter assay. Xenograft experiments were used to analyze tumor growth in vivo. Results Circ_0013359 and RAB9A levels were increased, while the miR-136-5p level was reduced in melanoma tissues and cells. Circ_0013359 knockdown inhibited proliferation, migration, invasion, and glycolysis and promoted apoptosis and cycle arrest in A875 and SK-MEL-1 cells. Circ_0013359 sponged miR-136-5p to regulate melanoma progression. In addition, miR-136-5p suppressed melanoma progression by targeting RAB9A. Besides, circ_0013359 silencing inhibited tumor growth in vivo. Conclusion Depletion of circ_0013359 hindered melanoma progression by regulating miR-136-5p/RAB9A axis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ultrasound, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, 050011 Hebei, China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, 050011 Hebei, China
| | - Jinming Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, 050011 Hebei, China
| | - Lili Huang
- Department of Orthopedics, Weichang Hospital of Traditional Chinese Medicine, Chengde, Hebei, China
| |
Collapse
|
45
|
Chen SH, Lin HH, Li YF, Tsai WC, Hueng DY. Clinical Significance and Systematic Expression Analysis of the Thyroid Receptor Interacting Protein 13 (TRIP13) as Human Gliomas Biomarker. Cancers (Basel) 2021; 13:cancers13102338. [PMID: 34066132 PMCID: PMC8150328 DOI: 10.3390/cancers13102338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022] Open
Abstract
The prognosis of malignant gliomas such as glioblastoma multiforme (GBM) has remained poor due to limited therapeutic strategies. Thus, it is pivotal to determine prognostic factors for gliomas. Thyroid Receptor Interacting Protein 13 (TRIP13) was found to be overexpressed in several solid tumors, but its role and clinical significance in gliomas is still unclear. Here, we conducted a comprehensive expression analysis of TRIP13 to determine the prognostic values. Gene expression profiles of the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and GSE16011 dataset showed increased TRIP13 expression in advanced stage and worse prognosis in IDH-wild type lower-grade glioma. We performed RT-PCR and Western blot to validate TRIP13 mRNA expression and protein levels in GBM cell lines. TRIP13 co-expressed genes via database screening were regulated by essential cancer-related upstream regulators (such as TP53 and FOXM1). Then, TCGA analysis revealed that more TRIP13 promoter hypomethylation was observed in GBM than in low-grade glioma. We also inferred that the upregulated TRIP13 levels in gliomas could be regulated by dysfunction of miR-29 in gliomas patient cohorts. Moreover, TRIP13-expressing tumors not only had higher aneuploidy but also tended to reduce the ratio of CD8+/Treg, which led to a worse survival outcome. Overall, these findings demonstrate that TRIP13 has with multiple functions in gliomas, and they may be crucial for therapeutic potential.
Collapse
Affiliation(s)
- Ssu-Han Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Hong-Han Lin
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18802)
| |
Collapse
|
46
|
Fu C, Wang S, Jin L, Zhang M, Li M. CircTET1 Inhibits Retinoblastoma Progression via Targeting miR-492 and miR-494-3p through Wnt/β-catenin Signaling Pathway. Curr Eye Res 2021; 46:978-987. [PMID: 33108919 DOI: 10.1080/02713683.2020.1843685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Retinoblastoma (RB) is a frequent intraocular malignancy in children. Circular RNA (circRNA) plays an essential role in regulating the occurrence and development of tumors. This study aimed at investigating the function and molecular basis of hsa_circ_0093996 (circTET1) in RB.Methods: The expression of circTET1, miR-492 and miR-494-3p was examined using quantitative real-time polymerase chain reaction. Cell proliferation, cycle arrest, apoptosis, migration and invasion of RB cells were detected using Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, scratch assay and transwell analysis, respectively. The levels of matrix metalloproteinase (MMP) 2, MMP9 and Wnt/β-catenin pathway-related proteins were measured via western blot assay. The association between circTET1 and miR-492/miR-494-3p was validated via dual-luciferase reporter assay and RNA pull-down assay. Xenograft assay was employed to analyze tumor growth in vivo.Results: CircTET1 level was reduced, while miR-492 and miR-494-3p levels were increased in RB tissues and cells. Overexpression of circTET1 inhibited proliferation, migration and invasion, and promoted apoptosis and cell cycle arrest in Y79 and WERI-Rb1 cells. Moreover, circTET1 impeded RB cell progression by sponging miR-492/miR-494-3p. Also, up-regulation of circTET1 restrained Wnt/β-catenin pathway via regulating miR-492 and miR-494-3p. Furthermore, circTET1 suppressed tumor growth in xenograft models.Conclusion: CircTET1 inhibited RB progression by sponging miR-492/miR-494-3p and inactivating the Wnt/β-catenin pathway, which provided new insights for RB treatment.
Collapse
Affiliation(s)
- Changbo Fu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Suchang Wang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Lei Jin
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Minmin Zhang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Mengmeng Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| |
Collapse
|
47
|
Wang J, Fu J, Xu C, Jia R, Zhang X, Zhao S. Circ_ZFP644 attenuates caerulein-induced inflammatory injury in rat pancreatic acinar cells by modulating miR-106b/Pias3 axis. Exp Mol Pathol 2021; 121:104644. [PMID: 33945806 DOI: 10.1016/j.yexmp.2021.104644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
(AP) is a kind of inflammatory misorder existing in pancreas. Non-coding RNAs (ncRNAs) have been reported to play important roles in development of AP. The current study was designed to explore the role of circular RNA zinc finger protein 644 (circRNA circ_ZFP644) in caerulein-induced AR42J cells. AP model in vitro was established by exposure of rat pancreatic acinar AR42J cells to caerulein. Amylase activity was measured using a kit. Enzyme-linked immunosorbent assay (ELISA) was performed to examine the levels of several inflammatory factors. The expression of circ_ZFP644, microRNA (miR)-106b and protein inhibitor of activated STAT 3 (Pias3) was detected by quantitative real-time PCR (qRT-PCR) or western blot assay. And flow cytometry was employed to monitor cell apoptosis. Western blot assay was also conducted to analyze the expression of apoptosis-related proteins. The association among circ_ZFP644, miR-106b and Pias3 was validated by dual-luciferase reporter assay. Caerulein treatment activated amylase activity and promoted the secretion of inflammatory cytokines in AR42J cells. Circ_ZFP644 and Pias3 were downregulated, but miR-106b was upregulated in caerulein-induced AR42J cells. Enforced expression of circ_ZFP644 or miR-106b inhibition could reduce amylase activity and inflammatory cytokine secretion, while promote apoptosis in caerulein-induced AR42J cells, which was almost reversed by Pias3 knockdown. Circ_ZFP644 targeted miR-106b to upregulate Pias3 expression. Circ_ZFP644 might exert its anti-inflammation and pro-apoptosis roles in caerulein-induced AR42J cells by regulating miR-106b/Pias3 axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jindong Fu
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruzhen Jia
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohua Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
48
|
Lei X, Yang M, Xiao Z, Zhang H, Tan S. circTLK1 facilitates the proliferation and metastasis of renal cell carcinoma by regulating miR-495-3p/CBL axis. Open Life Sci 2021; 16:362-374. [PMID: 33954256 PMCID: PMC8051169 DOI: 10.1515/biol-2021-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common urological malignancy. Circular RNAs (circRNAs) have been confirmed to play an important regulatory role in various cancers. This study aimed to investigate the role and potential mechanism of circTLK1 (hsa_circ_0004442) in RCC. The levels of circTLK1, Cbl proto-oncogene (CBL), and microRNA-495-3p (miR-495-3p) were detected by quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation, cycle arrest and apoptosis, migration, and invasion were assessed by colony formation, flow cytometry, scratch, and transwell assays. The levels of E-cadherin and Vimentin were measured by western blot. The targeting relationship between miR-495-3p and miR-495-3p or CBL was verified by dual-luciferase reporter assay. Tumor growth in vivo was evaluated by xenograft assay. The results found that circTLK1 and CBL were up-regulated in RCC tissues and cells. Silencing of circTLK1 or CBL inhibited proliferation and metastasis and accelerated apoptosis in RCC cells. In addition, circTLK1 directly bound to miR-495-3p, and CBL was the target of miR-495-3p. circTLK1 sponged miR-495-3p to increase CBL expression. Moreover, knockdown of circTLK1 suppressed tumor growth in vivo. In conclusion, down-regulation of circTLK1 restrained proliferation and metastasis and promoted apoptosis in RCC cells by modulating miR-495-3p/CBL axis.
Collapse
Affiliation(s)
- Xiangli Lei
- Department of Nephrology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Meiling Yang
- Department of Oncology, Affiliated Nanhua Hospital, University of South China, 336 Dongfeng Road, Zhuhui District, Hengyang, 421000, Hunan, China
| | - Zhifang Xiao
- Department of Endocrinology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Heng Zhang
- Department of Hematology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Shuai Tan
- Department of Oncology, Affiliated Nanhua Hospital, University of South China, 336 Dongfeng Road, Zhuhui District, Hengyang, 421000, Hunan, China
| |
Collapse
|
49
|
Qin G, Wu X. Hsa_circ_0032463 acts as the tumor promoter in osteosarcoma by regulating the miR‑330‑3p/PNN axis. Int J Mol Med 2021; 47:92. [PMID: 33786605 PMCID: PMC8012025 DOI: 10.3892/ijmm.2021.4925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS), also known as bone cancer, is a threat to the lives of millions of adolescents worldwide. Although dedicated efforts have been invested in reducing the mortality rate of this bone cancer, the research community is yet to find the exact causes of OS. Thus, the present research aimed to study the association between circular RNA circ_0032463 and OS progression. The impact of circ_0032463 on cells with OS was first evaluated using reverse transcription-quantitative PCR. This evaluation was followed by the assessment of cell proliferation, viability, apoptosis, invasion and adhesion using BrdU, Cell Counting Kit-8, flow cytometry, Transwell and cell adhesion assays, respectively. RNA pull-down, RNA immunoprecipitation chip and dual-luciferase reporter systems were utilized to investigate the relationship between circ_0032463, microRNA (miR)-330-3p and Pinin desmosome associated protein (PNN) in OS. The findings indicated that circ_0032463 and PNN were highly expressed in OS tissues and OS cell lines, and that they facilitated cell proliferation, viability, invasion and adhesion, but attenuated cell apoptosis in OS cells. The low expression of miR-330-3p suppressed OS development. It was also noted that circ_0032463 inhibited miR-330-3p to upregulate PNN expression. In conclusion, this study confirmed that by regulating the miR-330-3p/PNN axis, circular RNA circ_0032463 could function as a tumor enhancer in cells with OS.
Collapse
Affiliation(s)
- Guanghua Qin
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
50
|
Jiang Y, Xiao F, Wang L, Wang T, Chen L. Hsa_circ_0099198 facilitates the progression of retinoblastoma by regulating miR-1287/LRP6 axis. Exp Eye Res 2021; 206:108529. [PMID: 33676964 DOI: 10.1016/j.exer.2021.108529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Retinoblastoma (RB) is an intraocular malignancy that occurs in children. Circular RNAs (circRNAs) have been confirmed to play an essential role in tumorigenesis and development. This study aimed to ascertain the role and potential mechanism of hsa_circ_0099198 in RB. The levels of circ_0099198, microRNA-1287 (miR-1287) and low-density lipoprotein receptor-related protein 6 (LRP6) were determined by real-time quantitative polymerase chain reaction and Western blot. Cell proliferation was assessed by colony formation assay. Cell cycle arrest and apoptosis were evaluated by flow cytometry. Cell migration and invasion were tested using transwell assay. The activity of caspase-3/caspase-9 was examined with commercial kits. The interaction among circ_0099198, miR-1287 and LRP6 were verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay or RNA pull-down assay. Xenograft experiment was used to assess tumor growth in vivo. circ_0099198 and LRP6 levels were increased, while miR-1287 level was reduced in RB cells. circ_0099198 silencing suppressed proliferation and metastasis and expedited cell cycle arrest and apoptosis in Y79 and So-RB50 cells. In addition, depletion of circ_0099198 inhibited RB cell progression via regulating miR-1287/LRP6 axis. Moreover, knockdown of circ_0099198 blocked the growth of xenograft tumors. circ_0099198 contributed to RB progression by sponging miR-1287 and up-regulating LRP6, which provided novel biomarkers for RB therapy.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Fan Xiao
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Lin Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Ting Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Linlin Chen
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China.
| |
Collapse
|