1
|
Chen X, Geng Y, Wei G, He D, Lv J, Wen W, Xiang F, Tao K, Wu C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res 2024; 84:3509-3521. [PMID: 39226520 PMCID: PMC11532784 DOI: 10.1158/0008-5472.can-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The recent discovery of the pivotal role of the central nervous system in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, whereas tumors can establish local autonomic and sensory neural networks to transmit signals into the central nervous system, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor cross-talk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathologic mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danzeng He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Wen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhang Z, Lv ZG, Lu M, Li H, Zhou J. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189121. [PMID: 38796026 DOI: 10.1016/j.bbcan.2024.189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The autonomic nerve system (ANS) innervates organs and tissues throughout the body and maintains functional balance among various systems. Further investigations have shown that excessive activation of ANS not only causes disruption of homeostasis, but also may promote tumor formation. In addition, the dynamic interaction between nerve and tumor cells in the tumor microenvironment also regulate tumor progression. On the one hand, nerves are passively invaded by tumor cells, that is, perineural invasion (PNI). On the other hand, compared with normal tissues, tumor tissues are subject to more abundant innervation, and nerves can influence tumor progression through regulating tumor proliferation, metastasis and drug resistance. A large number of studies have shown that nerve-tumor crosstalk, including PNI and innervation, is closely related to the prognosis of patients, and contributes to the formation of cancer pain, which significantly deteriorates the quality of life for patients. These findings suggest that nerve-tumor crosstalk represents a potential target for anti-tumor therapies and the management of cancer pain in the future. In this review, we systematically describe the mechanism by which nerve-tumor crosstalk regulates tumorigenesis and progression.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhen Gang Lv
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Miao Lu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
3
|
Gregory E, Powers I, Jamshidi-Parsian A, Griffin R, Song Y. Pancreatic Tumor-Derived Extracellular Vesicles Stimulate Schwann Cell Phenotype Indicative of Perineural Invasion via IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546629. [PMID: 37425927 PMCID: PMC10326972 DOI: 10.1101/2023.06.26.546629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Pancreatic cancer remains a pre-eminent cause of cancer-related deaths with late-stage diagnoses leading to an 11% five-year survival rate. Moreover, perineural invasion (PNI), in which cancer cells migrate into adjacent nerves, occurs in an overwhelming majority of patients, further enhancing tumor metastasis. PNI has only recently been recognized as a key contributor to cancer progression; thus, there are insufficient treatment options for the disease. Attention has been focused on glial Schwann cells (SC) for their mediation of pancreatic PNI. Under stress, SCs dedifferentiate from their mature state to facilitate the repair of peripheral nerves; however, this signaling can also re-direct cancer cells to accelerate PNI. Limited research has explored the mechanism that causes this shift in SC phenotype in cancer. Tumor-derived extracellular vesicles (TEV) have been implicated in other avenues of cancer development, such as pre-metastatic niche formation in secondary locations, yet how TEVs contribute to PNI has not been fully explored. In this study, we highlight TEVs as initiators of SC activation into a PNI-associated phenotype. Proteomic and pathway assessments of TEVs revealed an elevation in interleukin-8 (IL-8) signaling and nuclear factor kappa B (NFκB) over healthy cell-derived EVs. TEV-treated SCs exhibited higher levels of activation markers, which were successfully neutralized with IL-8 inhibition. Additionally, TEVs increased NFκB subunit p65 nuclear translocation, which may lead to increased secretion of cytokines and proteases indicative of SC activation and PNI. These findings present a novel mechanism that may be targeted for the treatment of pancreatic cancer PNI. Statement of Significance Identifying pancreatic tumor extracellular vesicles as key players in Schwann cell activation and perineural invasion by way of IL-8 will educate for more specialized and effective targets for an under-valued disease.
Collapse
|
4
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
5
|
Gregory E, Baek IH, Ala-Kokko N, Dugan R, Pinzon-Herrera L, Almodóvar J, Song YH. Peripheral Nerve Decellularization for In Vitro Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomater Sci Eng 2022; 8:2574-2588. [PMID: 35649243 PMCID: PMC9983633 DOI: 10.1021/acsbiomaterials.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of tissue-engineered biomaterials has introduced more clinically translatable models of disease, including three-dimensional (3D) decellularized extracellular matrix (dECM) hydrogels. Specifically, decellularized nerve hydrogels have been utilized to model peripheral nerve injuries and disorders in vitro; however, there lacks standardization in decellularization methods. Here, rat sciatic nerves of varying preparations were decellularized using previously established methods: sodium deoxycholate (SD)-based, 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS)-based, and apoptosis-mediated. These nerves were characterized for cellular debris removal, ECM retention, and low cytotoxicity with cultured Schwann cells. The best preparations of each decellularization method were digested into dECM hydrogels, and rheological characterization, gelation kinetics, and confocal reflectance imaging of collagen fibril assembly were performed. It was determined that the SD-based method with nerve epineurial removal best maintained the overall ECM composition and mechanical properties of physiological peripheral nerves while efficiently stripping the scaffolds of tissue-specific cells and debris. This method was then utilized as a culture platform for quiescent Schwann cells and cancer-nerve crosstalk. Hydrogel-embedded Schwann cells were found to have high viability and act in a more physiologically relevant manner than those cultured in monolayers, and the hydrogel platform allowed for the activation of Schwann cells following treatment with cancer secreted factors. These findings establish a standard for peripheral nerve decellularization for usage as a dECM hydrogel testbed for in vitro peripheral nerve disease modeling and may facilitate the development of treatments for peripheral nerve disease and injury.
Collapse
|
6
|
Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022; 14:nu14091722. [PMID: 35565690 PMCID: PMC9103817 DOI: 10.3390/nu14091722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Since Otto Warburg's first report on the increased uptake of glucose and lactate release by cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the link between cancer-nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the roles of relatively underappreciated metabolites in cancer-nerve crosstalk, including lactate, vitamins, and amino acids, and propose the investigation of nutrients in cancer-nerve crosstalk based on their tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of cancer-nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and may lead to the identification of potential targets for future cancer therapies.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Casey Atwood
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Schwann Cells in the Tumor Microenvironment: Need More Attention. JOURNAL OF ONCOLOGY 2022; 2022:1058667. [PMID: 35186076 PMCID: PMC8853772 DOI: 10.1155/2022/1058667] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.
Collapse
|
8
|
Neves ER, Harley BAC, Pedron S. Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Res Bull 2021; 174:220-229. [PMID: 34166771 PMCID: PMC8324563 DOI: 10.1016/j.brainresbull.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Brain tumors still lack effective treatments, and the mechanisms of tumor progression and therapeutic resistance are unclear. Multiple parameters affect cancer prognosis (e.g., type and grade, age, location, size, and genetic mutations) and election of suitable treatments is based on preclinical models and clinical data. However, most candidate drugs fail in human trials due to inefficacy. Cell lines and tissue culture plates do not provide physiologically relevant environments, and animal models are not able to adequately mimic characteristics of disease in humans. Therefore, increasing technological advances are focusing on in vitro and computational modeling to increase the throughput and predicting capabilities of preclinical systems. The extensive use of these therapeutic agents requires a more profound understanding of the tumor-stroma interactions, including neural tissue, extracellular matrix, blood-brain barrier, astrocytes and microglia. Microphysiological brain tumor models offer physiologically relevant vascularized 'minitumors' that can help deciphering disease mechanisms, accelerating the drug discovery and predicting patient's response to anticancer treatments. This article reviews progress in tumor-on-a-chip platforms that are designed to comprehend the particular roles of stromal cells in the brain tumor microenvironment.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara Pedron
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Portella L, Bello AM, Scala S. CXCL12 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:51-70. [PMID: 34286441 DOI: 10.1007/978-3-030-62658-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through β-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
10
|
Logotheti S, Marquardt S, Richter C, Sophie Hain R, Murr N, Takan I, Pavlopoulou A, Pützer BM. Neural Networks Recapitulation by Cancer Cells Promotes Disease Progression: A Novel Role of p73 Isoforms in Cancer-Neuronal Crosstalk. Cancers (Basel) 2020; 12:cancers12123789. [PMID: 33339112 PMCID: PMC7765507 DOI: 10.3390/cancers12123789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is initiated by alterations in specific genes. However, at late stages, cancer cells become metastatic not necessarily through continuous accumulation of additional mutations, but by hijacking programs of normal embryonic development and reactivating them in an unusual place, at the wrong time. Here, we applied computational and experimental approaches to show that these malignant reactivations include genes that are crucial for the development and function of the nervous system. We use the paradigm of melanoma transition from less invasive to highly aggressive stages in order to show that major players of metastasis, such as TP73 gene products, are implicated in this process. This work provides evidence for interactions between cancer cells and the neuronal system, which may have important future implications for metastasis prevention and cancer management. Abstract Mechanisms governing tumor progression differ from those of initiation. One enigmatic prometastatic process is the recapitulation of pathways of neural plasticity in aggressive stages. Cancer and neuronal cells develop reciprocal interactions via mutual production and secretion of neuronal growth factors, neurothrophins and/or axon guidance molecules in the tumor microenvironment. Understanding cancer types where this process is active, as well as the drivers, markers and underlying mechanisms, has great significance for blocking tumor progression and improving patient survival. By applying computational and systemic approaches, in combination with experimental validations, we provide compelling evidence that genes involved in neuronal development, differentiation and function are reactivated in tumors and predict poor patient outcomes across various cancers. Across cancers, they co-opt genes essential for the development of distinct anatomical parts of the nervous system, with a frequent preference for cerebral cortex and neural crest-derived enteric nerves. Additionally, we show that p73, a transcription factor with a dual role in neuronal development and cancer, simultaneously induces neurodifferentiation and stemness markers during melanoma progression. Our data yield the basis for elucidating driving forces of the nerve–tumor cell crosstalk and highlight p73 as a promising regulator of cancer neurobiology.
Collapse
Affiliation(s)
- Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
- Correspondence: (S.L.); (B.M.P.); Tel.: +49-381-494-5066/68 (B.M.P.)
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Christin Richter
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Renée Sophie Hain
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Nico Murr
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey; (I.T.); (A.P.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey; (I.T.); (A.P.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
- Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
- Correspondence: (S.L.); (B.M.P.); Tel.: +49-381-494-5066/68 (B.M.P.)
| |
Collapse
|