1
|
Ahmed SM, Laha S, Ifthikar MA, Das R, Das SP. MCM10: A potential biomarker for cervical cancer and precancerous lesions. Gene 2025; 936:149103. [PMID: 39551114 DOI: 10.1016/j.gene.2024.149103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cervical cancer remains a significant health burden worldwide, emphasizing the need for early detection and intervention. DNA replication is perturbed in cancer cells, and the minichromosome maintenance protein 10 plays an important role in origin firing. By analyzing the MCM10 mRNA expression in healthy controls, precancerous lesions, and cervical cancer using qRT-PCR, we can infer if it can be considered a biomarker. We collected cervical smear samples from patients and performed MCM10 expression analysis to set up thresholds for risk stratification. We also investigated the HPV status among the patient samples with precancerous lesions and cervical cancer and found 70 % of them to be positive. Our results demonstrated a significant upregulation of MCM10 mRNA expression in tumor samples (n = 40, 7.83 ± 1.2) and precancerous lesions (n = 54, 5.69 ± 1.4) compared to normal (n = 50, 4.27 ± 0.80) with a R2 value of 0.59, confirming its role in the progression and development of cervical cancer. In conclusion, this study emphasizes the potential role of MCM10 as a biomarker. Our study would improve early detection rates, and we propose MCM10-based community screening for risk stratification, prevention, and prognosis.
Collapse
Affiliation(s)
- Sumayyah Mq Ahmed
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mariam Anjum Ifthikar
- Zulekha Yenepoya Institute of Oncology, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Ranajit Das
- Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
2
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
3
|
Bandres-Meriz J, Sanz-Cuadrado M, Hurtado de Mendoza I, Majali-Martinez A, Honeder S, Cindrova-Davies T, Birner-Gruenberger R, Dalgaard L, Desoye G. MCM proteins are up-regulated in placentas of women with reduced insulin sensitivity. Biosci Rep 2024; 44:BSR20240430. [PMID: 39268985 PMCID: PMC11461181 DOI: 10.1042/bsr20240430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In the first trimester of pregnancy the human placenta grows rapidly, making it sensitive to changes in the intrauterine environment. To test whether exposure to an environment in utero often associated with obesity modifies placental proteome and function, we performed untargeted proteomics (LC-MS/MS) in placentas from 19 women (gestational age 35-48 days, i.e. 5+0-6+6 weeks). Maternal clinical traits (body mass index, leptin, glucose, C-peptide and insulin sensitivity) and gestational age were recorded. DNA replication and cell cycle pathways were enriched in the proteome of placentas of women with low maternal insulin sensitivity. Driving these pathways were the minichromosome maintenance (MCM) proteins MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7 (MCM-complex). These proteins are part of the pre-replicative complex and participate in DNA damage repair. Indeed, MCM6 and γH2AX (DNA-damage marker) protein levels correlated in first trimester placental tissue (r = 0.514, P<0.01). MCM6 and γH2AX co-localized to nuclei of villous cytotrophoblast cells, the proliferative cell type of the placenta, suggesting increased DNA damage in this cell type. To mimic key features of the intrauterine obesogenic environment, a first trimester trophoblast cell line, i.e., ACH-3P, was exposed to high insulin (10 nM) or low oxygen tension (2.5% O2). There was a significant correlation between MCM6 and γH2AX protein levels, but these were independent of insulin or oxygen exposure. These findings show that chronic exposure in utero to reduced maternal insulin sensitivity during early pregnancy induces changes in the early first trimester placental proteome. Pathways related to DNA replication, cell cycle and DNA damage repair appear especially sensitive to such an in utero environment.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | | | | | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud. Universidad Europea de Madrid, Madrid, Spain
| | - Sophie Elisabeth Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | | | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Wu X, Liu P, Wang Q, Sun L, Wang Y. A prognostic model established using bile acid genes to predict the immunity and survival of patients with gastrointestinal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4594-4609. [PMID: 38606991 DOI: 10.1002/tox.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The metabolism of abnormal bile acids (BAs) is implicated in the initiation and development of gastrointestinal (GI) cancer. However, there was a lack of research on the molecular mechanisms of BAs metabolism in GI. METHODS Genes involved in BAs metabolism were excavated from public databases of The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, and Molecular Signatures Database (MSigDB). ConsensusClusterPlus was used to classify molecular subtypes for GI. To develop a RiskScore model for predicting GI prognosis, univariate Cox analysis was performed on the genes in protein-protein interaction (PPI) network, followed by using Lasso regression and stepwise regression to refine the model and to determine the key prognostic genes. Tumor immune microenvironment in GI patients from different risk groups was assessed using the ESTIMATE algorithm and enrichment analysis. Reverse transcription-quantitative real-time PCR (RT-qPCR), Transwell assay, and wound healing assay were carried out to validate the expression and functions of the model genes. RESULTS This study defined three molecular subtypes (C1, C2, and C3). Specifically, C1 had the best prognosis, while C3 had the worst prognosis with high immune checkpoint gene expression levels and TIDE scores. We selected nine key genes (AXIN2, ATOH1, CHST13, PNMA2, GYG2, MAGEA3, SNCG, HEYL, and RASSF10) that significantly affected the prognosis of GI and used them to develop a RiskScore model accordingly. Combining the verification results from a nomogram, the prediction of the model was proven to be accurate. The high RiskScore group was significantly enriched in tumor and immune-related pathways. Compared with normal gastric mucosal epithelial cells, the mRNA levels of the nine genes were differential in the gastric cancer cells. Inhibition of PNMA2 suppressed migration and invasion of the cancer cells. CONCLUSION We distinguished three GI molecular subtypes with different prognosis based on the genes related to BAs metabolism and developed a RiskScore model, contributing to the diagnosis and treatment of patients with GI.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Peifa Liu
- Pathology Department, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Qing Wang
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Linde Sun
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Yu Wang
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Fu W, Lin Y, Bai M, Yao J, Huang C, Gao L, Mi N, Ma H, Tian L, Yue P, Zhang Y, zhang J, Ren Y, Ding L, Dai L, Leung JW, Yuan J, Zhang W, Meng W. Beyond ribosomal function: RPS6 deficiency suppresses cholangiocarcinoma cell growth by disrupting alternative splicing. Acta Pharm Sin B 2024; 14:3931-3948. [PMID: 39309509 PMCID: PMC11413689 DOI: 10.1016/j.apsb.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 09/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a bile duct malignancy with a dismal prognosis. This study systematically investigated the role of the ribosomal protein S6 (RPS6) gene, which is dependent in CCA. We found that RPS6 upregulation in CCA tissues was correlated with a poor prognosis. Functional investigations have shown that alterations in RPS6 expression, both gain- and loss-of function could affect the proliferation of CCA cells. In xenograft tumor models, RPS6 overexpression enhances tumorigenicity, whereas RPS6 silencing reduces it. Integration analysis using RNA-seq and proteomics elucidated downstream signaling pathways of RPS6 depletion by affecting the cell cycle, especially DNA replication. Immunoprecipitation followed by mass spectrometry has identified numerous spliceosome complex proteins associated with RPS6. Transcriptomic profiling revealed that RPS6 affects numerous alternative splicing (AS) events, and combined with RNA immunoprecipitation sequencing, revealed that minichromosome maintenance complex component 7 (MCM7) binds to RPS6, which regulates its AS and increases oncogenic activity in CCA. Targeting RPS6 with vivo phosphorodiamidate morpholino oligomer (V-PMO) significantly inhibited the growth of CCA cells, patient-derived organoids, and subcutaneous xenograft tumor. Taken together, the data demonstrate that RPS6 is an oncogenic regulator in CCA and that RPS6-V-PMO could be repositioned as a promising strategy for treating CCA.
Collapse
Affiliation(s)
- Wenkang Fu
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Yanyan Lin
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Mingzhen Bai
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Jia Yao
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chongfei Huang
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Long Gao
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Ningning Mi
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Haidong Ma
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Liang Tian
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Ping Yue
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yong Zhang
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Jinduo zhang
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yanxian Ren
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Joseph W. Leung
- Division of Gastroenterology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA 95817, USA
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Meng
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
6
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Choi Y, Bedford A, Pollack S. The Aberrant Expression of Biomarkers and Risk Prediction for Neoplastic Changes in Barrett's Esophagus-Dysplasia. Cancers (Basel) 2024; 16:2386. [PMID: 39001449 PMCID: PMC11240336 DOI: 10.3390/cancers16132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Barrett's esophagus (BE) is a pre-neoplastic condition associated with an increased risk of esophageal adenocarcinoma (EAC). The accurate diagnosis of BE and grading of dysplasia can help to optimize the management of patients with BE. However, BE may be missed and the accurate grading of dysplasia based on a routine histology has a considerable intra- and interobserver variability. Thus, well-defined biomarker testing remains indispensable. The aim of our study was to identify routinely applicable and relatively specific biomarkers for an accurate diagnosis of BE, as well as determining biomarkers to predict the risk of progression in BE-dysplasia. Methods: Retrospectively, we performed immunohistochemistry to test mucin 2(MUC2), trefoil factor 3 (TFF3), p53, p16, cyclin D1, Ki-67, beta-catenin, and minichromosome maintenance (MCM2) in biopsies. Prospectively, to identify chromosomal alterations, we conducted fluorescent in situ hybridization testing on fresh brush samples collected at the time of endoscopy surveillance. Results: We discovered that MUC2 and TFF3 are specific markers for the diagnosis of BE. Aberrant expression, including the loss and strong overexpression of p53, Ki-67, p16, beta-catenin, cyclin D1, and MCM2, was significantly associated with low-grade dysplasia (LGD), high-grade dysplasia (HGD), and EAC histology, with a relatively high risk of neoplastic changes. Furthermore, the aberrant expressions of p53 and p16 in BE-indefinite dysplasia (IND) progressor cohorts predicted the risk of progression. Conclusions: Assessing the biomarkers would be a suitable adjunct to accurate BE histology diagnoses and improve the accuracy of BE-dysplasia grading, thus reducing interobserver variability, particularly of LGD and risk prediction.
Collapse
Affiliation(s)
- Young Choi
- Department of Pathology, Yale School of Medicine, 434 Pine Grove Lane, Hartsdale, NY 10530, USA
| | - Andrew Bedford
- Department of Internal Medicine, Yale School of Medicine, Bridgeport Hospital, 267 Grant St., Bridgeport, CT 06610, USA;
| | - Simcha Pollack
- Department of Business Analytics Statistics, St. John’s University Tobin College of Business, Queens, NY 11423, USA;
| |
Collapse
|
8
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
9
|
Zhu C, Lu Y, Wang S, Song J, Ding Y, Wang Y, Dong C, Liu J, Qiu W, Qi W. Nortriptyline hydrochloride, a potential candidate for drug repurposing, inhibits gastric cancer by inducing oxidative stress by triggering the Keap1-Nrf2 pathway. Sci Rep 2024; 14:6050. [PMID: 38480798 PMCID: PMC10937941 DOI: 10.1038/s41598-024-56431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Effective drugs for the treatment of gastric cancer (GC) are still lacking. Nortriptyline Hydrochloride (NTP), a commonly used antidepressant medication, has been demonstrated by numerous studies to have antitumor effects. This study first validated the ability of NTP to inhibit GC and preliminarily explored its underlying mechanism. To begin with, NTP inhibits the activity of AGS and HGC27 cells (Human-derived GC cells) in a dose-dependent manner, as well as proliferation, cell cycle, and migration. Moreover, NTP induces cell apoptosis by upregulating BAX, BAD, and c-PARP and downregulating PARP and Bcl-2 expression. Furthermore, the mechanism of cell death caused by NTP is closely related to oxidative stress. NTP increases intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, decreasing the mitochondrial membrane potential (MMP) and inducing glucose (GSH) consumption. While the death of GC cells can be partially rescued by ROS inhibitor N-acetylcysteine (NAC). Mechanistically, NTP activates the Kelch-like ECH-associated protein (Keap1)-NF-E2-related factor 2 (Nrf2) pathway, which is an important pathway involved in oxidative stress. RNA sequencing and proteomics analysis further revealed molecular changes at the mRNA and protein levels and provided potential targets and pathways through differential gene expression analysis. In addition, NTP can inhibited tumor growth in nude mouse subcutaneous tumor models constructed respectively using AGS and MFC (mouse-derived GC cells), providing preliminary evidence of its effectiveness in vivo. In conclusion, our study demonstrated that NTP exhibits significant anti-GC activity and is anticipated to be a candidate for drug repurposing.
Collapse
Affiliation(s)
- Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiani Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Feng X, Song D, Liu X, Liang Y, Jiang P, Wu S, Liu F. RNF125‑mediated ubiquitination of MCM6 regulates the proliferation of human liver hepatocellular carcinoma cells. Oncol Lett 2024; 27:105. [PMID: 38298426 PMCID: PMC10829068 DOI: 10.3892/ol.2024.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. Minichromosome maintenance proteins (MCMs), particularly MCM2-7, are upregulated in various cancers, including HCC. The aim of the present study was to investigate the role of MCM2-7 in human liver HCC (LIHC) and the regulation of the protein homeostasis of MCM6 by a specific E3 ligase. Bioinformatics analyses demonstrated that MCM2-7 were highly expressed in LIHC compared with corresponding normal tissues at the mRNA and protein levels, and patients with LIHC and high mRNA expression levels of MCM2, MCM3, MCM6 and MCM7 had poor overall survival rates. Cell Counting Kit-8 and colony formation assays revealed that the knockdown of MCM2, MCM3, MCM6 or MCM7 in Huh7 and Hep3B HCC cells inhibited cell proliferation and colony formation. In addition, pull-down, co-immunoprecipitation and ubiquitination assays demonstrated that RNF125 interacts with MCM6 and mediates its ubiquitination. Furthermore, co-transfection experiments indicated that RNF125 promoted the proliferation of HCC cells mainly through MCM6. In summary, the present study suggests that the RNF125-MCM6 axis plays an important role in the regulation of HCC cell proliferation and is a promising therapeutic target for the treatment of LIHC.
Collapse
Affiliation(s)
- Xueyi Feng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Dongqiang Song
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xiaolan Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yongkang Liang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Pin Jiang
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Shenwei Wu
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
11
|
Zhu X, Li C, Gao Y, Zhang Q, Wang T, Zhou H, Bu F, Chen J, Mao X, He Y, Wu K, Li N, Luo H. The feedback loop of EFTUD2/c-MYC impedes chemotherapeutic efficacy by enhancing EFTUD2 transcription and stabilizing c-MYC protein in colorectal cancer. J Exp Clin Cancer Res 2024; 43:7. [PMID: 38163859 PMCID: PMC10759692 DOI: 10.1186/s13046-023-02873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.
Collapse
Affiliation(s)
- Xiaojian Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Gao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qingyuan Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, 100050, China
| | - Jia Chen
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Kaiming Wu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- China-UK Institute for Frontier Science, Shenzhen, 518107, China.
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
12
|
Wu P, Lin SJ, Chen D, Jin C. Characterization of histone chaperone MCM2 as a key regulator in arsenic-induced depletion of H3.3 at genomic loci. Toxicol Appl Pharmacol 2023; 477:116697. [PMID: 37734572 PMCID: PMC10591817 DOI: 10.1016/j.taap.2023.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Arsenic exposure is associated with an increased risk of many cancers, and epigenetic mechanisms play a crucial role in arsenic-mediated carcinogenesis. Our previous studies have shown that arsenic exposure induces polyadenylation of H3.1 mRNA and inhibits the deposition of H3.3 at critical gene regulatory elements. However, the precise underling mechanisms are not yet understood. To characterize the factors governing arsenic-induced inhibition of H3.3 assembly through H3.1 mRNA polyadenylation, we utilized mass spectrometry to identify the proteins, especially histone chaperones, with reduced binding affinity to H3.3 under conditions of arsenic exposure and polyadenylated H3.1 mRNA overexpression. Our findings reveal that the interaction between H3.3 and the histone chaperon protein MCM2 is diminished by both polyadenylated H3.1 mRNA overexpression and arsenic treatment in human lung epithelial BEAS-2B cells. The increased binding of MCM2 to H3.1, resulting from elevated H3.1 protein levels, appears to contribute to the reduced availability of MCM2 for H3.3. To further investigate the role of MCM2 in H3.3 deposition during arsenic exposure and H3.1 mRNA polyadenylation, we overexpressed MCM2 in BEAS-2B cells overexpressing polyadenylated H3.1 or exposed to arsenic. Our results demonstrate that MCM2 overexpression attenuates H3.3 depletion at several genomic loci, suggesting its involvement in the arsenic-induced displacement of H3.3 mediated by H3.1 mRNA polyadenylation. These findings suggest that changes in the association between histone chaperone MCM2 and H3.3 due to polyadenylation of H3.1 mRNA may play a pivotal role in arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Su-Jiun Lin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Danqi Chen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Chunyuan Jin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
13
|
Wang Q, Li XF, Zhou YH, Qin XH, Wang LH, Xiao MQ, Cao K, Ma JK, Huang CH. Long noncoding RNA BBOX1-AS1 increased radiotherapy sensitivity in colorectal cancer by stabilizing and activating PFK1. Transl Oncol 2023; 36:101751. [PMID: 37544035 PMCID: PMC10423889 DOI: 10.1016/j.tranon.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE Our study explored the effect of long noncoding RNA BBOX1-AS1 on colorectal cancer (CRC) radiosensitivity in vivo and in vitro. METHODS Differentially expressed lncRNAs in CRC were screened using a bioinformatics database and an online prediction website. The expression of BBOX1-AS1 in tissue samples was analyzed via real-time quantitative PCR (RT-qPCR). Subcellular localization of BBOX1-AS1 in CRC cells was analyzed using fluorescence in situ hybridization (FISH). The correlation between BBOX1-AS1 and PFK1 expression levels in CRC tissues was analyzed via Pearson's correlation coefficient. The effect of BBOX1-AS1 on PFK1 stability was investigated using RNA and protein stability testing. RNA Binding Protein Immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the binding of BBOX1-AS1 to PFK1. RESULTS BBOX1-AS1 was highly expressed in CRC and associated with poor prognosis. Similarly, it was highly expressed in CRC tissues and CRC cell lines. In addition, BBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells and inhibited apoptosis. RIP and RNA pull-down experiments confirmed that BBOX1-AS1 bound to PFK1. RNA stability and protein stability experiments showed that BBOX1-AS1 affected the stability of PFK1 mRNA and protein. Furthermore, we confirmed that BBOX1-AS1 increased radiation resistance through the regulation of PFK1 expression. CONCLUSIONS BBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells through stabilization of the expression of PFK1. BBOX1-AS1 also inhibited CRC cell apoptosis and increased radiotherapy resistance in CRC cells.
Collapse
Affiliation(s)
- Qi Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiao-Fei Li
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital) , Chengdu, 610051, Sichuan, China
| | - Ying-Hui Zhou
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiang-Hong Qin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Li-Hui Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Meng-Qing Xiao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - John K Ma
- Cotton O'Neil Cancer Center, Stormont Vail Hospital, Topeka, KS, USA
| | - Cheng-Hui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
14
|
Zhu M, Lai W, Yao L, Xu E, Chen X, Zhang YY, Li XG. Glutamine Regulates Gene Expression Profiles to Increase the Proliferation of Porcine Intestinal Epithelial Cells and the Expansion of Intestinal Stem Cells. Animals (Basel) 2023; 13:2917. [PMID: 37760316 PMCID: PMC10525449 DOI: 10.3390/ani13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal epithelium is known for its rapid self-renewal, and glutamine is crucial in providing carbon and nitrogen for biosynthesis. However, understanding how glutamine affects gene expression in the intestinal epithelium is limited, and identifying the essential genes and signals involved in regulating intestinal epithelial cell growth is particularly challenging. In this study, glutamine supplementation exhibited a robust acceleration of intestinal epithelial cell proliferation and stem cell expansion. RNA sequencing indicated diverse transcriptome changes between the control and glutamine supplementation groups, identifying 925 up-regulated and 1152 down-regulated genes. The up-regulated DEGs were enriched in the KEGG pathway of cell cycle and GO terms of DNA replication initiation, regulation of phosphatidylinositol 3-kinase activity, DNA replication, minichromosome maintenance protein (MCM) complex, and ATP binding, whereas the down-regulated DEGs were enriched in the KEGG pathway of p53 signaling pathway, TNF signaling pathway, and JAK-STAT signaling pathway and GO terms of inflammatory response and intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress. Furthermore, GSEA analysis revealed a significant up-regulation of the cell cycle, DNA replication initiation, ATP-dependent RNA helicase activity, and down-regulation of the TNF signaling pathway. The protein-protein association network of the intersecting genes highlighted the significance of DNA replication licensing factors (MCM3, MCM6, and MCM10) in promoting intestinal epithelial growth in response to glutamine. Based on these findings, we propose that glutamine may upregulate DNA replication licensing factors, leading to increased PI3K/Akt signaling and the suppression of TNF, JAK-STAT, and p53 pathways. Consequently, this mechanism results in the proliferation of porcine intestinal epithelial cells and the expansion of intestinal stem cells.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Weiming Lai
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - Lewen Yao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Yi-yu Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| |
Collapse
|
15
|
von Bülow V, Schneider M, Dreizler D, Russ L, Baier A, Buss N, Lichtenberger J, Härle L, Müller H, Tschuschner A, Schramm G, Pons-Kühnemann J, Grevelding CG, Roeb E, Roderfeld M. Schistosoma mansoni-Induced Oxidative Stress Triggers Hepatocellular Proliferation. Cell Mol Gastroenterol Hepatol 2023; 17:107-117. [PMID: 37696392 PMCID: PMC10665951 DOI: 10.1016/j.jcmgh.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND & AIMS Schistosomiasis is one of the most prominent parasite-induced infectious diseases, affecting more than 250 million people. Schistosoma mansoni causes metabolic exhaustion and a strong redox imbalance in the liver, causing parenchymal damage, and may predispose for cancer. We investigated whether oxidative stress provokes hepatocellular proliferation upon S. mansoni infection. METHODS The cell cycle, replication stress response, and proliferation were analyzed on transcriptional and protein levels in the livers of S. mansoni-infected hamsters and by mechanistic gain- and loss-of-function experiments in human hepatoma cells. Major results were validated in human biopsy specimens of S. mansoni-infected patients. RESULTS S. mansoni infection induced licensing factors of DNA replication and cell-cycle checkpoint cyclins in parallel with a DNA damage response in hamster hepatocytes. Moreover, even unisexual infection without egg effects, as a reflection of a chronic inflammatory process, resulted in a moderate activation of several cell-cycle markers. S. mansoni soluble egg antigens induced proliferation of human hepatoma cells that could be abolished by reduced glutathione. CONCLUSIONS Our data suggest that hepatocellular proliferation is triggered by S. mansoni egg-induced oxidative stress.
Collapse
Affiliation(s)
- Verena von Bülow
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Maryam Schneider
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Dorothee Dreizler
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Lena Russ
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Baier
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicola Buss
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Jakob Lichtenberger
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Härle
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Heike Müller
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Annette Tschuschner
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Gabriele Schramm
- Early Life Origin of Chronic Lung Diseases, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Zhang X, Bian S, Ni Y, Zhou L, Yang C, Zhang C, Sun X, Xu N, Xu S, Wang Y, Gu S, Zheng W. Minichromosome maintenance protein family member 6 mediates hepatocellular carcinoma progression by recruiting UBE3A to induce P53 ubiquitination. Int J Biol Macromol 2023; 248:125854. [PMID: 37460074 DOI: 10.1016/j.ijbiomac.2023.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
With limited therapeutic options for hepatocellular carcinoma (HCC), it is of great significance to investigate the underlying mechanisms and identifying tumor drivers. MCM6, a member of minichromosome maintenance proteins (MCMs), was significantly elevated in HCC progression and associated with poor prognosis. Knockdown of MCM6 significantly inhibited the proliferation and migration of HCC cells with the increased apoptosis ratio and cell cycle arrest, whereas overexpression of MCM6 induced adverse effects. Mechanistically, MCM6 could decrease the P53 activity by inducing the degradation of P53 protein. In addition, MCM6 enhanced the ubiquitination of P53 by recruiting UBE3A to form a triple complex. Furthermore, overexpression of UBE3A significantly rescued the P53 activation and suppression of malignant behaviors mediated by MCM6 inhibition. In conclusion, MCM6 facilitated aggressive phenotypes of HCC cells by UBE3A/P53 signaling, providing potential biomarkers and targets for HCC.
Collapse
Affiliation(s)
- Xue Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yao Ni
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Linlin Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenyu Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenfeng Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shiyu Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yilang Wang
- Department of Internal Medicine, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China.
| | - Shudong Gu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Gabryelska MM, Conn SJ. The RNA interactome in the Hallmarks of Cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1786. [PMID: 37042179 PMCID: PMC10909452 DOI: 10.1002/wrna.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
18
|
Chen J, Wu S, Wang J, Han C, Zhao L, He K, Jia Y, Cui M. MCM10: An effective treatment target and a prognostic biomarker in patients with uterine corpus endometrial carcinoma. J Cell Mol Med 2023; 27:1708-1724. [PMID: 37246638 PMCID: PMC10273062 DOI: 10.1111/jcmm.17772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023] Open
Abstract
Molecular profiling has been applied for uterine corpus endometrial carcinoma (UCEC) management for many years. The aim of this study was to explore the role of MCM10 in UCEC and construct its overall survival (OS) prediction models. Data from TCGA, GEO, cbioPotal and COSMIC databases and the methods, such as GO, KEGG, GSEA, ssGSEA and PPI, were employed to bioinformatically detect the effects of MCM10 on UCEC. RT-PCR, Western blot and immunohistochemistry were used to validate the effects of MCM10 on UCEC. Based on Cox regression analysis using the data from TCGA and our clinical data, two OS prediction models for UCEC were established. Finally, the effects of MCM10 on UCEC were detected in vitro. Our study revealed that MCM10 was variated and overexpressed in UCEC tissue and involved in DNA replication, cell cycle, DNA repair and immune microenvironment in UCEC. Moreover, silencing MCM10 significantly inhibited the proliferation of UCEC cells in vitro. Importantly, based on MCM10 expression and clinical features, the OS prediction models were constructed with good accuracy. MCM10 could be an effective treatment target and a prognostic biomarker for UCEC patients. The OS prediction models might help establish the strategies of follow-up and treatment for UCEC patients.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| | - Shan Wu
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics (Ministry of Education)Women's Hospital, Zhejiang University, School of MedicineHangzhouChina
| | - Junwei Wang
- Department of Obstetrics and GynecologyThe First Hospital of Jilin UniversityChangchunChina
| | - Chunying Han
- Third Department of Gynecological OncologyJilin Cancer HospitalChangchunChina
| | - Lijing Zhao
- Department of Rehabilitation, School of NursingJilin UniversityChangchunChina
| | - Kang He
- Department of Rehabilitation, School of NursingJilin UniversityChangchunChina
| | - Yan Jia
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| | - Manhua Cui
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
19
|
Yang X, Wang C, Nie H, Zhou J, He X, Ou C. Minichromosome maintenance gene family: potential therapeutic targets and prognostic biomarkers for lung squamous cell carcinoma. Aging (Albany NY) 2022; 14:9167-9185. [PMID: 36445337 PMCID: PMC9740372 DOI: 10.18632/aging.204399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
The minichromosome maintenance (MCM) gene family comprises of ten members with key roles in eukaryotic DNA replication and are associated with the occurrence and progression of many tumors. However, whether the MCM family contributes to lung squamous cell carcinoma (LUSC) is unclear. In this study, we performed bioinformatic analysis to identify the roles of MCM genes in patients with LUSC. We also evaluated their differential gene expression, prognostic correlation, DNA methylation, functional enrichment of genetic alterations, and immunomodulation. According to the Tumor Immune Estimation Resource database, the expression of MCM2-10 mRNA was elevated in LUSC tissues. According to the Gene Expression Profiling Interactive Analysis database, MCM2-8 and MCM10 were considerably upregulated in LUSC tissues, and protein levels of all MCMs were increased in LUSC tissues. In addition, among the MCM family members, the expression of MCM3 and MCM7 showed the strongest correlation with the prognoses of patients with LUSC. To clarify the role and mechanisms of the MCM family, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment studies were performed. We detected a significant correlation between the expression patterns of MCM family members and infiltrating immune cells. In conclusion, our results improve the understanding of the aberrant expression of MCM family members in LUSC. These findings demonstrate the potential of the MCM family as therapeutic targets and biomarkers for the diagnosis and prognosis of LUSC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
20
|
Yang S, Yuan Y, Ren W, Wang H, Zhao Z, Zhao H, Zhao Q, Chen X, Jiang X, Zhang L. MCM4 is a novel prognostic biomarker and promotes cancer cell growth in glioma. Front Oncol 2022; 12:1004324. [PMID: 36465369 PMCID: PMC9713251 DOI: 10.3389/fonc.2022.1004324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Gliomas account for 75% of all primary malignant brain tumors in adults and result in high mortality. Accumulated evidence has declared the minichromosome maintenance protein complex (MCM) gene family plays a critical role in modulating the cell cycle and DNA replication stress. However, the biological function and clinic characterization of nine MCM members in low-grade glioma are not yet clarified. METHODS In this study, we utilized diverse public databases, including The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt, Human Protein Atlas (HPA), Linkedomics, cbioportal, Tumor and Immune System Interaction Database (TISIDB), single-sample GSEA (ssGSEA), Tumor Immune Estimation Resource (TIMER), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal databases to explore the mRNA and protein expression profiles, gene mutation, clinical features, diagnosis, prognosis, signaling pathway, tumor mutational burden (TMB), immune subtype, immune cell infiltration, immune modulator and drug sensitivity of nine MCMs. Afterward, qRT-PCR was utilized to detect the expression of the MCM family in glioblastoma multiforme (GBM) cell lines. The one-, three-, or five-year survival rate was predicted by utilizing a nomogram established by cox proportional hazard regression. RESULTS In this study, we found that nine MCMs were consistently up-regulated in glioma tissues and glioma cell lines. Elevated nine MCMs expressions were significantly correlated with a higher tumor stage, isocitrate dehydrogenase (IDH) mutates, 1p/19q codeletion, histological type, and primary therapy outcome. Survival analyses showed that higher expression of MCM2-MCM8 (minichromosome maintenance protein2-8) and MCM10 (minichromosome maintenance protein 10) were linked with poor overall survival (OS) and progression-free survival (PFS) in glioma patients. On the other hand, up-regulated MCM2-MCM8 and MCM10 were significantly associated with shorter disease-specific survival (DSS) in glioma patients. Univariate and multivariate analyses revealed that MCM2 (minichromosome maintenance protein2), MCM4 (minichromosome maintenance protein 4), MCM6 (minichromosome maintenance protein 6), MCM7 (minichromosome maintenance protein 7) expression and tumor grade, 1p/19q codeletion, age, and primary therapy outcome were independent factors correlated with the clinical outcome of glioma patients. More importantly, a prognostic MCMs model constructed using the above five prognostic genes could predict the overall survival of glioma patients with medium-to-high accuracy. Furthermore, functional enrichment analysis indicated that MCMs principal participated in regulating cell cycle and DNA replication. DNA copy number variation (CNV) and DNA methylation significantly affect the expression of MCMs. Finally, we uncover that MCMs expression is highly correlated with immune cell infiltration, immune modulator, TMB, and drug sensitivity. CONCLUSIONS In summary, this finding confirmed that MCM4 is a potential target of precision therapy for patients with glioma.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haiyu Wang
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Heng Zhao
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qizhe Zhao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Chen
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
21
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14225584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Fax: +86-28-854-228-72
| |
Collapse
|
22
|
Kanyilmaz G, Oltulu P, Benli Yavuz B, Aktan M. Prognostic importance of expression of mini-chromosome maintenance proteins (MCMs) in patients with nasopharyngeal cancer treated with curative radiotherapy. Braz J Otorhinolaryngol 2022; 88 Suppl 4:S18-S25. [PMID: 34144903 DOI: 10.1016/j.bjorl.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The prognostic importance of minichromosome maintenance complex expression in nasopharyngeal cancer is still unknown. We aimed to find whether minichromosome maintenance complex 2-7 expression may potentially be used to predict the prognosis of nasopharyngeal cancer patients treated with definitive radiotherapy. METHODS Between April 2007 and July 2020, patients with nasopharyngeal cancer treated with radiotherapy were identified. Immunohistochemical analysis was performed on formalin-fixed paraffin-embedded tissues of cases. A single pathologist analyzed the histologic specimens of all patients. RESULTS Totally, 67 patients were included. The median followup was 75.3 months. Higher tumor (T) stage was correlated with minichromosome maintenance complex 2 overexpression. Minichromosome maintenance complex s expression was also associated with histopathologic subgroups. According to univariate analysis, AJCC stage, histopathological subgroups, tumor response after treatment, minichromosome maintenance complex 2, 3, 5, 6 and 7 expression were the prognostic factors that predict overall survival. According to multivariate analysis minichromosome maintenance complex 7 expression was the only prognostic marker for both progression-free survival and overall survival. CONCLUSION The overexpression of minichromosome maintenance complex 2, 3, 5, 6 and 7 indicated bad prognosis. Minichromosome maintenance complex 7 was an independent prognostic factor for survival outcomes in nasopharyngeal cancer and may be a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Gul Kanyilmaz
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey.
| | - Pembe Oltulu
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Pathology, Konya, Turkey
| | - Berrin Benli Yavuz
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey
| | - Meryem Aktan
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey
| |
Collapse
|
23
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
24
|
ITRAQ-based quantitative proteomic analysis reveals that VPS35 promotes the expression of MCM2-7 genes in HeLa cells. Sci Rep 2022; 12:9700. [PMID: 35690672 PMCID: PMC9188599 DOI: 10.1038/s41598-022-13934-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that regulates endosomal trafficking in eukaryotic cells. Recent studies have shown that VPS35 promotes tumor cell proliferation and affects the nuclear accumulation of its interacting partner. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to measure the changes in nuclear protein abundance in VPS35-depleted HeLa cells. A total of 47 differentially expressed proteins were identified, including 27 downregulated and 20 upregulated proteins. Gene ontology (GO) analysis showed that the downregulated proteins included several minichromosome maintenance (MCM) proteins described as cell proliferation markers, and these proteins were present in the MCM2-7 complex, which is essential for DNA replication. Moreover, we validated that loss of VPS35 reduced the mRNA and protein expression of MCM2-7 genes. Notably, re-expression of VPS35 in VPS35 knockout HeLa cells rescued the expression of these genes. Functionally, we showed that VPS35 contributes to cell proliferation and maintenance of genomic stability of HeLa cells. Therefore, these findings reveal that VPS35 is involved in the regulation of MCM2-7 gene expression and establish a link between VPS35 and cell proliferation.
Collapse
|
25
|
Wu Z, Wang Y, Li J, Wang H, Tuo X, Zheng J. MCM10 is a Prognostic Biomarker and Correlated With Immune Checkpoints in Ovarian Cancer. Front Genet 2022; 13:864578. [PMID: 35664337 PMCID: PMC9161093 DOI: 10.3389/fgene.2022.864578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Microchromosome maintenance protein 10 (MCM10) is required for DNA replication in all eukaryotes, and it plays a key role in the development of many types of malignancies. However, we currently still do not know the relationship between MCM10 and ovarian cancer (OV) prognosis and immune checkpoints. Methods: The Gene Expression Profiling Interactive Analysis and Tumor Immunology Estimation Resource (TIMER) databases were used to investigate MCM10 expression in Fan cancer. The Kaplan-Meier Plotter and PrognoScan were used to assess the relationship between MCM10 and OV prognosis. The LinkedOmics database was used to analyze the MCM10 co-expression network and explore GO term annotation and the KEGG pathway. The relationship between MCM10 expression and immune infiltration in OV was investigated using the Tumor Immunology Estimation Resource database. cBioPortal database was used to explore the relationship between MCM10 expression and 25 immune checkpoints. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect MCM10 expression. The prognosis was also analyzed by distinguishing between high and low expression groups based on median expression values. Results: The results of the three data sets (220,651_s_at, 222,962_s_at and 223,570_at) in KM Plotter all indicated that the overall survivalof the high MCM10 expression group was lower than that of the low expression group OV, and the results of GSE9891 also reached the same conclusion. The expression level of MCM10 was negatively correlated with B cells and CD8+T cells, and positively correlated with CD4+T Cells and Macrophages. GO term annotation and KEGG pathway analysis showed that the co-expressed genes of MCM10 were mainly enriched in cell cycle and DNA replication. The alterations in MCM10 coexisted statistically with the immune checkpoints CTLA4, TNFSF4, TNFSF18, CD80, ICOSLG, LILRB1 and CD200. PCR results displayed that MCM10 was highly expressed in OV tissues, and the increased expression of MCM10 was significantly associated with poor overall survival. Conclusion: These results demonstrated that high expression of MCM10 was associated with poor prognosis in OV and correlated with immune checkpoints.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yueyuan Wang
- Department of Pathology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Juan Li
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Huiling Wang
- Department of Gynecological Oncology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xunyuan Tuo
- Department of Gynecological Oncology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jing Zheng
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
- *Correspondence: Jing Zheng,
| |
Collapse
|
26
|
Li J, Long J, Zhang J, Liu N, Yan B, Tang L, Chen X, Peng C. Novel chloroquine derivative suppresses melanoma cell growth by DNA damage through increasing ROS levels. J Cell Mol Med 2022; 26:2579-2593. [PMID: 35332658 PMCID: PMC9077290 DOI: 10.1111/jcmm.17260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is a fatal cancer with a significant feature of resistance to traditional chemotherapeutic drugs and radiotherapy. A mutation in the kinase BRAF is observed in more than 66% of metastatic melanoma cases. Therefore, there is an urgent need to develop new BRAF-mutant melanoma inhibitors. High-dose chloroquine has been reported to have antitumour effects, but it often induces dose-limiting toxicity. In this study, a series of chloroquine derivatives were synthesized, and lj-2-66 had the best activity and was selected for further investigation. Furthermore, the anti-BRAF-mutant melanoma effect and mechanism of this compound were explored. CCK-8 and colony formation assays indicated that lj-2-66 significantly inhibited the proliferation of BRAF-mutant melanoma cells. Flow cytometry revealed that lj-2-66 induced G2/M arrest in melanoma cells and promoted apoptosis. Furthermore, lj-2-66 increased the level of ROS in melanoma cells and induced DNA damage. Interestingly, lj-2-66 also played a similar role in BRAF inhibitor-resistant melanoma cells. In summary, we found a novel chloroquine derivative, lj-2-66, that increased the level of ROS in melanoma cells and induced DNA damage, thus leading to G2/M arrest and apoptosis. These findings indicated that lj-2-66 may become a potential therapeutic drug for melanoma harbouring BRAF mutations.
Collapse
Affiliation(s)
- Jiaoduan Li
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Jing Long
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Nian Liu
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Bei Yan
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Ling Tang
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
27
|
The High Expression of Minichromosome Maintenance Complex Component 5 Is an Adverse Prognostic Factor in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4338793. [PMID: 35360518 PMCID: PMC8961428 DOI: 10.1155/2022/4338793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background. Minichromosome maintenance (MCM) genes are crucial for genomic DNA replication and are important biomarkers in tumor biology. In this study, we aimed to identify the diagnostic, therapeutic, and prognostic value of the MCM2–10 genes in patients with lung cancer. Methods. We examined the expression levels, gene networks, and protein networks of lung cancer using data from the ONCOMINE, GeneMANIA, and STRING databases. We conducted a functional enrichment analysis of MCM2–10 using the clusterProfiler package using TCGA data. The correlation between the MCM2–10 expression and lung cancer prognosis was evaluated using Cox regression analysis. The influence of clinical variables on overall survival (OS) was evaluated using univariate and multivariate analyses. The TIMER database was used to evaluate the correlation between tumor infiltrating levels and lung cancer. Kaplan–Meier Plotter pan-cancer RNA sequencing was used to estimate the correlation between the MCM5 expression and OS in different immune cell subgroups in patients with lung adenocarcinoma (LUAD). Finally, the 1-, 3-, and 5-year predictions of LUAD were performed using nomogram and calibration analysis. Results. The expression of MCM2, 3, 4, 5, 6, 7, 8, and 10 in lung cancer was higher than that for normal samples. The MCM5 expression was associated with poor OS in patients with LUAD, and prognosis was related to TNM stage, smoking status, and pathological stage. The MCM5 expression is correlated with immune invasion in LUAD and may affect prognosis due to immune infiltration. Conclusion. MCM5 may serve as a molecular biomarker for LUAD prognosis.
Collapse
|
28
|
Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W, Zhang J. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther 2022; 30:448-467. [PMID: 34111560 PMCID: PMC8753295 DOI: 10.1016/j.ymthe.2021.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Cisplatin resistance is a major therapeutic challenge in advanced head and neck squamous cell carcinoma (HNSCC). Here, we aimed to investigate the key signaling pathway for cisplatin resistance in HNSCC cells. Vomeronasal type-1 receptor 5 (VN1R5) was identified as a cisplatin resistance-related protein and was highly expressed in cisplatin-resistant HNSCC cells and tissues. The long noncoding RNA (lncRNA) lnc-POP1-1 was confirmed to be a downstream target induced by VN1R5. VN1R5 transcriptionally regulated lnc-POP1-1 expression by activating the specificity protein 1 (Sp1) transcription factor via the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. VN1R5 promoted cisplatin resistance in HNSCC cells in a lnc-POP1-1-dependent manner. Mechanistically, lnc-POP1-1 bound to the minichromosome maintenance deficient 5 (MCM5) protein directly and decelerated MCM5 degradation by inhibiting ubiquitination of the MCM5 protein, which facilitated the repair of DNA damage caused by cisplatin. In summary, we identified the cisplatin resistance-related protein VN1R5 and its downstream target lnc-POP1-1. Upon upregulation by VN1R5, lnc-POP1-1 promotes DNA repair in HNSCC cells through interaction with MCM5 and deceleration of its degradation.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang 261031, P.R. China
| | - Haiyan Guo
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Tong Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China.
| |
Collapse
|
29
|
Multiomics profiling of the expression and prognosis of MCMs in endometrial carcinoma. Biosci Rep 2021; 41:230367. [PMID: 34859821 PMCID: PMC8685644 DOI: 10.1042/bsr20211719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Minichromosome maintenance (MCM) family members are a group of genes involved in regulating DNA replication and cell division and have been identified as oncogenes in various cancer types. Several experimental studies have suggested that MCMs are dysregulated in endometrial carcinoma (EC). However, the expression pattern, clinical value and functions of different MCMs have yet to be analyzed systematically and comprehensively. We analyzed expression, survival rate, DNA alteration, PPT network, GGI network, functional enrichment cancer hallmarks and drug sensitivity of MCMs in patients with EC based on diverse datasets, including Oncomine, GEPIA, Kaplan–Meier Plotter, HPA, Sangerbox and GSCALite databases. The results indicated that most MCM members were increased in EC and showed a prognostic value in survival analysis, which were considerately well in terms of PFS and OS prognostic prediction. Importantly, functional enrichment, PPI network and GGI network suggested that MCMs interact with proteins related to DNA replication and cell division, which may be the mechanism of MCM promote EC progression. Further data mining illustrated that MCMs have broad DNA hypomethylation levels and high levels of copy number aberrations in tumor tissue samples, which may be the mechanism causing the high expression level of MCMs. Moreover, MCM2 can activate or suppress diverse cancer-related pathways and is implicated in EC drug sensitivity. Taking together, our findings illustrate the expression pattern, clinical value and function of MCMs in EC and imply that MCMs are potential targets for precision therapy and new biomarkers for the prognosis of patients with EC.
Collapse
|
30
|
Xu X, Chang CW, Li M, Liu C, Liu Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front Mol Biosci 2021; 8:791194. [PMID: 34869606 PMCID: PMC8637615 DOI: 10.3389/fmolb.2021.791194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
The human RECQ4 gene encodes an ATP-dependent DNA helicase that contains a conserved superfamily II helicase domain located at the center of the polypeptide. RECQ4 is one of the five RECQ homologs in human cells, and its helicase domain is flanked by the unique amino and carboxyl termini with sequences distinct from other members of the RECQ helicases. Since the identification of the RECQ4 gene in 1998, multiple RECQ4 mutations have been linked to the pathogenesis of three clinical diseases, which are Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO. Patients with these diseases show various developmental abnormalities. In addition, a subset of RECQ4 mutations are associated with high cancer risks, especially for osteosarcoma and/or lymphoma at early ages. The discovery of clinically relevant RECQ4 mutations leads to intriguing questions: how is the RECQ4 helicase responsible for preventing multiple clinical syndromes? What are the mechanisms by which the RECQ4 disease mutations cause tissue abnormalities and drive cancer formation? Furthermore, RECQ4 is highly overexpressed in many cancer types, raising the question whether RECQ4 acts not only as a tumor suppressor but also an oncogene that can be a potential new therapeutic target. Defining the molecular dysfunctions of different RECQ4 disease mutations is imperative to improving our understanding of the complexity of RECQ4 clinical phenotypes and the dynamic roles of RECQ4 in cancer development and prevention. We will review recent progress in examining the molecular and biochemical properties of the different domains of the RECQ4 protein. We will shed light on how the dynamic roles of RECQ4 in human cells may contribute to the complexity of RECQ4 clinical phenotypes.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
31
|
Zhu J, Tang B, Gao Y, Xu S, Tu J, Wang Y, Yang W, Fang S, Weng Q, Zhao Z, Xu M, Yang Y, Chen M, Lu C, Ji J. Predictive Models for HCC Prognosis, Recurrence Risk, and Immune Infiltration Based on Two Exosomal Genes: MYL6B and THOC2. J Inflamm Res 2021; 14:4089-4109. [PMID: 34466015 PMCID: PMC8403029 DOI: 10.2147/jir.s315957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a heterogeneous molecular disease with complex molecular pathogenesis that influences the efficacy of therapies. Exosomes play a crucial role in tumorigenesis and poor disease outcomes in HCC. Objective The aim of this study was to identify the optimal gene set derived from exosomes in HCC with substantial predictive value to construct models for determining prognosis, recurrence risk and diagnosis and to identify candidates suitable for immunotherapy and chemotherapy, thereby providing new ideas for the individualized treatment of patients and for improving prognosis. Methods Weighted correlation network analysis (WGCNA) and univariate and multivariate Cox PH regression analyses were applied to identify exosome-related signatures in the TCGA and exoRbase databases associated with clinical relevance, immunogenic features and tumor progression in HCC. Cell experiments were performed to further confirm the oncogenic effect of MYL6B and THOC2. Results The models for prognosis and recurrence risk prediction were built based on two exosomal genes (MYL6B and THOC2) and were confirmed to be independent predictive factors with superior predictive performance. Patients with high prognostic risk had poorer prognosis than patients with low prognostic risk in all HCC datasets, namely, the TCGA cohort (HR=2.5, P<0.001), the ICGC cohort (HR=3.15, P<0.001) and the GSE14520 cohort (HR=1.85, P=0.004). A higher recurrence probability was found in HCC patients with high recurrence risk than in HCC patients with low recurrence risk in the TCGA cohort (HR=2.44, P<0.001) and the GSE14520 cohort (HR=1.54, P=0.025). High prognostic risk patients had higher expression of immune checkpoint genes, such as PD1, B7H3, B7H5, CTLA4 and TIM3 (P<0.05). Diagnostic models based on the same two genes were able to accurately distinguish HCC patients from normal individuals and HCC from dysplastic nodules. Conclusion Our findings lay the foundation for identifying molecular markers to increase the early detection rate of HCC, improve disease outcomes, and determine more effective individualized treatment options for patients.
Collapse
Affiliation(s)
- Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Yang Gao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Suqin Xu
- Clinical Laboratory, Fuyuan Hospital of Yiwu, Jinhua, 321000, People's Republic of China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yajie Wang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Weibin Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| |
Collapse
|
32
|
Wang L, Ren G, Lin B. Expression of 5-methylcytosine regulators is highly associated with the clinical phenotypes of prostate cancer and DNMTs expression predicts biochemical recurrence. Cancer Med 2021; 10:5681-5695. [PMID: 34227253 PMCID: PMC8366102 DOI: 10.1002/cam4.4108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two-factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.
Collapse
Affiliation(s)
- Lin Wang
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Biaoyang Lin
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of UrologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
33
|
Wang X, Zhang L, Song Y, Jiang Y, Zhang D, Wang R, Hu T, Han S. MCM8 is regulated by EGFR signaling and promotes the growth of glioma stem cells through its interaction with DNA-replication-initiating factors. Oncogene 2021; 40:4615-4624. [PMID: 34131285 DOI: 10.1038/s41388-021-01888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins are critical components of DNA-replication-licensing factors. MCM8 is an MCM protein that exhibits oncogenic functions in several human malignancies. However, the role of MCM8 in glioblastomas (GBMs) has remained unclear. In the present study, we investigated the biological functions and mechanisms of MCM8 in glioma stem cells (GSCs). The clinical relevance of MCM8 mRNA expression was explored via TCGA and REMBRANDT datasets. The effects of MCM8 on the self-renewal and tumorigenicity of GSCs were examined both in vitro and in vivo. The regulation of MCM8 expression and its interacting proteins were also evaluated. We found that the expression of MCM8 was elevated in high-grade gliomas and classical molecular subtypes and was inversely correlated with patient prognosis. GSCs had a significantly higher expression of MCM8 compared with that in normal glioma cells. Silencing of MCM8 induced G0/G1 arrest and apoptosis, as well as inhibited the proliferation and self-renewal of GSCs. Forced expression of MCM8 enhanced clonogenicity of GSCs both in vitro and in vivo. MCM8 expression was regulated by EGFR signaling, which was mediated by NF-κB (p65). MCM8 interacted with DNA-replication-initiating factors-including EZH2, CDC6, and CDCA2-and influenced these factors to associate with chromatin. In addition, MCM8 knockdown increased the sensitivity of GSCs to radiation and TMZ treatments. Our findings suggest that MCM8, regulated by the EGFR pathway, maintains the clonogenic and tumorigenic potential of GSCs through interaction with DNA-replication-initiating factors; hence, MCM8 may represent a novel therapeutic target in GBMs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Chen C, Gao D, Huo J, Qu R, Guo Y, Hu X, Luo L. Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 2021; 11:12172. [PMID: 34108519 PMCID: PMC8190062 DOI: 10.1038/s41598-021-91290-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer (BrC) subtype lacking effective therapeutic targets currently. The development of multi-omics databases facilities the identification of core genes for TNBC. Using TCGA-BRCA and METABRIC datasets, we identified CT83 as the most TNBC-specific gene. By further integrating FUSCC-TNBC, CCLE, TCGA pan-cancer, Expression Atlas, and Human Protein Atlas datasets, we found CT83 is frequently activated in TNBC and many other cancers, while it is always silenced in non-TNBC, 120 types of normal non-testis tissues, and 18 types of blood cells. Notably, according to the TCGA-BRCA methylation data, hypomethylation on chromosome X 116,463,019 to 116,463,039 is significantly correlated with the abnormal activation of CT83 in BrC. Using Kaplan-Meier Plotter, we demonstrated that activated CT83 is significantly associated with unfavorably overall survival in BrC and worse outcomes in some other cancers. Furthermore, GSEA suggested that the abnormal activation of CT83 in BrC is probably oncogenic by triggering the activation of cell cycle signaling. Meanwhile, we also noticed copy number variations and mutations of CT83 are quite rare in any cancer type, and its role in immune infiltration is not significant. In summary, we highlighted the significance of CT83 for TNBC and presented a comprehensive bioinformatics strategy for single-gene analysis in cancer.
Collapse
Affiliation(s)
- Chen Chen
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Dan Gao
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Jinlong Huo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Rui Qu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Youming Guo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Xiaochi Hu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Libo Luo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| |
Collapse
|
35
|
Challenging, Accurate and Feasible: CAF-1 as a Tumour Proliferation Marker of Diagnostic and Prognostic Value. Cancers (Basel) 2021; 13:cancers13112575. [PMID: 34073937 PMCID: PMC8197349 DOI: 10.3390/cancers13112575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary There is an emerging need for new weapons in the battle against cancer; therefore, the discovery of new biomarkers with diagnostic, prognostic, and therapeutic value is a priority of current cancer research. An important task is to identify how quickly a tumour proliferates. A tumour’s proliferation rate is critical for grading and clinical decision-making; hence, there is an imperative need for accurate proliferation markers. Here, we review evidence demonstrating that chromatin assembly factor 1 (CAF-1) is a proliferation marker of clinical value. CAF-1 is selectively expressed in proliferating cells and its expression can be evaluated by immunohistochemistry in cytology smears and biopsies. CAF-1 expression is increased in almost all cancers and correlates strongly with the expression of Ki-67, the current routine proliferation marker. Overexpression of CAF-1 is associated with poor clinical outcome (advanced cancer stage, recurrence, metastasis, and decreased survival). CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance and may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance. Abstract The discovery of novel biomarkers of diagnostic, prognostic, and therapeutic value is a major challenge of current cancer research. The assessment of tumour cell proliferative capacity is pivotal for grading and clinical decision-making, highlighting the importance of proliferation markers as diagnostic and prognostic tools. Currently, the immunohistochemical analysis of Ki-67 expression levels is routinely used in clinical settings to assess tumour proliferation. Inasmuch as the function of Ki-67 is not fully understood and its evaluation lacks standardization, there is interest in chromatin regulator proteins as alternative proliferation markers of clinical value. Here, we review recent evidence demonstrating that chromatin assembly factor 1 (CAF-1), a histone chaperone selectively expressed in cycling cells, is a proliferation marker of clinical value. CAF-1 expression, when evaluated by immunocytochemistry in breast cancer cytology smears and immunohistochemistry in cancer biopsies from several tissues, strongly correlates with the expression of Ki-67 and other proliferation markers. Notably, CAF-1 expression is upregulated in almost all cancers, and CAF-1 overexpression is significantly associated, in most cancer types, with high histological tumour grade, advanced stage, recurrence, metastasis, and decreased patient survival. These findings suggest that CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance. CAF-1 may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance.
Collapse
|
36
|
Ren Z, Li J, Zhao S, Qiao Q, Li R. Knockdown of MCM8 functions as a strategy to inhibit the development and progression of osteosarcoma through regulating CTGF. Cell Death Dis 2021; 12:376. [PMID: 33828075 PMCID: PMC8027380 DOI: 10.1038/s41419-021-03621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone derived from osteoblasts, which is a noteworthy threat to the health of children and adolescents. In this study, we found that MCM8 has significantly higher expression level in osteosarcoma tissues in comparison with normal tissues, which was also correlated with more advanced tumor grade and pathological stage. In agreement with the role of MCM proteins as indicators of cell proliferation, knockdown/overexpression of MCM8 inhibited/promoted osteosarcoma cell proliferation in vitro and tumor growth in vivo. Also, MCM8 knockdown/overexpression was also significantly associated with the promotion/inhibition of cell apoptosis and suppression/promotion of cell migration. More importantly, mechanistic study identified CTGF as a potential downstream target of MCM8, silencing of which could enhance the regulatory effects of MCM8 knockdown and alleviate the effects of MCM8 overexpression on osteosarcoma development. In summary, MCM8/CTGF axis was revealed as critical participant in the development and progression of osteosarcoma and MCM8 may be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong, Hefei, 230601, China
| | - Shanwen Zhao
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China.,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China
| | - Qi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Runguang Li
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China. .,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China. .,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China. .,Department of Orthopedics, Linzhi People's Hospital, Linzhi, 860000, China.
| |
Collapse
|
37
|
Visnes T, Benítez-Buelga C, Cázares-Körner A, Sanjiv K, Hanna BMF, Mortusewicz O, Rajagopal V, Albers JJ, Hagey DW, Bekkhus T, Eshtad S, Baquero JM, Masuyer G, Wallner O, Müller S, Pham T, Göktürk C, Rasti A, Suman S, Torres-Ruiz R, Sarno A, Wiita E, Homan EJ, Karsten S, Marimuthu K, Michel M, Koolmeister T, Scobie M, Loseva O, Almlöf I, Unterlass JE, Pettke A, Boström J, Pandey M, Gad H, Herr P, Jemth AS, El Andaloussi S, Kalderén C, Rodriguez-Perales S, Benítez J, Krokan HE, Altun M, Stenmark P, Berglund UW, Helleday T. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Res 2020; 48:12234-12251. [PMID: 33211885 PMCID: PMC7708037 DOI: 10.1093/nar/gkaa1048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim,Norway
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Julian J Albers
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Bekkhus
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Saeed Eshtad
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Juan Miguel Baquero
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation. University of Bath, Bath BA2 7AY, UK
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Therese Pham
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sharda Suman
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway.,Department of Environment and New Resources, SINTEF Ocean, N-7010 Trondheim, Norway
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Stella Karsten
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karthick Marimuthu
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Judith Edda Unterlass
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Aleksandra Pettke
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Johan Boström
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monica Pandey
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Helge Gad
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Patrick Herr
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | - Christina Kalderén
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Mikael Altun
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|