1
|
Lin A, Li J, He W. CircSLC4A7 in resistant-cells-derived exosomes promotes docetaxel resistance via the miR-1205/MAPT axis in prostate cancer. IUBMB Life 2024; 76:1342-1355. [PMID: 39266461 DOI: 10.1002/iub.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024]
Abstract
Prostate cancer (PCa) is a high-mortality cancer. Docetaxel (DCT) combined with second-generation anti-androgens is considered the golden standard therapy for PCa, whose application is limited for DCT resistance (DR). Therefore, exploring the mechanism of DR is of great importance. In this study, PCa cell lines of PC3 and DU145 were employed, and DR cells were constructed by treatment with graded DCT. CircSLC4A7, miR-1205, and microtubule-associated protein tau (MAPT) transfections were established. Cell counting kit-8 assay was performed to evaluate the cell activity and IC50 of DCT. After being treated with DCT, DR was assessed by colony formation assay, flow cytometry analysis, and terminal transferase-mediated UTP nick end-labeling assay. Real-time quantitative PCR and western blotting analysis evaluated the expression levels of genes. The dual-luciferase reporter gene assay verified the miR-1205 binding sites with circSLC4A7 and MAPT. An animal experiment was performed to assess the tumor growth influenced by circSLC4A7. After conducting DR cells and isolated exosomes, we found that not only co-culture with DR cells but also treatment with DR cells' exosomes would promote the DR of normal cells. Moreover, circSLC4A7 was highly expressed in DR cells and their exosomes. CircSLC4A7 overexpression enhanced DR, represented as raised IC50 of DCT, increased colony formation, and decreased cell apoptosis after DCT treatment, while circSLC4A7 knockdown had the opposite effect. MiR-1205 was confirmed as a circSLC4A7-sponged miRNA and miR-1205 inhibitor reversed the effect of sh-circSLC4A7. MAPT was further identified as a target of miR-1205 and had a similar effect with circSLC4A7. The effect of circSLC4A7 on DR was also confirmed by xenograft experiments. Collectively, circSLC4A7 in resistant-cells-derived exosomes promotes DCT resistance of PCa via miR-1205/MAPT axis, which may provide a new treatment strategy for DR of PCa.
Collapse
Affiliation(s)
- Anhua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjing He
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
2
|
Iannelli F, Lombardi R, Costantini S, Roca MS, Addi L, Bruzzese F, Di Gennaro E, Budillon A, Pucci B. Integrated proteomics and metabolomics analyses reveal new insights into the antitumor effects of valproic acid plus simvastatin combination in a prostate cancer xenograft model associated with downmodulation of YAP/TAZ signaling. Cancer Cell Int 2024; 24:381. [PMID: 39550583 PMCID: PMC11569608 DOI: 10.1186/s12935-024-03573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite advancements in therapeutic approaches, including taxane-based chemotherapy and androgen receptor-targeting agents, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable tumor, highlighting the need for novel strategies that can target the complexities of this disease and bypass the development of drug resistance mechanisms. We previously demonstrated the synergistic antitumor interaction of valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitory activity, with the lipid-lowering drug simvastatin (SIM). This combination sensitizes mCRPC cells to docetaxel treatment both in vitro and in vivo by targeting the cancer stem cell compartment via mevalonate pathway/YAP axis modulation. METHODS Here, using a combined proteomic and metabolomic/lipidomic approach, we characterized tumor samples derived from 22Rv1 mCRPC cell-xenografted mice treated with or without VPA/SIM and performed an in-depth bioinformatics analysis. RESULTS We confirmed the specific impact of VPA/SIM on the Hippo-YAP signaling pathway, which is functionally related to the modulation of cancer-related extracellular matrix biology and metabolic reprogramming, providing further insights into the molecular mechanism of the antitumor effects of VPA/SIM. CONCLUSIONS In this study, we present an in-depth exploration of the potential to repurpose two generic, safe drugs for mCRPC treatment, valproic acid (VPA) and simvastatin (SIM), which already show antitumor efficacy in combination, primarily affecting the cancer stem cell compartment via MVP/YAP axis modulation. Bioinformatics analysis of the LC‒MS/MS and 1H‒NMR metabolomics/lipidomics results confirmed the specific impact of VPA/SIM on Hippo-YAP.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy.
| | - Biagio Pucci
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| |
Collapse
|
3
|
Brandt MP, Vakhrusheva O, Hackl H, Daher T, Tagscherer K, Roth W, Tsaur I, Handle F, Eigentler A, Culig Z, Thomas C, Erb HHH, Haferkamp A, Jüngel E, Puhr M. Inhibition of the Sterol Regulatory Element Binding Protein SREBF-1 Overcomes Docetaxel Resistance in Advanced Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2150-2162. [PMID: 39168364 DOI: 10.1016/j.ajpath.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Resistance to antiandrogens and chemotherapy (Cx) limits therapeutic options for patients with metastatic hormone-sensitive (mHSPC) and metastatic castration-resistant (mCRPC) prostate cancer. In this context, up-regulation of the glucocorticoid receptor is identified as a potential bypass mechanism in mCRPC. A combination of docetaxel and mifepristone (Doc + RU-486), an inhibitor of the glucocorticoid receptor, re-sensitizes docetaxel-resistant cell models to Cx. This study was designed to elucidate the molecular mechanisms responsible for this phenomenon. RNA sequencing was performed in docetaxel-resistant prostate cancer cell models after Doc + RU-486 treatment with consecutive functional assays. Expression of selected proteins was verified in prostatic tissue from prostate cancer patients with progressive disease. Treatment with Doc + RU-486 significantly reduced cancer cell viability, and RNA sequencing revealed sterol regulatory element of binding transcription factor 1 (SREBF-1), a transcription factor of cholesterol and lipid biosynthesis, as a significantly down-regulated target. Functional assays confirmed that SREBF-1 down-regulation is partially responsible for this observation. In concordance, SREBF-1 knockdown and pharmacologic sterol regulatory element binding protein inhibition, together with other key enzymes in the cholesterol pathway, showed similar results. Furthermore, SREBF-1 expression is significantly elevated in advanced prostate cancer tissues, showing its potential involvement in tumor progression and emerging therapy resistance. Therefore, specific inhibition of cholesterol and lipid biosynthesis might also target Cx-resistant cancer cells and represents a potential additive future therapeutic option to improve mCRPC therapy.
Collapse
Affiliation(s)
- Maximilian P Brandt
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany.
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tamas Daher
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany; Optipath, Ambulatory Health Care Center for Pathology Frankfurt, Frankfurt, Germany
| | - Katrin Tagscherer
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Eva Jüngel
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Lu J, Zou Q, Li Y, Xiong C, Tao L, Wu J, Qin M, Yang J, He L, Qin M, Dong M, Li Y, Cao S. FTH1P8 induces and transmits docetaxel resistance by inhibiting ferroptosis in prostate cancer. Biomed Pharmacother 2024; 180:117472. [PMID: 39332191 DOI: 10.1016/j.biopha.2024.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Overcoming docetaxel resistance remains a significant challenge in the management of prostate cancer. Previous studies have confirmed a link between ferroptosis and the development of docetaxel resistance. This study revealed that docetaxel-resistant prostate cancer cells presented increased FTH1P8 expression compared with docetaxel-sensitive cells. Decreasing the level of FTH1P8 counteracted docetaxel resistance and facilitated docetaxel-induced ferroptosis, which is characterized by an increase in intracellular Fe2+ concentration, lipid peroxidation levels (lipid ROS), reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) production and mitochondrial damage, a decrease in the Fe3+ concentration and glutathione (GSH) content, and the ability to inhibit hydroxyl radical (·OH) and the mitochondrial membrane potential (MMP). Conversely, increasing the level of FTH1P8 had the opposite effect. A positive correlation was revealed between the expression of FTH1P8 and its parental gene FTH1 in prostate cancer tissues in The Cancer Genome Atlas (TCGA) database. Molecular investigations revealed that FTH1P8 expression increased through miR-1252-5p. Furthermore, rescue experiments confirmed that FTH1 mediated the inhibitory effect of FTH1P8 on ferroptosis. Moreover, FTH1P8 was discovered to play a role in the spread of docetaxel resistance via exosomes. Docetaxel-siRNA targeting FTH1P8 (siFTH1P8)-nanoliposomes (DOC-siFTH1P8-LIP), which can codeliver docetaxel and siFTH1P8, significantly inhibited docetaxel resistance in cells. These results indicated that FTH1P8 can function as both an indicator and a treatment target for docetaxel resistance. The use of DOC-siFTH1P8-LIP demonstrated promising therapeutic effects on docetaxel-resistant cells, suggesting a novel option for treating docetaxel-resistant prostate cancer.
Collapse
Affiliation(s)
- Junhong Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Qingrong Zou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yang Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Chuanwei Xiong
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lin Tao
- The Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiayuan Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Mei Qin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Jie Yang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Linhong He
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Meichun Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yingxin Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Sisi Cao
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; State Key Laboratory of Targeting Oncology, Guangxi Medical University, Naning 530021, China.
| |
Collapse
|
5
|
Li CX, Li CY, Wang YQ, Liu H, Yang ZJ, Zhang X, Wang GC, Wang L. Sequential versus concomitant treatment of androgen receptor signaling inhibitors and docetaxel for metastatic hormone-sensitive prostate cancer: an network meta-analysis. Front Pharmacol 2024; 15:1462360. [PMID: 39529878 PMCID: PMC11551020 DOI: 10.3389/fphar.2024.1462360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background Androgen receptor signaling inhibitors (ARSis), when administered sequentially or in combination with docetaxel and androgen deprivation therapy (ADT), have been shown to enhance overall survival (OS) and progression-free survival (PFS) in patients with metastatic hormone-sensitive prostate cancer (mHSPC). Nonetheless, the optimal sequence for administering chemotherapy and ARSis remains to be determined. Objective To compare the efficacy of ARSis sequential therapy with ARSis combined therapy for mHSPC, and to evaluate the efficacy and safety of different combination regimens. Methods The PubMed, Embase, Cochrane Central, and ClinicalTrials.gov databases were searched from their inception through 14 July 2024, to identify eligible phase III randomized clinical trials (RCTs) evaluating the combination or sequential use of docetaxel + ADT with abiraterone, enzalutamide, apalutamide, or darolutamide. The outcomes of interest included OS, PFS, time to prostate-specific antigen (PSA) progression, grade 3-5 adverse events (AEs), and serious adverse events (SAEs). Results Five RCTs involving 2836 patients were included in the analysis. When comparing ARSis sequential therapy to ARSis combined therapy, no significant differences were observed in OS (Hazard Ratio (HR): 1.17, 95% Confidence Interval (CI): 0.69-1.96), PFS (HR: 1.03, 95% CI: 0.47-2.22), or time to PSA progression (HR: 0.48, 95% CI: 0.03-7.69). Within the different ARSis combined regimens, the triple therapies involving enzalutamide, abiraterone, and darolutamide demonstrated comparable efficacy and safety profiles in the overall population, and their efficacy in patients with high-volume disease or low-volume disease was also similar. Conclusion ARSis sequential therapy did not significantly differ from ARSis combined therapy in improving OS and PFS among patients with mHSPC, and thus can be considered as a viable treatment option.
Collapse
Affiliation(s)
- Chun Xing Li
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Cong Ying Li
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yu Qiao Wang
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Hua Liu
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhan Jiang Yang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xian Zhang
- Department of Pharmacy, the 305th Hospital of PLA, Beijing, China
| | - Guan Chun Wang
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Lei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene 2024; 43:2104-2114. [PMID: 38769193 DOI: 10.1038/s41388-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) ranks as the sixth most serious male malignant disease globally. While docetaxel (DTX) chemotherapy is the standard treatment for advanced PCa patients with distant metastasis, some individuals exhibit insensitivity or resistance to DTX. Cancer-associated fibroblasts (CAFs) play a pivotal role as stromal cells within the tumor microenvironment, influencing tumor development, progression, and drug resistance through exosomes. Ferroptosis, a novel form of programmed cell death, is characterized by intracellular iron accumulation that triggers lipid peroxidation, ultimately leading to cell demise. To delve into the potential mechanisms of chemotherapy resistance in prostate cancer, our research delved into the impact of CAF-derived exosomes on ferroptosis. Our findings revealed that CAF exosomes hindered the buildup of lipid reactive oxygen species (ROS) in prostate cancer cells induced by erastin, as well as mitigated erastin-induced mitochondrial damage, thereby impeding iron-induced cell death in prostate cancer cells. Furthermore, miR-432-5p was identified to diminish glutathione (GSH) consumption by targeting CHAC1, consequently inhibiting ferroptosis in prostate cancer cells. Our study found that miR-432-5p, originating from cancer-associated fibroblast (CAF) exosomes, suppresses ferroptosis by targeting CHAC1, thereby increasing resistance to docetaxel (DTX) in PCa. This research introduces a novel approach to address resistance to DTX.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jijie Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Sun Hongbin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
8
|
Wang RT, Liu HE, Sun HY. In vitro modulation the Notch pathway by piperine: A therapeutic strategy for docetaxel-resistant and non-resistant prostate cancer. Chem Biol Drug Des 2024; 103:e14562. [PMID: 38898371 DOI: 10.1111/cbdd.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Docetaxel (DTX) resistance poses a significant challenge in the treatment of prostate cancer (PCa), often leading to chemotherapy failure. This study investigates the ability of piperine, a compound derived from black pepper, to enhance the sensitivity of PCa cells to DTX and elucidates its underlying mechanism. We established a DTX-resistant PCa cell line, DU145/DTX, to conduct our experiments. Through a series of assays, including MTT for cell viability, flow cytometry for apoptosis, Transwell for cell migration and invasion, and western blot for protein expression analysis, we assessed the effects of piperine on these cellular functions and on the Notch signaling pathway components. Our results demonstrated that we successfully established the DTX-resistant PCa cell line DU145/DTX. Piperine effectively decreased the viability of both DU145 and its DTX-resistant counterpart, DU145/DTX, in a concentration and time-dependent manner when used alone and in combination with DTX. Notably, piperine also induced apoptosis and reduced the migration and invasion capabilities of these cells. At the molecular level, piperine down-regulated the Notch pathway by inhibiting Notch1 and Jagged1 signaling, as well as reducing the expression of downstream effectors Hey1 and hes family bHLH transcription factor 1. The study concludes that piperine's ability to modulate the Notch signaling pathway and induce apoptosis highlights its potential as a complementary treatment for DTX-resistant PCa, paving the way for the use of traditional Chinese medicinal compounds in modern oncology treatment strategies.
Collapse
Affiliation(s)
- Rui-Tao Wang
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Hao-En Liu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Hui-Yuan Sun
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
9
|
Wu C, Miao C, Zhou S, Chang PA, He B, Zhou X, Tang Q. Epigenetic activation of METTL14 promotes docetaxel resistance in prostate cancer by promoting pri-microRNA-129 maturation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3734-3745. [PMID: 38546343 DOI: 10.1002/tox.24187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/05/2024] [Accepted: 02/10/2024] [Indexed: 05/16/2024]
Abstract
The development of resistance to Docetaxel (DTX) compromises its therapeutic efficacy and worsens the prognosis of prostate cancer (PCa), while the underlying regulatory mechanism remains poorly understood. In this study, METTL14 was found to be upregulated in DTX-resistant PCa cells and PCa tissues exhibiting progressive disease during DTX therapy. Furthermore, overexpression of METTL14 promoted the development of resistance to DTX in both in vitro and in vivo. Interestingly, it was observed that the hypermethylation of the E2F1 targeting site within DTX-resistant PCa cells hindered the binding ability of E2F1 to the promoter region of METTL14, thereby augmenting its transcriptional activity. Consequently, this elevated expression level of METTL14 facilitated m6A-dependent processing of pri-miR-129 and subsequently led to an increase in miR-129-5p expression. Our study highlights the crucial role of the E2F1-METTL14-miR-129-5p axis in modulating DTX resistance in PCa, underscoring METTL14 as a promising therapeutic target for DTX-resistant PCa patients.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
- Department of Urology, Dongtai Hospital, the Affiliated Hospital of Jiangsu Vocational College of Medicine, Dongtai, Jiangsu, China
| | - Chunqing Miao
- Public Health Section, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| | - Songlin Zhou
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| | - Ping-An Chang
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| | - Bin He
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| | - Qingsheng Tang
- Department of Urology, Dongtai City People's Hospital, Dongtai, Jiangsu, China
| |
Collapse
|
10
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Zhou S, Feng X, Bai J, Sun D, Yao B, Wang K. Synergistic effects and competitive relationships between DOC and DOX as acting on DNA molecules: Studied with confocal Raman spectroscopy and molecular docking technology. Heliyon 2024; 10:e30233. [PMID: 38707315 PMCID: PMC11066432 DOI: 10.1016/j.heliyon.2024.e30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Docetaxel (DOC) is one of the second-generation antineoplastic drugs of the taxanes family with excellent antitumor activity. However, the mechanism of DOC inducing tumor cell apoptosis and treating cancer diseases, especially its interaction with DNA in the nucleus, and its adjuvant or combined Doxorubicin (DOX) acting on DNA molecules are unclear. In this study, the interaction mechanism between DOC and DNA, as well as the synergistic effects and competitive relationships among DOC and DOX when they simultaneously interact with DNA molecules were studied by laser confocal Raman spectroscopy combined with UV-visible absorption spectroscopy and molecular docking technology. The spectroscopic results showed that the binding constant of DOC to DNA is 5.25 × 103 M-1, the binding modes of DOC and DNA are non-classical intercalation and electrostatic binding, and the DNA-DOC complex has good stability. When DOC or DOX interacts with DNA alone, both of them can bind with bases and phosphate backbone of DNA, and also lead to DNA conformation changes; when DOC and DOX interact with DNA at the same time, the orders of interaction not only affect their binding sites with DNA, but also cause changes in the surrounding environment of the binding sites. In addition, the molecular docking results further verified that DOC and DOX have synergy and competition when they interact with DNA molecules simultaneously. The docking energies of DNA-DOC and DNA-DOX indicate the important role of van der Waals forces and hydrogen bonds. This study has practical significance for the design and development of antitumor drugs with less toxic based on the taxanes family and the combination with other drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Suli Zhou
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Xiaoqiang Feng
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Jintao Bai
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Dan Sun
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Kaige Wang
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| |
Collapse
|
12
|
Cheng B, Li L, Luo T, Wang Q, Luo Y, Bai S, Li K, Lai Y, Huang H. Single-cell deconvolution algorithms analysis unveils autocrine IL11-mediated resistance to docetaxel in prostate cancer via activation of the JAK1/STAT4 pathway. J Exp Clin Cancer Res 2024; 43:67. [PMID: 38429845 PMCID: PMC10905933 DOI: 10.1186/s13046-024-02962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Docetaxel resistance represents a significant obstacle in the treatment of prostate cancer. The intricate interplay between cytokine signalling pathways and transcriptional control mechanisms in cancer cells contributes to chemotherapeutic resistance, yet the underlying molecular determinants remain only partially understood. This study elucidated a novel resistance mechanism mediated by the autocrine interaction of interleukin-11 (IL-11) and its receptor interleukin-11 receptor subunit alpha(IL-11RA), culminating in activation of the JAK1/STAT4 signalling axis and subsequent transcriptional upregulation of the oncogene c-MYC. METHODS Single-cell secretion profiling of prostate cancer organoid was analyzed to determine cytokine production profiles associated with docetaxel resistance.Analysis of the expression pattern of downstream receptor IL-11RA and enrichment of signal pathway to clarify the potential autocrine mechanism of IL-11.Next, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) was performed to detect the nuclear localization and DNA-binding patterns of phosphorylated STAT4 (pSTAT4). Coimmunoprecipitation and reporter assays were utilized to assess interaction between pSTAT4 and the cotranscription factor CREB-binding protein (CBP) as well as their role in c-MYC transcriptional activity. RESULTS Autocrine secretion of IL-11 was markedly increased in docetaxel-resistant prostate cancer cells. IL-11 stimulation resulted in robust activation of JAK1/STAT4 signalling. Upon activation, pSTAT4 translocated to the nucleus and associated with CBP at the c-MYC promoter region, amplifying its transcriptional activity. Inhibition of the IL-11/IL-11RA interaction or disruption of the JAK1/STAT4 pathway significantly reduced pSTAT4 nuclear entry and its binding to CBP, leading to downregulation of c-MYC expression and restoration of docetaxel sensitivity. CONCLUSION Our findings identify an autocrine loop of IL-11/IL-11RA that confers docetaxel resistance through the JAK1/STAT4 pathway. The pSTAT4-CBP interaction serves as a critical enhancer of c-MYC transcriptional activity in prostate cancer cells. Targeting this signalling axis presents a potential therapeutic strategy to overcome docetaxel resistance in advanced prostate cancer.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 511430, China
| | - Yong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shoumin Bai
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
13
|
Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, Wang K, Liu X, Tang C, Li W, Li Z, Wen X, Yang G, Guo C, Liu Z, Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci 2024; 115:412-426. [PMID: 38115797 PMCID: PMC10859609 DOI: 10.1111/cas.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ying Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liang Jin
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Cao
- Department of PathologyThe Third Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhiyu Liu
- Department of UrologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
14
|
Pu YS, Huang CY, Wu HL, Wu JH, Su YF, Yu CTR, Lu CY, Wu WJ, Huang SP, Huang YT, Hour TC. EGFR-mediated hyperacetylation of tubulin induced docetaxel resistance by downregulation of HDAC6 and upregulation of MCAK and PLK1 in prostate cancer cells. Kaohsiung J Med Sci 2024; 40:23-34. [PMID: 37916740 DOI: 10.1002/kjm2.12766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Docetaxel-based chemotherapy has generally been considered as one of the effective treatments for castration-resistant prostate cancer (PCa). However, clinical treatment with docetaxel often encounters a number of undesirable effects, including drug resistance. Tubulin isoforms have been previously examined for their resistance to docetaxel in many cancers, but their real mechanisms remained unclear. In this study, a series of docetaxel-resistant PC/DX cell sublines were established by chronically exposing PC3 to progressively increased concentrations of docetaxel. Western blotting results showed significantly higher expression of acetyl-tubulin, α-tubulin, β-tubulin, γ-tubulin, and βIII-tubulin in PC/DX25 than in parental PC3 cells. PC/DX25 with greater resistance to docetaxel had higher levels of acetyl-tubulin and mitotic centromere-associated kinesin (MCAK) than PC3 cells. This study found that docetaxel induced the expression of acetyl-tubulin and MCAK in PC3 cells at a dose- and time-dependent manner. Both mRNA and protein levels of histone deacetylase 6 (HDAC6) were significantly decreased in PC/DX25 compared with PC3 cells. PC3 increased the resistance to docetaxel by HDAC6 knockdown and Tubastatin A (HDAC6 inhibitor). Conversely, PC/DX25 reversed the sensitivity to docetaxel by MCAK knockdown. Notably, flow cytometry analysis revealed that MCAK knockdown induced significantly sub G1 fraction in PC/DX cells. Overexpression of polo-like kinase-1 increased the cell survival rate and resistance to docetaxel in PC3 cells. Moreover, epidermal growth factor receptor (EGFR) activation induced the upregulation of acetyl-tubulin in docetaxel-resistant PCa cells. These findings demonstrated that the EGFR-mediated upregulated expression of acetyl-tubulin played an important role in docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Lin Wu
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyun-Hong Wu
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Fang Su
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Tang Huang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tzyh-Chyuan Hour
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Huang SKH, Bueno PRP, Garcia PJB, Lee MJ, De Castro-Cruz KA, Leron RB, Tsai PW. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Osmanthus fragrans (Thunb.) Lour. Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3168. [PMID: 37687413 PMCID: PMC10489841 DOI: 10.3390/plants12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.
Collapse
Affiliation(s)
- Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Paolo Robert P. Bueno
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Metro Manila 1000, Philippines;
- School of Medicine, The Manila Times College of Subic, Zambales 2222, Philippines
- Department of Chemistry, College of Science, Adamson University, Metro Manila 1000, Philippines
| | - Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Metro Manila 1002, Philippines
| | - Mon-Juan Lee
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| |
Collapse
|
16
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Wang H, Teng X, Lin Y, Jiang C, Chen X, Zhang Y. Targeting XPO6 inhibits prostate cancer progression and enhances the suppressive efficacy of docetaxel. Discov Oncol 2023; 14:82. [PMID: 37243787 DOI: 10.1007/s12672-023-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Although XPO6, one of the Exportin family members, functions in malignant progression of certain types of cancer, its role in prostate cancer (PCa) has not been elucidated. Herein, we investigated the oncogenic effect and clarified the downstream mechanism of XPO6 in PCa cells. METHODS We detected the expression level of XPO6 in PCa tissues by immunohistochemistry (IHC) and analyzed the correlation between clinicopathological characteristics and XPO6 level based on TCGA database. The effects of XPO6 in the proliferation and migration or resistance to docetaxel (DTX) in PCa cells were assessed using CCK8, colony formation, wound-healing and Transwell assays. Mice experiments were performed to investigate the role of XPO6 in tumor progression and DTX effect in vivo. Further, functional analysis of DEGs revealed the correlation of XPO6 with Hippo pathway and XPO6 could promote the expression and nuclear translocation of YAP1 protein. Furthermore, blocking Hippo pathway with YAP1 inhibitor leads to the loss of XPO6-mediated regulation of biological functions. RESULTS XPO6 was highly expressed and positively correlated with the clinicopathological characteristics of PCa. Functional experiments indicated that XPO6 could promote tumor development and DTX resistance in PCa. Mechanistically, we further confirmed that XPO6 could regulate Hippo pathway via mediating YAP1 protein expression and nuclear translocation thereby promoting PCa progression and chemotherapeutic resistance. CONCLUSION In conclusion, our research reveals that XPO6 potentially function as an oncogene and promotes DTX resistance of PCa, suggesting that XPO6 could be both a potential prognostic marker as well as a therapeutic target to effectively overcome DTX resistance.
Collapse
Affiliation(s)
- Huming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xiangyu Teng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Chao Jiang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China.
| |
Collapse
|
18
|
Hirata Y, Shigemura K, Moriwaki M, Iwatsuki M, Kan Y, Ooya T, Maeda K, Yang Y, Nakashima T, Matsuo H, Nakanishi J, Fujisawa M. Growth and Migration Blocking Effect of Nanaomycin K, a Compound Produced by Streptomyces sp., on Prostate Cancer Cell Lines In Vitro and In Vivo. Cancers (Basel) 2023; 15:2684. [PMID: 37345021 DOI: 10.3390/cancers15102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Since castration-resistant prostate cancer (CRPC) acquires resistance to molecularly targeted drugs, discovering a class of drugs with different mechanisms of action is needed for more efficient treatment. In this study, we investigated the anti-tumor effects of nanaomycin K, derived from "Streptomyces rosa subsp. notoensis" OS-3966. The cell lines used were LNCaP (non-CRPC), PC-3 (CRPC), and TRAMP-C2 (CRPC). Experiments included cell proliferation analysis, wound healing analysis, and Western blotting. In addition, nanaomycin K was administered intratumorally to TRAMP-C2 carcinoma-bearing mice to assess effects on tumor growth. Furthermore, immuno-histochemistry staining was performed on excised tissues. Nanaomycin K suppressed cell proliferation in all cell lines (p < 0.001) and suppressed wound healing in TRAMP-C2 (p = 0.008). Nanaomycin K suppressed or showed a tendency to suppress the expression of N-cadherin, Vimentin, Slug, and Ras in all cell lines, and suppressed the phosphorylation of p38, SAPK/JNK, and Erk1/2 in LNCaP and TRAMP-C2. In vivo, nanaomycin K safely inhibited tumor growth (p = 0.001). In addition, suppression of phospho-Erk1/2 and increased expression of E-cadherin and cleaved-Caspase3 were observed in excised tumors. Nanaomycin K inhibits tumor growth and suppresses migration by inhibiting epithelial-mesenchymal transition in prostate cancer. Its mechanism of action is related to the inhibition of phosphorylation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yuto Hirata
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe 654-0142, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe 654-0142, Japan
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
- Department of Medical Device Engineering, Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1 Minatojima-minamimachi, Chuoku, Kobe 657-0047, Japan
| | - Michika Moriwaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe 654-0142, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan
| | - Yuki Kan
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe 654-0142, Japan
| | - Tooru Ooya
- Department of Medical Device Engineering, Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1 Minatojima-minamimachi, Chuoku, Kobe 657-0047, Japan
- Graduate School of Engineering Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe 657-8501, Japan
| | - Koki Maeda
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
| | - Youngmin Yang
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda Tsurumakicho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Hirotaka Matsuo
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba 305-8043, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
| |
Collapse
|
19
|
Rahman MT, Kaung Y, Shannon L, Androjna C, Sharifi N, Labhasetwar V. Nanoparticle-mediated synergistic drug combination for treating bone metastasis. J Control Release 2023; 357:498-510. [PMID: 37059400 PMCID: PMC10243348 DOI: 10.1016/j.jconrel.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Bone metastasis at an advanced disease stage is common in most solid tumors and is untreatable. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) in tumor-bone marrow microenvironment drives a vicious cycle of tumor progression and bone resorption. Biodegradable nanoparticles (NPs), designed to localize in the tumor tissue in bone marrow, were evaluated in a prostate cancer model of bone metastasis. The combination treatment, encapsulating docetaxel, an anticancer drug (TXT-NPs), and Denosumab, a monoclonal antibody that binds to RANKL (DNmb-NPs), administered intravenously regressed the tumor completely, preventing bone resorption, without causing any mortality. With TXT-NPs alone treatment, after an initial regression, the tumor relapsed and acquired resistance, whereas DNmb-NPs alone treatment was ineffective. Only in the combination treatment, RANKL was not detected in the tumor tibia, thus negating its role in tumor progression and bone resorption. The combination treatment was determined to be safe as the vital organ tissue showed no increase in inflammatory cytokine or the liver ALT/AST levels, and animals gained weight. Overall, dual drug treatment acted synergistically to modulate the tumor-bone microenvironment with encapsulation enhancing their therapeutic potency to achieve tumor regression.
Collapse
Affiliation(s)
- Mohammed Tanjimur Rahman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kaung
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Logan Shannon
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Kim CH, Lee S, Choi JY, Lyu MJ, Jung HM, Goo YT, Kang MJ, Choi YW. Functionalized Lipid Nanocarriers for Simultaneous Delivery of Docetaxel and Tariquidar to Chemoresistant Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16030349. [PMID: 36986449 PMCID: PMC10058271 DOI: 10.3390/ph16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion (<220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples (>95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, 4700 Kneele St., Toronto, ON M3J 1P3, Canada
| | - Min Jeong Lyu
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyun Min Jung
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Correspondence:
| |
Collapse
|
21
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
22
|
Yang Y, Qin H, Ding M, Ji C, Chen W, Diao W, Yin H, Chen M, Gan W, Guo H. Small ankyrin 1 (sANK1) promotes docetaxel resistance in castration-resistant prostate cancer cells by enhancing oxidative phosphorylation. FEBS Open Bio 2022; 13:257-269. [PMID: 36508323 PMCID: PMC9900087 DOI: 10.1002/2211-5463.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Docetaxel (DTX) plays an important role in treating advanced prostate cancer (PCa). However, nearly all patients receiving DTX therapy ultimately progress to DTX resistance. How to address DTX resistance in PCa remains a key challenge for all urologists. Small ankyrin 1 (sAnk1) is an integral membrane protein in the endoplasmic reticulum. In the present study, we identified that sAnk1 is upregulated in PCa tissues and is positively associated with DTX therapy resistance in PCa. Further investigation demonstrated that overexpression of sAnk1 can significantly increase the DTX-resistant ability of PCa cells in vitro and in vivo. In addition, overexpression of sAnk1 could enhance oxidative phosphorylation (OXPHOS) levels in PCa cells, which was consistent with the higher OXPHOS levels observed in DTX-resistant PCa cells as compared to DTX-sensitive PCa cells. sAnk1 was also found to interact with polypyrimidine-tract-binding protein (PTBP1), an alternative splicing factor, and suppressed PTBP1-mediated alternative splicing of the pyruvate kinase gene (PKM). Thus, overexpression of sAnk1 decreased the ratio of PKM2/PKM1, enhanced the OXPHOS level, and ultimately promoted the resistance of PCa cells to DTX. In summary, our data suggest that sAnk1 enhances DTX resistance in PCa cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haoli Yin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Mengxia Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| |
Collapse
|
23
|
Yu X, Han N, Dong Z, Dang Y, Zhang Q, Hu W, Wang C, Du S, Lu Y. Combined Chemo-Immuno-Photothermal Therapy for Effective Cancer Treatment via an All-in-One and One-for-All Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42988-43009. [PMID: 36109853 DOI: 10.1021/acsami.2c12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xianglong Yu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ning Han
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yunni Dang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Wenjun Hu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Changhai Wang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yang Lu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| |
Collapse
|
24
|
Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies. Heliyon 2022; 8:e09519. [PMID: 35669542 PMCID: PMC9163513 DOI: 10.1016/j.heliyon.2022.e09519] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/06/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023] Open
Abstract
Cancer is one of the leading causes of death in the world. Chemotherapy is presented as an option for treatment of this disease, however, low specificity, high resistance rates, toxicity and hypersensitivity reactions, make it necessary to search for therapeutic alternatives that increase the selectivity of treatment, reduce the side effects and enhance its antitumor potential. Natural products are accessible, inexpensive and less toxic sources; in addition, they have multiple mechanisms of action that can potentiate the outcome of chemotherapeutics. In this review, we present evidence on the beneficial effect of the interaction of dietary phytochemicals with chemotherapeutical agents for cancer treatment. This effect is generated by different mechanisms of action such as, increased tumoricidal effect via sensitization of cancer cells, reversing chemoresistance through inhibition of several targets involved in the development of drug resistance and, decreasing chemotherapy-induced toxicity in non-tumoral cells by the promotion of repair mechanisms. Studies discussed in this review will provide a solid basis for the exploration of the potential use of natural products in combination with chemotherapeutical agents, to overcome some of the difficulties that arise in the management of cancer patients.
Collapse
|
25
|
Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022; 206:435-452. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a member of a family of secreted cytokines with vital biological functions in cells. The abnormal expression of TGF-β signaling is a common finding in pathological conditions, particularly cancer. Prostate cancer (PCa) is one of the leading causes of death among men. Several genetic and epigenetic alterations can result in PCa development, and govern its progression. The present review attempts to shed some light on the role of TGF-β signaling in PCa. TGF-β signaling can either stimulate or inhibit proliferation and viability of PCa cells, depending on the context. The metastasis of PCa cells is increased by TGF-β signaling via induction of EMT and MMPs. Furthermore, TGF-β signaling can induce drug resistance of PCa cells, and can lead to immune evasion via reducing the anti-tumor activity of cytotoxic T cells and stimulating regulatory T cells. Upstream mediators such as microRNAs and lncRNAs, can regulate TGF-β signaling in PCa. Furthermore, some pharmacological compounds such as thymoquinone and valproic acid can suppress TGF-β signaling for PCa therapy. TGF-β over-expression is associated with poor prognosis in PCa patients. Furthermore, TGF-β up-regulation before prostatectomy is associated with recurrence of PCa. Overall, current review discusses role of TGF-β signaling in proliferation, metastasis and therapy response of PCa cells and in order to improve knowledge towards its regulation, upstream mediators of TGF-β such as non-coding RNAs are described. Finally, TGF-β regulation and its clinical application are discussed.
Collapse
|
26
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
27
|
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu RL, Niu YJ, Xu Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res 2021; 82:831-845. [PMID: 34965937 DOI: 10.1158/0008-5472.can-21-2988] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Docetaxel-based chemotherapy is a standard-of-care treatment for metastatic prostate cancer (PCa), and chemoresistance remains a major challenge in clinical practice. Recent studies have demonstrated that circular RNAs (circRNAs) play critical roles in the development and progression of PCa. However, the biological roles and potential functions of circRNAs in mediating docetaxel-resistant PCa have yet to be well elucidated. In this study, we analyzed the expression profiles of circRNAs in docetaxel-resistant and -sensitive PCa cells through RNA sequencing and found that expression of circARHGAP29 was significantly upregulated in docetaxel-resistant cell lines and clinical samples. Ectopic expression of circARHGAP29 triggered docetaxel resistance and aerobic glycolysis in PCa cells, which was reduced by silencing circARHGAP29. Moreover, eukaryotic initiation factor 4A3 (EIF4A3), which bound the back-spliced junction site and the downstream flanking sequence of circARHGAP29, induced cyclization and cytoplasmic export of circARHGAP29. circARHGAP29 increased the stability of lactate dehydrogenase A (LDHA) mRNA by strengthening its interaction with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), leading to enhanced glycolytic metabolism. In addition, circARHGAP29 interacted with and stabilized c-Myc mRNA and protein, which further increased LDHA expression by facilitating its transcription. These findings reveal the crucial function of circARHGAP29 in PCa glycolysis by increasing and stabilizing LDHA mRNA, providing a promising therapeutic target in docetaxel-resistant PCa.
Collapse
Affiliation(s)
| | - Shanqi Guo
- Hematology, Tianjin Cancer Institute and Hospital
| | | | | | | | - Yong Wang
- School of Laboratory Medicine, Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University
| | - Ran Lu Liu
- Department of Urology, Second Hospital of TianJin Medical University, TianJin
| | - Yuan-Jie Niu
- Chawnshang Chang Sex Hormone Research Center , Department of Urology, The Second affiliated hospital of Tianjin Medical University
| | - Yong Xu
- Tianjin Institute of Urology
| |
Collapse
|
28
|
Wang T, Dong L, Sun J, Shao J, Zhang J, Chen S, Wang C, Wu G, Wang X. miR-145-5p: A Potential Biomarker in Predicting Gleason Upgrading of Prostate Biopsy Samples Scored 3+3=6. Cancer Manag Res 2021; 13:9095-9106. [PMID: 34916852 PMCID: PMC8671722 DOI: 10.2147/cmar.s336671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background The Gleason grading system is a major tool used for prediction of prostate cancer (PCa) behavior. Because of heterogeneity and sampling errors, prognosis is variable even among patients with the same Gleason score (GS). Therefore, more accurate biomarkers that complement the Gleason system are needed to improve the clinical management of PCa. Methods Formalin-fixed, paraffin embedded tissue samples were obtained from radical prostatectomy (RP) (patient set 1, n=53) and needle biopsy (patient set 2, n=107; patient set 3, n=119). Cancer tissues from pure regions of each Gleason pattern (GP) were separately collected using laser-captured microdissection, followed by Real-time-PCR to determine the relative expression of miRNAs, including miR-1-5p, miR-21-5p, miR-30d-5p, miR-100-5p, miR-145-5p, miR-224-5p, and miR-708-5p. miRNA’s association with Gleason upgrading (GU) was evaluated using receiver operator characteristics (ROC) curve and multivariate logistic regression analysis. The integrated miRNA targets prediction and enrichment analyses were performed to determine the potential functions of miRNA. Results It was found that miR-145-5p in GP3 from radical prostatectomy (RP) were overexpressed in patients with GS6 PCa compared with GS7 patients, which was further confirmed in a larger biopsy cohort. ROC curve analysis revealed that miR-145-5p in biopsy was significantly associated with GU upon RP. In multivariate analyses, miR-145-5p was an independent predictor of GU. Conclusion Our study indicated that differential expression of miRNAs existed in GP3 from pure GS6 and GS7 PCa, highlighting a path toward the clinical use of miRNAs in predicting GU and assisting in treatment modality selection.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Juanjuan Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siteng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Gangfeng Wu
- Department of Urology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
- Correspondence: Gangfeng Wu Department of Urology, Shaoxing People’s Hospital, No. 568 Zhongxing North Road, Shaoxing, Zhejiang, 312000, People’s Republic of China Email
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Xiang Wang Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China Email
| |
Collapse
|
29
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
30
|
Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143478. [PMID: 34298692 PMCID: PMC8303483 DOI: 10.3390/cancers13143478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Over the last two decades, our improved understanding of the pathobiology of androgen-addicted prostate cancer (PCa), and documented therapeutic advances/breakthroughs have not translated into any substantial or sustained curative benefit for patients treated with traditional ADT or novel immune checkpoint blockade therapeutics. This is invariably connected with the peculiar biology and intratumoral heterogeneity of PCa. Castration-resistant PCa, constituting ~30% of all PCa, remains a clinically enigmatic and therapeutically challenging disease sub-type, that is therapy-refractory and characterized by high risk for recurrence after initial response. Our findings highlight the role and exploitability of testosterone metabolic reprogramming in prostate TME for patient stratification and personalized/precision medicine based on the differential but concerted expression of molecular components of the proposed testosterone tetrad in patients with therapy-refractory, locally advanced, or recurrent PCa. The therapeutic exploitability and clinical feasibility of our proposed approach is suggested by our preclinical findings. Abstract Background: Testosterone plays a critical role in prostate development and pathology. However, the impact of the molecular interplay between testosterone-associated genes on therapy response and susceptibility to disease relapse in PCa patients remains underexplored. Objective: This study investigated the role of dysregulated or aberrantly expressed testosterone-associated genes in the enhanced dissemination, phenoconversion, and therapy response of treatment-resistant advanced or recurrent PCa. Methods: Employing a combination of multi-omics big data analyses, in vitro, ex vivo, and in vivo assays, we assessed the probable roles of HSD17B2, HSD17B3, SHBG, and SRD5A1-mediated testosterone metabolism in the progression, therapy response, and prognosis of advanced or castration-resistant PCa (CRPC). Results: Our bioinformatics-aided gene expression profiling and immunohistochemical staining showed that the aberrant expression of the HSD17B2, HSD17B3, SHBG, and SRD5A1 testosterone metabolic tetrad characterize androgen-driven PCa and is associated with disease progression. Reanalysis of the TCGA PRAD cohort (n = 497) showed that patients with SRD5A1-dominant high expression of the tetrad exhibited worse mid-term to long-term (≥5 years) overall survival, with a profoundly shorter time to recurrence, compared to those with low expression. More so, we observed a strong association between enhanced HSD17B2/SRD5A1 signaling and metastasis to distant lymph nodes (M1a) and bones (M1b), while upregulated HSD17B3/SHBG signaling correlated more with negative metastasis (M0) status. Interestingly, increased SHBG/SRD5A1 ratio was associated with metastasis to distant organs (M1c), while elevated SRD5A1/SHBG ratio was associated with positive biochemical recurrence (BCR) status, and shorter time to BCR. Molecular enrichment and protein–protein connectivity network analyses showed that the androgenic tetrad regulates testosterone metabolism and cross-talks with modulators of drug response, effectors of cell cycle progression, proliferation or cell motility, and activators/mediators of cancer stemness. Moreover, of clinical relevance, SHBG ectopic expression (SHBG_OE) or SRD5A1 knockout (sgSRD5A1) induced the acquisition of spindle fibroblastoid morphology by the round/polygonal metastatic PC-3 and LNCaP cells, attenuated their migration and invasion capability, and significantly suppressed their ability to form primary or secondary tumorspheres, with concomitant downregulation of stemness KLF4, OCT3/4, and drug resistance ABCC1, ABCB1 proteins expression levels. We also showed that metronomic dutasteride synergistically enhanced the anticancer effect of low-dose docetaxel, in vitro, and in vivo. Conclusion: These data provide proof of concept that re-reprogramming of testosterone metabolism through “SRD5A1 withdrawal” or “SHBG induction” is a workable therapeutic strategy for shutting down androgen-driven oncogenic signals, reversing treatment resistance, and repressing the metastatic/recurrent phenotypes of patients with PCa.
Collapse
|
31
|
Liao M, Wang C, Yang B, Huang D, Zheng Y, Wang S, Wang X, Zhang J, Tang C, Xu Z, He Y, Huang R, Zhang F, Wang Z, Wang N. Autophagy Blockade by Ai Du Qing Formula Promotes Chemosensitivity of Breast Cancer Stem Cells Via GRP78/β-Catenin/ABCG2 Axis. Front Pharmacol 2021; 12:659297. [PMID: 34149413 PMCID: PMC8210424 DOI: 10.3389/fphar.2021.659297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that the root of drug chemoresistance in breast cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely dependent on taxol-promoting autophagy. Our pilot study identified GRP78 as a specific marker for chemoresistance potential of breast CSCs by regulating Wnt/β-catenin signaling. Ai Du Qing (ADQ) is a traditional Chinese medicine formula that has been utilized in the treatment cancer, particularly during the consolidation phase. In the present study, we investigated the regulatory effects and molecular mechanisms of ADQ in promoting autophagy-related breast cancer chemosensitivity. ADQ with taxol decreasing the cell proliferation and colony formation of breast cancer cells, which was accompanied by suppressed breast CSC ratio, limited self-renewal capability, as well as attenuated multi-differentiation. Furthermore, autophagy in ADQ-treated breast CSCs was blocked by taxol via regulation of β-catenin/ABCG2 signaling. We also validated that autophagy suppression and chemosensitizing activity of this formula was GRP78-dependent. In addition, GRP78 overexpression promoted autophagy-inducing chemoresistance in breast cancer cells by stabilizing β-catenin, while ADQ treatment downregulated GRP78, activated the Akt/GSK3β-mediated proteasome degradation of β-catenin via ubiquitination activation, and consequently attenuated the chemoresistance-promoted effect of GRP78. In addition, both mouse breast cancer xenograft and zebrafish xenotransplantation models demonstrated that ADQ inhibited mammary tumor growth, and the breast CSC subpopulation showed obscure adverse effects. Collectively, this study not only reveals the chemosensitizating mechanism of ADQ in breast CSCs, but also highlights the importance of GRP78 in mediating autophagy-promoting drug resistance via β-catenin/ABCG2 signaling.
Collapse
Affiliation(s)
- Mianmian Liao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caiwei Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Danping Huang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunbian Tang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zheng Xu
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu He
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Huang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|