Abstract
BACKGROUND AND OBJECTIVE
Adrenal tumours occur on adrenal glands surrounded by organs and osteoid. These tumours can be categorized as either functional, non-functional, malign, or benign. Depending on their appearance in the abdomen, adrenal tumours can arise from one adrenal gland (unilateral) or from both adrenal glands (bilateral) and can connect with other organs, including the liver, spleen, pancreas, etc. This connection phenomenon constitutes the most important handicap against adrenal tumour segmentation. Size change, variety of shape, diverse location, and low contrast (similar grey values between the various tissues) are other disadvantages compounding segmentation difficulty. Few studies have considered adrenal tumour segmentation, and no significant improvement has been achieved for unilateral, bilateral, adherent, or noncohesive tumour segmentation. There is also no recognised segmentation pipeline or method for adrenal tumours including different shape, size, or location information.
METHODS
This study proposes an adrenal tumour segmentation (ATUS) pipeline designed to eliminate the above disadvantages for adrenal tumour segmentation. ATUS incorporates a number of image methods, including contrast limited adaptive histogram equalization, split and merge based on quadtree decomposition, mean shift segmentation, large grey level eliminator, and region growing.
RESULTS
Performance assessment of ATUS was realised on 32 arterial and portal phase computed tomography images using six metrics: dice, jaccard, sensitivity, specificity, accuracy, and structural similarity index. ATUS achieved remarkable segmentation performance, and was not affected by the discussed handicaps, on particularly adherence to other organs, with success rates of 83.06%, 71.44%, 86.44%, 99.66%, 99.43%, and 98.51% for the metrics, respectively, for images including sufficient contrast uptake.
CONCLUSIONS
The proposed ATUS system realises detailed adrenal tumour segmentation, and avoids known disadvantages preventing accurate segmentation.
Collapse