1
|
Mir HY, Singh O. Power-line interference and baseline wander elimination in ECG using VMD and EWT. Comput Methods Biomech Biomed Engin 2024; 27:2111-2130. [PMID: 37886833 DOI: 10.1080/10255842.2023.2271608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Electrocardiogram (ECG) is a critical biomedical signal and plays an imperative role in diagnosing cardiovascular disorders. During ECG data acquisition in clinical environment, noise is frequently present. Various noises such as powerline interference (PLI) and baseline wandering (BLW) distort the ECG signal which may lead to incorrect interpretation. Consequently, substantial emphasis has been dedicated to ECG denoising for reliable diagnosis and analysis. In this study, a novel hybrid ECG denoising method based on variational mode decomposition (VMD) and the empirical wavelet transform (EWT) is presented. For effective denoising using the VMD and EWT approach, the noisy ECG signal is decomposed within narrow-band variational mode functions (VMFs). The aim is to remove noise from these narrow-band VMFs. In current approach, the centre frequency of each VMF was computed and utilized to design an adaptive wavelet filter bank using EWT. This leads to effective removal of noise components from the signal. The proposed approach was applied to ECG signals obtained from the MIT-BIH Arrhythmia database. To evaluate the denoising performance, noise sources from the MIT-BIH Noise Stress Test Database (NSTDB) are used for simulation. The assessment of denoising performance in based on two key metrics: the percentage-root-mean-square difference (PRD) and the signal-to-noise ratio (SNR). The findings of the simulation experiment demonstrate that the suggested method has lower percentage root mean square difference and higher signal-to-noise ratio as compared to existing state of the art denoising methods. An average output SNR of 24.03 was achieved, along with a 5% reduction in PRD.
Collapse
Affiliation(s)
- Haroon Yousuf Mir
- Department of Electronics and Communication Engineering, National Institute of Technology Srinagar (J&K), India
| | - Omkar Singh
- Department of Electronics and Communication Engineering, National Institute of Technology Srinagar (J&K), India
| |
Collapse
|
2
|
S MV, A HL, Fouad Y, Soudagar MEM. Electromyography signal based hand gesture classification system using Hilbert Huang transform and deep neural networks. Heliyon 2024; 10:e32211. [PMID: 38912467 PMCID: PMC11190598 DOI: 10.1016/j.heliyon.2024.e32211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
This research aims to provide the groundwork for smartly categorizing hand movements for use with prosthetic hands. The hand motions are classified using surface electromyography (sEMG) data. In reaction to a predetermined sequence of fibre activation, every single one of our muscles contracts. They could be useful in developing control protocols for bio-control systems, such human-computer interaction and upper limb prostheses. When focusing on hand gestures, data gloves and vision-based approaches are often used. The data glove technique requires tedious and unnatural user engagement, whereas the vision-based solution requires significantly more expensive sensors. This research offered a Deep Neural Network (DNN) automated hand gesticulation recognition system based on electromyography to circumvent these restrictions. This work primarily aims to augment the concert of the hand gesture recognition system via the use of an artificial classifier. To advance the recognition system's classification accuracy, this study explains how to build models of neural networks and how to use signal processing methods. By locating the Hilbert Huang Transform (HHT), one may get the essential properties of the signal. When training a DNN classifier, these characteristics are sent into it. The investigational results reveal that the suggested technique accomplishes a better categorization rate (98.5 % vs. the alternatives).
Collapse
Affiliation(s)
- Mary Vasanthi S
- Department of Electronics and Communication Engineering, St Xavier's Catholic College of Engineering, Nagercoil, Tamilnadu, India
| | - Haiter Lenin A
- School of Mechanical and Chemical Engineering, WOLLO University, Kombolcha Institute of Technology, Kombolcha, Post Box No: 208, Ethiopia
| | - Yasser Fouad
- Department of Applied Mechanical Engineering, College of Applied Engineering, Muzahimiyah Branch, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Bing P, Liu W, Zhai Z, Li J, Guo Z, Xiang Y, He B, Zhu L. A novel approach for denoising electrocardiogram signals to detect cardiovascular diseases using an efficient hybrid scheme. Front Cardiovasc Med 2024; 11:1277123. [PMID: 38699582 PMCID: PMC11064874 DOI: 10.3389/fcvm.2024.1277123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Electrocardiogram (ECG) signals are inevitably contaminated with various kinds of noises during acquisition and transmission. The presence of noises may produce the inappropriate information on cardiac health, thereby preventing specialists from making correct analysis. Methods In this paper, an efficient strategy is proposed to denoise ECG signals, which employs a time-frequency framework based on S-transform (ST) and combines bi-dimensional empirical mode decomposition (BEMD) and non-local means (NLM). In the method, the ST maps an ECG signal into a subspace in the time frequency domain, then the BEMD decomposes the ST-based time-frequency representation (TFR) into a series of sub-TFRs at different scales, finally the NLM removes noise and restores ECG signal characteristics based on structural self-similarity. Results The proposed method is validated using numerous ECG signals from the MIT-BIH arrhythmia database, and several different types of noises with varying signal-to-noise (SNR) are taken into account. The experimental results show that the proposed technique is superior to the existing wavelet based approach and NLM filtering, with the higher SNR and structure similarity index measure (SSIM), the lower root mean squared error (RMSE) and percent root mean square difference (PRD). Conclusions The proposed method not only significantly suppresses the noise presented in ECG signals, but also preserves the characteristics of ECG signals better, thus, it is more suitable for ECG signals processing.
Collapse
Affiliation(s)
- Pingping Bing
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Wei Liu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhixing Zhai
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianghao Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Zhiqun Guo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Yanrui Xiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Lemei Zhu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
4
|
Azzouz A, Bengherbia B, Wira P, Alaoui N, Souahlia A, Maazouz M, Hentabeli H. An efficient ECG signals denoising technique based on the combination of particle swarm optimisation and wavelet transform. Heliyon 2024; 10:e26171. [PMID: 38455529 PMCID: PMC10918013 DOI: 10.1016/j.heliyon.2024.e26171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
During the recording time, electrocardiogram (ECG) signals are subject to multiple artefact noises, such as muscle activity, white Gaussian noise (WGN), baseline wander, and power line interference (PLI). Therefore, pre-processing of ECG signals is essential to eliminate these artefacts and to obtain efficient ECG features. Many approaches have been proposed for removing ECG noises, including ECG signal denoising using wavelet transform (WT). However, the effectiveness and performance of the WT technique are strongly related to the configuration of its control parameters, which are typically fine-tuned through a laborious and time-consuming series of experiments. This paper introduces a technique that combines particle swarm optimisation (PSO) with WT for ECG signal denoising. The key contribution of this research is the use of PSO to determine the optimum settings for all WT parameters for ECG signal denoising (type of wavelet basis function Φ, thresholding function β, level of decomposition L, rule for threshold selection λ, and rescaling method ρ). The efficiency of the proposed method is evaluated using the percentage root mean square difference (PRD) and the signal-to-noise ratio (SNR), employing various ECG signals available online from the MIT-BIH Arrhythmia database. Experimental results show that the proposed PSO-WT technique yields better results than state-of-the-art techniques in terms of SNR, particularly for PLI measured at 60 Hz and still acceptable at 50 Hz. For example, a denoised ECG signal resulting from the proposed technique at an SNR input of 10 dB corresponds to an SNRoutput of 27.47 dB at 60 Hz, improving the quality of the denoised ECG signal and making it more appropriate for clinical diagnosis. Furthermore, the proposed method also shows promising efficiency in the presence of WGN, making it highly relevant for IoT applications and RF transmission.
Collapse
Affiliation(s)
- Abdallah Azzouz
- Research Laboratory in Advanced Electronics Systems (LSEA), University of Medea, Pole Urbain, Medea, 26000, Algeria
| | - Billel Bengherbia
- Research Laboratory in Advanced Electronics Systems (LSEA), University of Medea, Pole Urbain, Medea, 26000, Algeria
| | - Patrice Wira
- Institute of Research in Computer Science, Mathematics, Automation and Signal IRIMAS, Université de Haute Alsace, Mulhouse, 68093, France
| | - Nail Alaoui
- Laboratoire de Modélisation, Simulation et Optimisation des Systèmes Complexes Réels, University Ziane Achour of Djelfa, Djelfa, 17000, Algeria
| | - Abdelkerim Souahlia
- Telecommunications and Smart Systems Laboratory, University Ziane Achour of Djelfa, Djelfa, 17000, Algeria
| | - Mohamed Maazouz
- Research Laboratory in Advanced Electronics Systems (LSEA), University of Medea, Pole Urbain, Medea, 26000, Algeria
| | - Hamza Hentabeli
- Research Laboratory in Advanced Electronics Systems (LSEA), University of Medea, Pole Urbain, Medea, 26000, Algeria
| |
Collapse
|
5
|
Mohguen O. Noise reduction and QRS detection in ECG signal using EEMD with modified sigmoid thresholding. BIOMED ENG-BIOMED TE 2024; 69:61-78. [PMID: 37665599 DOI: 10.1515/bmt-2022-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper. METHODS EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm. RESULTS The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input SNR (SNR in). Standard performance parameters output SNR (SNR out), mean square error (MSE), root mean square error (RMSE), SNR improvement (SNR imp) and percentage root mean square difference (PRD) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT). CONCLUSIONS A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input SNR of -2 dB the SNR imp value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.
Collapse
Affiliation(s)
- Ouahiba Mohguen
- Department of Electronics, LIS Laboratory University Ferhat Abbas Setif 1, Setif, Algeria
| |
Collapse
|
6
|
Jenkal W, Latif R, Laaboubi M. ECG Signal Denoising Using an Improved Hybrid DWT-ADTF Approach. Cardiovasc Eng Technol 2024; 15:77-94. [PMID: 37985615 DOI: 10.1007/s13239-023-00698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE The electrocardiogram signal (ECG) presents a fundamental source of information to consider for the diagnosis of a heart condition. Given its low-frequency features, this signal is quite susceptible to various noise and interference sources. This paper presents an improved hybrid approach to ECG signal denoising based on the DWT and the ADTF methods. METHODS The proposed improvements consist of integrating an adaptive [Formula: see text] parameter into the ADTF approach, combining a soft thresholding ADTF-based process with the DWT details, along with employing the mean filter to handle the baseline wandering noise. Furthermore, the proposed approach incorporates several denoising measures based on various proposed noise features, which have also been introduced in this approach. Several real noises collected from the Noise Stress Test Database (NSTDB), as well as several synthetic noises at different SNR levels, are proposed to ensure a thorough assessment of the proposed method's performance. RESULTS The evaluation focuses on the SN Rimp, PRD, and MSE parameters, as well as the SINAD parameter as a diagnostic distortion measurement. Furthermore, a time complexity evaluation is proposed. The proposed approach demonstrated promising results compared to a recent hybridization of the DWT and ADTF methods, as well as recently published ECG signal denoising-based approaches in various real and synthetic noise cases using different statistical evaluation metrics. CONCLUSION In the vast majority of the study cases, the proposed approach outperforms the compared methods in terms of statistical results for real and synthetic noises. Furthermore, compared to these methods, it provides a fairly low time complexity. This is consistent with the ambition of embedding this approach in low-cost hardware architectures.
Collapse
Affiliation(s)
- Wissam Jenkal
- Laboratory of Systems Engineering and Information Technology (LiSTi), National School of Applied Sciences ENSA, Ibn Zohr University, Agadir, Morocco.
| | - Rachid Latif
- Laboratory of Systems Engineering and Information Technology (LiSTi), National School of Applied Sciences ENSA, Ibn Zohr University, Agadir, Morocco
| | - Mostafa Laaboubi
- Laboratory of Systems Engineering and Information Technology (LiSTi), National School of Applied Sciences ENSA, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
7
|
Lapsa D, Janeliukstis R, Elsts A. Adaptive Signal-to-Noise Ratio Indicator for Wearable Bioimpedance Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:8532. [PMID: 37896625 PMCID: PMC10610965 DOI: 10.3390/s23208532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Bioimpedance monitoring is an increasingly important non-invasive technique for assessing physiological parameters such as body composition, hydration levels, heart rate, and breathing. However, sensor signals obtained from real-world experimental conditions invariably contain noise, which can significantly degrade the reliability of the derived quantities. Therefore, it is crucial to evaluate the quality of measured signals to ensure accurate physiological parameter values. In this study, we present a novel wrist-worn wearable device for bioimpedance monitoring, and propose a method for estimating signal quality for sensor signals obtained on the device. The method is based on the continuous wavelet transform of the measured signal, identification of wavelet ridges, and assessment of their energy weighted by the ridge duration. We validate the algorithm using a small-scale experimental study with the wearable device, and explore the effects of variables such as window size and different skin/electrode coupling agents on signal quality and repeatability. In comparison with traditional wavelet-based signal denoising, the proposed method is more adaptive and achieves a comparable signal-to-noise ratio.
Collapse
Affiliation(s)
| | | | - Atis Elsts
- Institute of Electronics and Computer Science (EDI), Dzerbenes 14, LV-1006 Riga, Latvia; (D.L.); (R.J.)
| |
Collapse
|
8
|
Lin DJ, Gazi AH, Kimball J, Nikbakht M, Inan OT. Real-Time Seismocardiogram Feature Extraction Using Adaptive Gaussian Mixture Models. IEEE J Biomed Health Inform 2023; 27:3889-3899. [PMID: 37155395 DOI: 10.1109/jbhi.2023.3273989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wearable systems can provide accurate cardiovascular evaluations by estimating hemodynamic indices in real-time. Key hemodynamic parameters can be non-invasively estimated using the seismocardiogram (SCG), a cardiomechanical signal whose features link to cardiac events like aortic valve opening (AO) and closing (AC). However, tracking a single SCG feature is unreliable due to physiological changes, motion artifacts, and external vibrations. This work proposes an adaptable Gaussian Mixture Model (GMM) to track multiple AO/AC correlated features in quasi-real-time from the SCG. The GMM calculates the likelihood of an extremum being an AO/AC feature for each SCG beat. The Dijkstra algorithm selects heartbeat-related extrema, and a Kalman filter updates the GMM parameters while filtering features. Tracking accuracy is tested on a porcine hypovolemia dataset with varying noise levels. Blood volume loss estimation accuracy is also evaluated using the tracked features on a previously developed model. Experimental results show a 4.5 ms tracking latency and average root mean square errors (RMSE) of 1.47 ms for AO and 7.67 ms for AC at 10 dB noise, and 6.18 ms for AO and 15.3 ms for AC at -10 dB noise. When considering all AO/AC correlated features, the combined RMSE remains in similar ranges, specifically 2.70 ms for AO and 11.91 ms for AC at 10 dB noise, and 7.50 ms for AO and 16.35 ms for AC at -10 dB noise. The proposed algorithm offers low latency and RMSE for all tracked features, making it suitable for real-time processing. These systems enable accurate, timely extraction of hemodynamic indices for many cardiovascular monitoring applications, including trauma care in field settings.
Collapse
|
9
|
A Review on the Applications of Time-Frequency Methods in ECG Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2023. [DOI: 10.1155/2023/3145483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The joint time-frequency analysis method represents a signal in both time and frequency. Thus, it provides more information compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electrophysiological studies. The current review provides comprehensive knowledge about different time-frequency methods and their applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea detection, biometric identification, emotion detection, and driver drowsiness detection. The paper also discusses the limitations of these methods. The review will form a reference for future researchers willing to conduct research in the same field.
Collapse
|
10
|
Trybek P, Sobotnicka E, Wawrzkiewicz-Jałowiecka A, Machura Ł, Feige D, Sobotnicki A, Richter-Laskowska M. A New Method of Identifying Characteristic Points in the Impedance Cardiography Signal Based on Empirical Mode Decomposition. SENSORS (BASEL, SWITZERLAND) 2023; 23:675. [PMID: 36679466 PMCID: PMC9861967 DOI: 10.3390/s23020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The accurate detection of fiducial points in the impedance cardiography signal (ICG) has a decisive impact on the proper estimation of diagnostic parameters such as stroke volume or cardiac output. It is, therefore, necessary to find an algorithm that is able to assess their positions with great precision. The solution to this problem is, however, quite challenging with regard to the high sensitivity of the ICG technique to the noise and varying morphology of the acquired signals. The aim of this study is to propose a novel method that allows us to overcome these limitations. The developed algorithm is based on Empirical Mode Decomposition (EMD)-an effective technique for processing and analyzing various types of non-stationary signals. We find high correlations between the results obtained from the algorithm and annotated by an expert. This, in turn, implies that the difference in estimation of the diagnostic-relevant parameters is small, which suggests that the method can automatically provide precise clinical information.
Collapse
Affiliation(s)
- Paulina Trybek
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Ewelina Sobotnicka
- Łukasiewicz Research Network—Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopianska Str. 73, 30-418 Krakow, Poland
| | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Łukasz Machura
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Daniel Feige
- Łukasiewicz Research Network—Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopianska Str. 73, 30-418 Krakow, Poland
- PhD School, Silesian University of Technology, 2A Akademicka, 44-100 Gliwice, Poland
| | - Aleksander Sobotnicki
- Łukasiewicz Research Network—Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopianska Str. 73, 30-418 Krakow, Poland
| | - Monika Richter-Laskowska
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland
- Łukasiewicz Research Network—Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopianska Str. 73, 30-418 Krakow, Poland
| |
Collapse
|
11
|
Unni V, Gavaskar RG, Chaudhury KN. Compressive sensing of ECG signals using plug-and-play regularization. SIGNAL PROCESSING 2023; 202:108738. [DOI: 10.1016/j.sigpro.2022.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
12
|
Xu S, Li W, Zhu Y, Xu A. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks. Sci Rep 2022; 12:14434. [PMID: 36002466 PMCID: PMC9402967 DOI: 10.1038/s41598-022-17754-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, air pollution has become a factor that cannot be ignored, affecting human lives and health. The distribution of high-density populations and high-intensity development and construction have accentuated the problem of air pollution in China. To accelerate air pollution control and effectively improve environmental air quality, the target of our research was cities with serious air pollution problems to establish a model for air pollution prediction. We used the daily monitoring data of air pollution from January 2016 to December 2020 for the respective cities. We used the long short term memory networks (LSTM) algorithm model to solve the problem of gradient explosion in recurrent neural networks, then used the particle swarm optimization algorithm to determine the parameters of the CNN-LSTM model, and finally introduced the complete ensemble empirical mode decomposition of adaptive noise (CEEMDAN) decomposition to decompose air pollution and improve the accuracy of model prediction. The experimental results show that compared with a single LSTM model, the CEEMDAN-CNN-LSTM model has higher accuracy and lower prediction errors. The CEEMDAN-CNN-LSTM model enables a more precise prediction of air pollution, and may thus be useful for sustainable management and the control of air pollution.
Collapse
Affiliation(s)
- Shenyi Xu
- School of Statistics and Mathematics, Zhejiang Gongshang University, No.18 Xuezheng Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, China
| | - Wei Li
- School of Statistics and Mathematics, Zhejiang Gongshang University, No.18 Xuezheng Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, China
| | - Yuhan Zhu
- School of Statistics and Mathematics, Zhejiang Gongshang University, No.18 Xuezheng Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou, China
| | - Aiting Xu
- School of Statistics and Mathematics, Zhejiang Gongshang University, No.18 Xuezheng Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, China. .,Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
13
|
An Adaptive ECG Noise Removal Process Based on Empirical Mode Decomposition (EMD). CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3346055. [PMID: 36072620 PMCID: PMC9402333 DOI: 10.1155/2022/3346055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
The electrocardiogram (ECG) is a generally used instrument for examining cardiac disorders. For proper interpretation of cardiac illnesses, a noise-free ECG is often preferred. ECG signals, on the other hand, are suffering from numerous noises throughout gathering and programme. This article suggests an empirical mode decomposition-based adaptive ECG noise removal technique (EMD). The benefits of the proposed methods are used to dip noise in ECG signals with the least amount of distortion. For decreasing high-frequency noises, traditional EMD-based approaches either cast off the preliminary fundamental functions or use a window-based methodology. The signal quality is then improved via an adaptive process. The simulation study uses ECG data from the universal MIT-BIH database as well as the Brno University of Technology ECG Quality Database (BUT QDB). The proposed method's efficiency is measured using three typical evaluation metrics: mean square error, output SNR change, and ratio root mean square alteration at various SNR levels (signal to noise ratio). The suggested noise removal approach is compatible with other commonly used ECG noise removal techniques. A detailed examination reveals that the proposed method could be served as an effective means of noise removal ECG signals, resulting in enhanced diagnostic functions in automated medical systems.
Collapse
|
14
|
A Denoising Method of Micro-Turbine Acoustic Pressure Signal Based on CEEMDAN and Improved Variable Step-Size NLMS Algorithm. MACHINES 2022. [DOI: 10.3390/machines10060444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The acoustic pressure signal generated by blades is one of the key indicators for condition monitoring and fault diagnosis in the field of turbines. Generally, the working conditions of the turbine are harsh, resulting in a large amount of interference and noise in the measured acoustic pressure signal. Therefore, denoising the acoustic pressure signal is the basis of the subsequent research. In this paper, a denoising method of micro-turbine acoustic pressure signal based on the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Variable step-size Normalized Least Mean Square (VSS-NLMS) algorithms is proposed. Firstly, the CEEMDAN algorithm is used to decompose the original signal into multiple intrinsic mode functions (IMFs), based on the cross-correlation coefficient and continuous mean square error (CMSE) criterion; the obtained IMFs are divided into clear IMFs, noise-dominated IMFs, and noise IMFs. Finally, the improved VSS-NLMS algorithm is adopted to denoise the noise-dominated IMFs and combined with the clear IMF for reconstruction to obtain the final denoised signal. Adopting the above principles, the acoustic pressure signals generated by a micro-turbine with different rotation speeds and different states (normal turbine and fractured turbine) are denoised, respectively, and the results are compared with the axial flow fan test (ideal interference-free signal). The results show that the denoising method proposed in this paper has a good denoising effect, and the denoised signal is smooth and the important features are well preserved, which is conducive to the extraction of acoustic pressure signal characteristics.
Collapse
|
15
|
Karpiński R, Krakowski P, Jonak J, Machrowska A, Maciejewski M, Nogalski A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN-Part II: Patellofemoral Joint. SENSORS (BASEL, SWITZERLAND) 2022; 22:3765. [PMID: 35632174 PMCID: PMC9146478 DOI: 10.3390/s22103765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022]
Abstract
Cartilage loss due to osteoarthritis (OA) in the patellofemoral joint provokes pain, stiffness, and restriction of joint motion, which strongly reduces quality of life. Early diagnosis is essential for prolonging painless joint function. Vibroarthrography (VAG) has been proposed in the literature as a safe, noninvasive, and reproducible tool for cartilage evaluation. Until now, however, there have been no strict protocols for VAG acquisition especially in regard to differences between the patellofemoral and tibiofemoral joints. The purpose of this study was to evaluate the proposed examination and acquisition protocol for the patellofemoral joint, as well as to determine the optimal examination protocol to obtain the best diagnostic results. Thirty-four patients scheduled for knee surgery due to cartilage lesions were enrolled in the study and compared with 33 healthy individuals in the control group. VAG acquisition was performed prior to surgery, and cartilage status was evaluated during the surgery as a reference point. Both closed (CKC) and open (OKC) kinetic chains were assessed during VAG. The selection of the optimal signal measures was performed using a neighborhood component analysis (NCA) algorithm. The classification was performed using multilayer perceptron (MLP) and radial basis function (RBF) neural networks. The classification using artificial neural networks was performed for three variants: I. open kinetic chain, II. closed kinetic chain, and III. open and closed kinetic chain. The highest diagnostic accuracy was obtained for variants I and II for the RBF 9-35-2 and MLP 10-16-2 networks, respectively, achieving a classification accuracy of 98.53, a sensitivity of 0.958, and a specificity of 1. For variant III, a diagnostic accuracy of 97.79 was obtained with a sensitivity and specificity of 0.978 for MLP 8-3-2. This indicates a possible simplification of the examination protocol to single kinetic chain analyses.
Collapse
Affiliation(s)
- Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (J.J.); (A.M.)
| | - Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
- Orthopaedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Łęczna, Poland
| | - Józef Jonak
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (J.J.); (A.M.)
| | - Anna Machrowska
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (J.J.); (A.M.)
| | - Marcin Maciejewski
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Adam Nogalski
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| |
Collapse
|
16
|
Malik SA, Parah SA, Malik BA. Power line noise and baseline wander removal from ECG signals using empirical mode decomposition and lifting wavelet transform technique. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Han H, Wang H, Liu Z, Wang J. Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings. ISA TRANSACTIONS 2022; 122:13-23. [PMID: 33965200 DOI: 10.1016/j.isatra.2021.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Convolutional neural networks (CNNs) have been widely applied to machinery health management in recent years, whereas research on data-driven denoising methods is relatively limited. Therefore, this paper proposes a robust denoising method based on a non-local fully convolutional neural network (NL-FCNN). In this neural network, the Leaky-ReLU activation function is employed to maintain the information contained in the negative value of the signal. The wide kernel principle is also adopted to enlarge the receptive field. Lastly, the non-local means (NLM) is utilized to construct non-local block (NLB), which could efficiently enhance the long-range dependencies learning ability of the network. This block could enormously improve the denoising performance of the network. Moreover, the proposed method exhibits better performance compared with the three conventional denoising methods under multiple noise levels on the Case Western Reserve University (CWRU) motor bearing dataset. Ultimately, we also demonstrate its application to rolling bearing fault diagnosis.
Collapse
Affiliation(s)
- Haoran Han
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Glasgow College, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huan Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhiliang Liu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China.
| | - Jiayi Wang
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
18
|
Madan P, Singh V, Singh DP, Diwakar M, Kishor A. Denoising of ECG signals using weighted stationary wavelet total variation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Jiao Y, Qi H, Wu J. Capsule network assisted electrocardiogram classification model for smart healthcare. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Savithri CN, Priya E, Rajasekar K. A machine learning approach to identify hand actions from single-channel sEMG signals. BIOMED ENG-BIOMED TE 2022; 67:89-103. [PMID: 35191277 DOI: 10.1515/bmt-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022]
Abstract
Surface Electromyographic (sEMG) signal is a prime source of information to activate prosthetic hand such that it is able to restore a few basic hand actions of amputee, making it suitable for rehabilitation. In this work, a non-invasive single channel sEMG amplifier is developed that captures sEMG signal for three typical hand actions from the lower elbow muscles of able bodied subjects and amputees. The recorded sEMG signal detrends and has frequencies other than active frequencies. The Empirical Mode Decomposition Detrending Fluctuation Analysis (EMD-DFA) is attempted to de-noise the sEMG signal. A feature vector is formed by extracting eight features in time domain, seven features each in spectral and wavelet domain. Prominent features are selected by Fuzzy Entropy Measure (FEM) to ease the computational complexity and reduce the recognition time of classification. Classification of different hand actions is attempted based on multi-class approach namely Partial Least Squares Discriminant Analysis (PLS-DA) to control the prosthetic hand. It is inferred that an accuracy of 89.72% & 84% is observed for the pointing action whereas the accuracy for closed fist is 81.2% & 79.54% while for spherical grasp it is 80.6% & 76% respectively for normal subjects and amputees. The performance of the classifier is compared with Linear Discriminant Analysis (LDA) and an improvement of 5% in mean accuracy is observed for both normal subjects and amputees. The mean accuracy for all the three different hand actions is significantly high (83.84% & 80.18%) when compared with LDA. The proposed work frame provides a fair mean accuracy in classifying the hand actions of amputees. This methodology thus appears to be useful in actuating the prosthetic hand.
Collapse
Affiliation(s)
- Chanda Nagarajan Savithri
- Department of Electronics and Communication Engineering, Sri Sai Ram Engineering College, West Tambaram, Chennai, India
| | - Ebenezer Priya
- Department of Electronics and Communication Engineering, Sri Sai Ram Engineering College, West Tambaram, Chennai, India
| | - Kevin Rajasekar
- Rosenheim Technical University of Applied Sciences, Rosenheim, Germany
| |
Collapse
|
21
|
Pradhan BK, Jarzębski M, Gramza-Michałowska A, Pal K. Automated Detection of Caffeinated Coffee-Induced Short-Term Effects on ECG Signals Using EMD, DWT, and WPD. Nutrients 2022; 14:885. [PMID: 35215531 PMCID: PMC8875083 DOI: 10.3390/nu14040885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
The effect of coffee (caffeinated) on electro-cardiac activity is not yet sufficiently researched. In the current study, the occurrence of coffee-induced short-term changes in electrocardiogram (ECG) signals was examined. Further, a machine learning model that can efficiently detect coffee-induced alterations in cardiac activity is proposed. The ECG signals were decomposed using three different joint time-frequency decomposition methods: empirical mode decomposition, discrete wavelet transforms, and wavelet packet decomposition with varying decomposition parameters. Various statistical and entropy-based features were computed from the decomposed coefficients. The statistical significance of these features was computed using Wilcoxon's signed-rank (WSR) test for significance testing. The results of the WSR tests infer a significant change in many of these parameters after the consumption of coffee (caffeinated). Further, the analysis of the frequency bands of the decomposed coefficients reveals that most of the significant change was localized in the lower frequency band (<22.5 Hz). Herein, the performance of nine machine learning models is compared and a gradient-boosted tree classifier is proposed as the best model. The results suggest that the gradient-boosted tree (GBT) model that was developed using a db2 mother wavelet at level 2 decomposition shows the highest mean classification accuracy of 78%. The outcome of the current study will open up new possibilities in detecting the effects of drugs, various food products, and alcohol on cardiac functionality.
Collapse
Affiliation(s)
- Bikash K. Pradhan
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| |
Collapse
|
22
|
Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Sraitih M, Jabrane Y. A denoising performance comparison based on ECG Signal Decomposition and local means filtering. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Wan C, Li W, Ding W, Zhang Z, Lu Q, Qian L, Xu J, Lu J, Cao R, Ye B, Lu S. Multi-task sequence learning for performance prediction and KPI mining in database management system. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Kumar A, Tomar H, Mehla VK, Komaragiri R, Kumar M. Stationary wavelet transform based ECG signal denoising method. ISA TRANSACTIONS 2021; 114:251-262. [PMID: 33419569 DOI: 10.1016/j.isatra.2020.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Electrocardiogram (ECG) signals are used to diagnose cardiovascular diseases. During ECG signal acquisition, various noises like power line interference, baseline wandering, motion artifacts, and electromyogram noise corrupt the ECG signal. As an ECG signal is non-stationary, removing these noises from the recorded ECG signal is quite tricky. In this paper, along with the proposed denoising technique using stationary wavelet transform, various denoising techniques like lowpass filtering, highpass filtering, empirical mode decomposition, Fourier decomposition method, discrete wavelet transform are studied to denoise an ECG signal corrupted with noise. Signal-to-noise ratio, percentage root-mean-square difference, and root mean square error are used to compare the ECG signal denoising performance. The experimental result showed that the proposed stationary wavelet transform based ECG denoising technique outperformed the other ECG denoising techniques as more ECG signal components are preserved than other denoising algorithms.
Collapse
Affiliation(s)
- Ashish Kumar
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India.
| | - Harshit Tomar
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, Uttar Pradesh 201310, India.
| | - Virender Kumar Mehla
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, Uttar Pradesh 201310, India.
| | - Rama Komaragiri
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, Uttar Pradesh 201310, India.
| | - Manjeet Kumar
- Department of Electronics and Communication Engineering, Delhi Technological University (DTU), Rohini, Delhi 110042, India.
| |
Collapse
|
26
|
Martinek R, Ladrova M, Sidikova M, Jaros R, Behbehani K, Kahankova R, Kawala-Sterniuk A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach-Part I: Cardiac Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:5186. [PMID: 34372424 PMCID: PMC8346990 DOI: 10.3390/s21155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Advanced signal processing methods are one of the fastest developing scientific and technical areas of biomedical engineering with increasing usage in current clinical practice. This paper presents an extensive literature review of the methods for the digital signal processing of cardiac bioelectrical signals that are commonly applied in today's clinical practice. This work covers the definition of bioelectrical signals. It also covers to the extreme extent of classical and advanced approaches to the alleviation of noise contamination such as digital adaptive and non-adaptive filtering, signal decomposition methods based on blind source separation and wavelet transform.
Collapse
Affiliation(s)
- Radek Martinek
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Martina Ladrova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Michaela Sidikova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Rene Jaros
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Khosrow Behbehani
- College of Engineering, The University of Texas in Arlington, Arlington, TX 76019, USA;
| | - Radana Kahankova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
| |
Collapse
|
27
|
Lin DJ, Kimball JP, Zia J, Ganti VG, Inan OT. Reducing the Impact of External Vibrations on Fiducial Point Detection in Seismocardiogram Signals. IEEE Trans Biomed Eng 2021; 69:176-185. [PMID: 34161234 DOI: 10.1109/tbme.2021.3090376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Wearable systems that enable continuous non-invasive monitoring of hemodynamic parameters can aid in cardiac health evaluation in non-hospital settings. The seismocardiogram (SCG) is a non-invasively acquired cardiovascular biosignal for which timings of fiducial points, like aortic valve opening (AO) and aortic valve closing (AC), can enable estimation of key hemodynamic parameters. However, SCG is susceptible to motion artifacts, making accurate estimation of these points difficult when corrupted by high-g or in-band vibration artifacts. In this paper, a novel denoising pipeline is proposed that removes vehicle-vibration artifacts from corrupted SCG beats for accurate fiducial point detection. METHODS The noisy SCG signal is decomposed with ensemble empirical mode decomposition (EEMD). Corrupted segments of the decomposed signal are then identified and removed using the quasi-periodicity of the SCG. Signal quality assessment of the reconstructed SCG beats then removes unreliable beats before feature extraction. The overall approach is validated on simulated vehicle-corrupted SCG generated by adding real subway collected vibration signals onto clean SCG. RESULTS SNR increased by 8.1dB in the AO complex and 11.5dB in the AC complex of the SCG signal. Hemodynamic timing estimation errors reduced by 16.5\% for pre-ejection period (PEP), 67.2\% for left ventricular ejection time (LVET), and 57.7\% for PEP/LVET---a feature previously determined in prior work to be of great importance for assessing blood volume status during hemorrhage. CONCLUSION These findings suggest that usable SCG signals can be recovered from vehicle-corrupted SCG signals using the presented denoising framework, allowing for accurate hemodynamic timing estimation. SIGNIFICANCE Reliable hemodynamic estimates from vehicle-corrupted SCG signals will enable the adoption of the SCG in outside-of-hospital settings.
Collapse
|
28
|
Development of Wearable Wireless Electrocardiogram Detection System using Bluetooth Low Energy. ELECTRONICS 2021. [DOI: 10.3390/electronics10050608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wearable monitoring devices can provide patients and doctors with the capability to measure bio-signals on demand. These systems provide enormous benefits for people with acute symptoms of serious health conditions. In this paper, we propose a novel method for collecting ECG signals using two wireless wearable modules. The electric potential measured from a sub-module is transferred to the main module through Bluetooth Low Energy, and the collected values are simultaneously displayed in the form of a graph. This study describes the configuration and outcomes of the proposed system and discusses the important challenges associated with the functioning of the device. The proposed system had 84% signal similarity to that of other commercial products. As a band-type module was used on each wrist to check the signal, continuous observation of patients can be achieved without restricting their actions or causing discomfort.
Collapse
|
29
|
Chang YC, Chang CC. Using an Optimization Algorithm to Detect Hidden Waveforms of Signals. SENSORS 2021; 21:s21020588. [PMID: 33467542 PMCID: PMC7838881 DOI: 10.3390/s21020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
Source signals often contain various hidden waveforms, which further provide precious information. Therefore, detecting and capturing these waveforms is very important. For signal decomposition (SD), discrete Fourier transform (DFT) and empirical mode decomposition (EMD) are two main tools. They both can easily decompose any source signal into different components. DFT is based on Cosine functions; EMD is based on a collection of intrinsic mode functions (IMFs). With the help of Cosine functions and IMFs respectively, DFT and EMD can extract additional information from sensed signals. However, due to a considerably finite frequency resolution, EMD easily causes frequency mixing. Although DFT has a larger frequency resolution than EMD, its resolution is also finite. To effectively detect and capture hidden waveforms, we use an optimization algorithm, differential evolution (DE), to decompose. The technique is called SD by DE (SDDE). In contrast, SDDE has an infinite frequency resolution, and hence it has the opportunity to exactly decompose. Our proposed SDDE approach is the first tool of directly applying an optimization algorithm to signal decomposition in which the main components of source signals can be determined. For source signals from four combinations of three periodic waves, our experimental results in the absence of noise show that the proposed SDDE approach can exactly or almost exactly determine their corresponding separate components. Even in the presence of white noise, our proposed SDDE approach is still able to determine the main components. However, DFT usually generates spurious main components; EMD cannot decompose well and is easily affected by white noise. According to the superior experimental performance, our proposed SDDE approach can be widely used in the future to explore various signals for more valuable information.
Collapse
Affiliation(s)
- Yen-Ching Chang
- Department of Medical Informatics, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chin-Chen Chang
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: ; Tel.: +886-4-2451-7250-3790
| |
Collapse
|
30
|
Mukhopadhyay SK, Krishnan S. A singular spectrum analysis-based model-free electrocardiogram denoising technique. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 188:105304. [PMID: 31927178 DOI: 10.1016/j.cmpb.2019.105304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE An efficient and robust electrocardiogram (ECG) denoising technique caters three-fold benefits in the subsequent processing steps: first, it helps improving the accuracy of extracted features. Second, the improved accuracy in the extracted features enhances the performance as well as the reliability of computerised cardiovascular-disease diagnosis systems, and third, it also makes the interpretation task easier for the clinicians. Albeit a number of ECG denoising techniques are proposed in the literature, but most of these techniques suffer from one or more of the following drawbacks: i) model or function dependency, ii) sampling-rate dependency, or iii) high time-complexity. METHODS This paper presents a singular spectrum analysis (SSA)-based ECG denoising technique addressing most of these afore-mentioned shortcomings. First, a trajectory matrix of dimension K × L is formed using the original one-dimensional ECG signal of length N. In SSA operation the parameter L, which is denoted as the window-length, plays a very important role and is related to the sampling frequency of the signal. In this research the value of L is calculated dynamically based on the morphological property of the ECG signal. Then, the matrix is decomposed using singular value decomposition technique, and the principal components (PC) of the original ECG signal are computed. Next, the reconstructed components (RC) are calculated from the PCs, and all the RCs are filtered through Butterworth bandpass and notch filters. An optimum number of filtered RCs are retained based on their significance. Finally, these retained RCs are summed up to obtain the denoised ECG signal. RESULTS Evaluation result shows that the proposed technique outperforms state-of-the-art ECG denoising methods; in particular, the mean opinion score of the denoised signal falls under the category 'very good' as per the gold standard subjective measure. CONCLUSIONS Both the quantitative and qualitative distortion measure metrics show that the proposed ECG denoising technique is robust enough to filter various noises present in the signal without jeopardizing the clinical content. The proposed technique could be adapted for denoising other biomedical signals exhibiting periodic or quasi-periodic nature such as photoplethysmogram and esophageal pressure signal.
Collapse
Affiliation(s)
- Sourav Kumar Mukhopadhyay
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Sridhar Krishnan
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
31
|
|
32
|
Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model. SENSORS 2020; 20:s20051334. [PMID: 32121411 PMCID: PMC7085784 DOI: 10.3390/s20051334] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
Smart agricultural sensing has enabled great advantages in practical applications recently, making it one of the most important and valuable systems. For outdoor plantation farms, the prediction of climate data, such as temperature, wind speed, and humidity, enables the planning and control of agricultural production to improve the yield and quality of crops. However, it is not easy to accurately predict climate trends because the sensing data are complex, nonlinear, and contain multiple components. This study proposes a hybrid deep learning predictor, in which an empirical mode decomposition (EMD) method is used to decompose the climate data into fixed component groups with different frequency characteristics, then a gated recurrent unit (GRU) network is trained for each group as the sub-predictor, and finally the results from the GRU are added to obtain the prediction result. Experiments based on climate data from an agricultural Internet of Things (IoT) system verify the development of the proposed model. The prediction results show that the proposed predictor can obtain more accurate predictions of temperature, wind speed, and humidity data to meet the needs of precision agricultural production.
Collapse
|
33
|
Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction. MATHEMATICS 2020. [DOI: 10.3390/math8020214] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Air pollution (mainly PM2.5) is one of the main environmental problems about air quality. Air pollution prediction and early warning is a prerequisite for air pollution prevention and control. However, it is not easy to accurately predict the long-term trend because the collected PM2.5 data have complex nonlinearity with multiple components of different frequency characteristics. This study proposes a hybrid deep learning predictor, in which the PM2.5 data are decomposed into components by empirical mode decomposition (EMD) firstly, and a convolutional neural network (CNN) is built to classify all the components into a fixed number of groups based on the frequency characteristics. Then, a gated-recurrent-unit (GRU) network is trained for each group as the sub-predictor, and the results from the three GRUs are fused to obtain the prediction result. Experiments based on the PM2.5 data from Beijing verify the proposed model, and the prediction results show that the decomposition and classification can develop the accuracy of the proposed predictor for air pollution prediction greatly.
Collapse
|
34
|
Noise Reduction for MEMS Gyroscope Signal: A Novel Method Combining ACMP with Adaptive Multiscale SG Filter Based on AMA. SENSORS 2019; 19:s19204382. [PMID: 31658750 PMCID: PMC6832303 DOI: 10.3390/s19204382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022]
Abstract
In this paper, a novel hybrid method combining adaptive chirp mode pursuit (ACMP) with an adaptive multiscale Savitzky–Golay filter (AMSGF) based on adaptive moving average (AMA) is proposed for offline denoising micro-electromechanical system (MEMS) gyroscope signal. The denoising scheme includes preliminary denoising and further denoising. At the preliminary denoising stage, the original gyroscope signal is decomposed into signal modes one by one using ACMP with modified stopping criterion based on mutual information. Useful information is extracted while most noise is discarded in the residue at this stage. Then, AMSGF is proposed to further denoise the signal modes. Sample variance based on AMA is used to adjust the window size of AMSGF adaptively. Practical MEMS gyroscope signal denoising results under different motion conditions show the superior performance of the proposed method over empirical mode decomposition (EMD)-based denoising, discrete wavelet threshold denoising, and variational mode decomposition (VMD)-based denoising. Moreover, AMSGF is proven to gain a better denoising effect than some other common smoothing methods.
Collapse
|
35
|
Sparse ECG Denoising with Generalized Minimax Concave Penalty. SENSORS 2019; 19:s19071718. [PMID: 30974854 PMCID: PMC6480066 DOI: 10.3390/s19071718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/17/2022]
Abstract
The electrocardiogram (ECG) is an important diagnostic tool for cardiovascular diseases. However, ECG signals are susceptible to noise, which may degenerate waveform and cause misdiagnosis. In this paper, the ECG noise reduction techniques based on sparse recovery are investigated. A novel sparse ECG denoising framework combining low-pass filtering and sparsity recovery is proposed. Two sparsity recovery algorithms are developed based on the traditional ℓ1-norm penalty and the novel generalized minimax concave (GMC) penalty, respectively. Compared with the ℓ1-norm penalty, the non-differentiable non-convex GMC penalty has the potential to strongly promote sparsity while maintaining the convexity of the cost function. Moreover, the GMC punishes large values less severely than ℓ1-norm, which is utilized to overcome the drawback of underestimating the high-amplitude components for the ℓ1-norm penalty. The proposed methods are evaluated on ECG signals from the MIT-BIH Arrhythmia database. The results show that underestimating problem is overcome by the proposed GMC-based method. The GMC-based method shows significant improvement with respect to the average of output signal-to-noise ratio improvement (SNRimp), the average of root mean square error (RMSE) and the percent root mean square difference (PRD) over almost any given SNR compared with the classical methods, thus providing promising approaches for ECG denoising.
Collapse
|