1
|
Comparative Study of Senescent Th Biomarkers in Healthy Donors and Early Arthritis Patients. Analysis of VPAC Receptors and Their Influence. Cells 2020; 9:cells9122592. [PMID: 33291545 PMCID: PMC7761848 DOI: 10.3390/cells9122592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory CD4+CD28− T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28− T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28− T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28− T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28− T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28− T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.
Collapse
|
2
|
Soczewski E, Gori S, Paparini D, Grasso E, Fernández L, Gallino L, Schafir A, Irigoyen M, Lobo TF, Salamone G, Mattar R, Daher S, Pérez Leirós C, Ramhorst R. VIP conditions human endometrial receptivity by privileging endoplasmic reticulum stress through ATF6α pathway. Mol Cell Endocrinol 2020; 516:110948. [PMID: 32693008 DOI: 10.1016/j.mce.2020.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Endometrial stromal cells undergo endoplasmic reticulum (ER) stress and unfolded protein response (UPR) during the decidualization linked with the inflammation and angiogenesis processes. Considering VIP (vasoactive intestinal peptide) induces the decidualization program, we studied whether modulates the ER/UPR pathways to condition both processes for embryo implantation. When Human Endometrial Stromal Cell line (HESC) were decidualized by VIP we observed an increased expression of ATF6α, an ER stress-sensor, and UPR markers, associated with an increase in IL-1β production. Moreover, AEBSF (ATF6α -inhibitor pathway) prevented this effect and decreased the expansion index in the in vitro model of implantation. VIP-decidualized cells also favor angiogenesis accompanied by a strong downregulation in thrombospondin-1. Finally, ATF6α, VIP and VPAC2-receptor expression were reduced in endometrial biopsies from women with recurrent implantation failures in comparison with fertile. In conclusion, VIP privileged ATF6α-pathway associated with a sterile inflammatory response and angiogenesis that might condition endometrial receptivity.
Collapse
Affiliation(s)
- E Soczewski
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - S Gori
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - D Paparini
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - E Grasso
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - L Fernández
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - L Gallino
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - A Schafir
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - M Irigoyen
- Fertilis Medicina Reproductiva, San Isidro, Buenos Aires, Argentina
| | - T F Lobo
- Departamento de Obstetrícia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - G Salamone
- Instituto de Medicina Experimental, IMEX-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - R Mattar
- Departamento de Obstetrícia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - S Daher
- Departamento de Obstetrícia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - C Pérez Leirós
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - R Ramhorst
- CONICET, Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Vasoactive intestinal peptide axis is dysfunctional in patients with Graves' disease. Sci Rep 2020; 10:13018. [PMID: 32747757 PMCID: PMC7400547 DOI: 10.1038/s41598-020-70138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide with potent immunoregulatory properties. Reduced serum VIP levels and alterations in VIP receptors/signaling on immune cells have been associated with different inflammatory/autoimmune diseases. However, its role in autoimmune thyroid diseases (AITD) remains unknown. This study examined the interrelationship between VIP system, autoimmune background and thyroid hormones in peripheral immune cells in patients with AITD. Only Graves' disease (GD) patients showed significantly lower serum VIP levels when compared to healthy subjects and to Hashimoto's thyroiditis patients. Serum VIP levels were lower at the onset of GD, showing a significant negative correlation with thyroid hormone levels. The expression of VIP receptors, VPAC1 and VPAC2, was significantly upregulated in peripheral blood mononuclear cells (PBMC) from GD patients. There was an impairment of VIP signalling in these patients, probably attributable to a dysfunction of VPAC1 with preservation of VPAC2. The correlation between VPAC1 and thyroid hormone receptor expression in PBMC from healthy subjects was lost in GD patients. In summary, the VIP system is altered in peripheral immune cells of GD patients and this finding is associated with different thyroid hormone receptor patterns, showing a dynamic inter-regulation and a prominent role of VIP in this setting.
Collapse
|
4
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
5
|
Villanueva-Romero R, Gutiérrez-Cañas I, Carrión M, González-Álvaro I, Rodríguez-Frade JM, Mellado M, Martínez C, Gomariz RP, Juarranz Y. Activation of Th lymphocytes alters pattern expression and cellular location of VIP receptors in healthy donors and early arthritis patients. Sci Rep 2019; 9:7383. [PMID: 31089161 PMCID: PMC6517580 DOI: 10.1038/s41598-019-43717-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Vasoactive Intestinal Peptide (VIP) is an important immunomodulator of CD4+ cells in normal and pathological conditions, which exerts its anti-inflammatory and immunomodulatory actions through VPAC receptors, VPAC1 and VPAC2. Only a decrease in the expression of VPAC1 mRNA on Th cells upon activation has been reported. Thus, the deepening in the knowledge of the behavior of these receptors may contribute to the design of new therapies based on their activation and/or blockade. In this study, we describe the expression pattern, cellular location and functional role of VIP receptors during the activation of human Th cells in healthy conditions and in early arthritis (EA). The protein expression pattern of VPAC1 did not change with the activation of Th lymphocytes, whereas VPAC2 was up-regulated. In resting cells, VPAC1 was located on the plasma membrane and nucleus, whereas it only appeared in the nucleus in activated cells. VPAC2 was always found in plasma membrane location. VIP receptors signaled through a PKA-dependent pathway in both conditions, and also by a PKA-independent pathway in activated cells. Both receptors exhibit a potent immunomodulatory capacity by controlling the pathogenic profile and the activation markers of Th cells. These results highlight a novel translational view in inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- R Villanueva-Romero
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I Gutiérrez-Cañas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - M Carrión
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - I González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa (IIS-IP), Madrid, Spain
| | - J M Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - M Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - C Martínez
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - R P Gomariz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Y Juarranz
- Departamento de Biología Celular, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
6
|
Gomariz RP, Juarranz Y, Carrión M, Pérez-García S, Villanueva-Romero R, González-Álvaro I, Gutiérrez-Cañas I, Lamana A, Martínez C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 2019; 10:729. [PMID: 31695683 PMCID: PMC6817626 DOI: 10.3389/fendo.2019.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Rosa P. Gomariz
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. J Immunol Res 2018; 2018:6043710. [PMID: 30155495 PMCID: PMC6092975 DOI: 10.1155/2018/6043710] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis (RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets. Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This “neuroimmunopeptide” modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes, fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor (PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of RA pathology.
Collapse
|
8
|
Seoane IV, Martínez C, García-Vicuña R, Ortiz AM, Juarranz Y, Talayero VC, González-Álvaro I, Gomariz RP, Lamana A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci Rep 2018; 8:2035. [PMID: 29391448 PMCID: PMC5794878 DOI: 10.1038/s41598-018-20400-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. In this study, we analysed whether variants in the VIP gene correlated with its serum levels and clinical EA parameters. The VIP gene was sequenced in patients with extremely high/low VIP levels, measured by enzyme immunoassay. Sixteen single nucleotide polymorphisms (SNPs) were differentially distributed between both groups, which were subsequently genotyped in two patients’ sets. We observed that patients with rs688136 CC genotype showed higher VIP levels in both discovery (n = 91; p = 0.033) and validation populations (n = 131; p = 0.007). This effect was attenuated by the presence of minor alleles rs35643203 and rs12201140, which showed a clear trend towards low VIP level association (p = 0.118 and p = 0.049, respectively). Functional studies with miR-205-5p, which has a target site in the 3′ UTR close to rs688136, revealed a miRNA-mediated regulatory mechanism explaining the higher VIP gene expression in homozygous patients. Moreover, patients with an rs688136 CC genotype and no minor alleles of the other polymorphisms required less treatment (p = 0.009). We concluded that the identification of polymorphisms associated with VIP serum levels would complement the clinical assessment of the disease severity in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Iria V Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Ana M Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Vanessa C Talayero
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| |
Collapse
|
9
|
Seoane IV, Ortiz AM, Piris L, Lamana A, Juarranz Y, García-Vicuña R, González-Álvaro I, Gomariz RP, Martínez C. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity. PLoS One 2016; 11:e0149141. [PMID: 26881970 PMCID: PMC4755558 DOI: 10.1371/journal.pone.0149141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA.
Collapse
MESH Headings
- Adult
- Aged
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/physiopathology
- Case-Control Studies
- Female
- Gene Expression Regulation
- Humans
- Interleukin-6/blood
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/metabolism
- Longitudinal Studies
- Male
- Middle Aged
- Receptors, Vasoactive Intestinal Peptide, Type II/blood
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/blood
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Severity of Illness Index
- Signal Transduction
- Social Class
- Time Factors
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Iria V. Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana M. Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Lorena Piris
- Unidad de Apoyo Metodológico, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Jimeno R, Leceta J, Garín M, Ortiz AM, Mellado M, Rodríguez-Frade JM, Martínez C, Pérez-García S, Gomariz RP, Juarranz Y. Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect. J Leukoc Biol 2015; 98:257-69. [PMID: 25957307 DOI: 10.1189/jlb.3a0714-327r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/12/2015] [Indexed: 01/15/2023] Open
Abstract
Several studies in humans indicate the implication of Th17 cells in RA. Therapies targeting their pathogenicity, as well as their plasticity to the Th17/1 phenotype, could ameliorate the progression of the pathology. The neuroendocrine environment has a major impact on the differentiation of lymphoid cells. VIP is present in the microenvironment of the joint, and its known therapeutic effects are supported by several studies on RA. We examine the ability of VIP to modulate the differentiation of Th17 cells. Peripheral blood CD4(+)CD45RO(+) T cells from HD and eRA patients were expanded under Th17-polarizing conditions in the presence of TGF-β. After 7 days, the higher IL-17A, IL-21, and IL-9 levels and lower IL-22 levels indicate the nonpathogenic profile for Th17 cells in HD. In contrast, Th17 cells from eRA patients produced significantly more IL-22 and IFN-γ, and these cells show a more Th17/1 profile, indicating a pathogenic phenotype. Interestingly, when VIP was present in the Th17 conditioned medium, increased levels of IL-10 and IL-9 were detected in HD and eRA patients. VIP also reduced the levels of IL-22 in eRA patients. These data suggest that VIP reduces the pathogenic profile of the Th17-polarized cells. This effect was accompanied by an increased in the Treg/Th17 profile, as shown by the increase levels of Foxp3. In conclusion, this report addresses a novel and interesting question on the effect of VIP on human Th17 cells and adds clinical relevance by analyzing, in parallel, HD and eRA patients.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marina Garín
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana M Ortiz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Mellado
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jose Miguel Rodríguez-Frade
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
11
|
González-Álvaro I, Ortiz AM, Seoane IV, García-Vicuña R, Martínez C, Gomariz RP. Biomarkers predicting a need for intensive treatment in patients with early arthritis. Curr Pharm Des 2015; 21:170-81. [PMID: 25163741 PMCID: PMC4298237 DOI: 10.2174/1381612820666140825123104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022]
Abstract
The heterogeneous nature of rheumatoid arthritis (RA) complicates early recognition and treatment. In recent years, a growing body of evidence has demonstrated that intervention during the window of opportunity can improve the response to treatment and slow—or even stop—irreversible structural changes. Advances in therapy, such as biologic agents, and changing approaches to the disease, such as the treat to target and tight control strategies, have led to better outcomes resulting from personalized treatment to patients with different prognostic markers. The various biomarkers identified either facilitate early diagnosis or make it possible to adjust management to disease activity or poor outcomes. However, no single biomarker can bridge the gap between disease onset and prescription of the first DMARD, and traditional biomarkers do not identify all patients requiring early aggressive treatment. Furthermore, the outcomes of early arthritis cohorts are largely biased by the treatment prescribed to patients; therefore, new challenges arise in the search for prognostic biomarkers. Herein, we discuss the value of traditional and new biomarkers and suggest the need for intensive treatment as a new surrogate marker of poor prognosis that can guide therapeutic decisions in the early stages of RA.
Collapse
Affiliation(s)
| | | | | | | | | | - R P Gomariz
- Rheumatology Service, Hospital Universitario de La Princesa, IIS Princesa, Madrid, Spain.
| |
Collapse
|
12
|
Vasoactive Intestinal Peptide in Early Spondyloarthritis: Low Serum Levels as a Potential Biomarker for Disease Severity. J Mol Neurosci 2015; 56:577-84. [PMID: 25711477 PMCID: PMC4477066 DOI: 10.1007/s12031-015-0517-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/04/2015] [Indexed: 12/19/2022]
Abstract
Spondyloarthritis (SpA) is a family of inflammatory diseases sharing clinical, genetic, and radiological features. While crucial for tailoring early interventions, validated prognostic biomarkers are scarce in SpA. We analyze the correlation between serum levels of vasoactive intestinal peptide (VIP) and disease activity/severity in patients with early chronic inflammatory back pain. The study population comprised 54 patients enrolled in our early chronic inflammatory back pain register. We collected demographic information, clinical data, laboratory data, and imaging findings. VIP levels were measured by enzyme immunoassay in serum samples from 162 visits. The association between independent variables and VIP levels was analyzed using longitudinal multivariate analysis nested by patient and visit. No significant differences were observed in VIP levels between these two groups. Lower levels of VIP were significantly associated with a higher Bath Ankylosing Spondylitis Disease Activity Index (BASFI) score, presence of bone edema in magnetic resonance imaging (MRI) scan, and lower hemoglobin levels. Coexistence of cutaneous psoriasis was independently associated with lower VIP levels, and similar trend was observed for enthesitis. We conclude that SpA patients with low serum VIP levels had worse 2-year disease outcome, suggesting that serum VIP levels could be a valid prognostic biomarker.
Collapse
|
13
|
Jimeno R, Gomariz RP, Garín M, Gutiérrez-Cañas I, González-Álvaro I, Carrión M, Galindo M, Leceta J, Juarranz Y. The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP. J Mol Med (Berl) 2014; 93:457-67. [PMID: 25430993 PMCID: PMC4366555 DOI: 10.1007/s00109-014-1232-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/15/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4(+)CD45RO(+) T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyses were performed. An increase in CCR6(+)/RORC(+) cells and in RORC-proliferating cells and a decrease in T-bet-proliferating cells and T-bet(+)/RORC(+) cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rβ2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets. KEY MESSAGES Th17 cells are more important than Th1 in the contribution to pathogenesis in eRA patients. Pathogenic Th17 and Th17/1 profile are abundant in activated/expanded memory Th cells from eRA patients. VIP decreases the pathogenic Th17, Th1, and Th17/1 profiles, mainly in healthy donors. The expression of VIP receptors is reduced in eRA patients respect to healthy donors, whereas the ratio of VPAC2/VPAC1 expression is higher.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vasoactive intestinal peptide maintains the nonpathogenic profile of human th17-polarized cells. J Mol Neurosci 2014; 54:512-25. [PMID: 24805298 DOI: 10.1007/s12031-014-0318-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
The cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as vasoactive intestinal peptide (VIP), a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation. In this report, we evaluate the capacity of VIP to modulate naïve human cells into Th17 cells in vitro by analyzing their functional phenotype. The presence of VIP maintains the nonpathogenic profile of Th17-polarized cells, increases the proliferation rate, and decreases their Th1 potential. VIP induces the upregulation of the STAT3 gene interaction with the VPAC1 receptor during the onset of Th17 differentiation. Moreover, RAR-related orphan receptor C (RORC), RAR-related orphan receptor A (RORA), and interleukin (IL)-17A genes are upregulated in the presence of VIP through interaction with VPAC1 and VPAC2 receptors. Interestingly, VIP induces the expression of the IL-23R gene through interaction with the VPAC2 receptor during the expansion phase. This is the first report that describes the differentiation of naïve human T cells to Th17-polarized cells in the presence of VIP and demonstrates how this differentiation regulates the expression of the VIP receptors.
Collapse
|
15
|
Martínez C, Ortiz AM, Juarranz Y, Lamana A, Seoane IV, Leceta J, García-Vicuña R, Gomariz RP, González-Álvaro I. Serum levels of vasoactive intestinal peptide as a prognostic marker in early arthritis. PLoS One 2014; 9:e85248. [PMID: 24409325 PMCID: PMC3883710 DOI: 10.1371/journal.pone.0085248] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022] Open
Abstract
Objective Suitable biomarkers are essential for the design of therapeutic strategies in personalized medicine. Vasoactive intestinal peptide (VIP) has demonstrated immunomodulatory properties in autoimmune murine and ex vivo human models. Our aim was to study serum levels of VIP during the follow-up of an early arthritis (EA) cohort and to analyze its value as a biomarker predicting severity and therapeutic requirements. Methods Data from 91 patients on an EA register were analyzed (76% rheumatoid arthritis (RA), 24% undifferentiated arthritis, 73% women, and median age 54 years; median disease duration at entry, 5.4 months). We collected per protocol sociodemographic, clinical, and therapeutic data. VIP levels were determined by enzyme immunoassay in sera harvested from the 91 patients (353 visits; 3.9 visit/patient) and from 100 healthy controls. VIP values below the 25th percentile of those assessed in healthy population were considered low. To determine the effect of independent variables on VIP levels, we performed a longitudinal multivariate analysis nested by patient and visit. A multivariate ordered logistic regression was modeled to determine the effect of low VIP serum levels on disease activity at the end of follow-up. Results VIP concentrations varied considerably across EA patients. Those fulfilling the criteria for RA had the lowest values in the whole sample, although no significant differences were observed compared with healthy donors. Disease activity, which was assessed using DAS28, inversely correlated with VIP levels. After a two-year follow-up, those patients with low baseline levels of VIP displayed higher disease activity and received more intensive treatment. Conclusion Patients who are unable to up-regulate VIP seem to have a worse clinical course despite receiving more intense treatment. Therefore, measurement of VIP levels may be suitable as a prognostic biomarker.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| | - Ana M. Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Iria V. Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| |
Collapse
|
16
|
Yang H, Jin Y, Wang CH, Tang CW. Effects of exogenous vasoactive intestinal peptide on mesenteric lymph pathway during early intestinal ischemia-reperfusion injury in rats. ACTA ACUST UNITED AC 2013; 186:36-42. [PMID: 23872373 DOI: 10.1016/j.regpep.2013.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Mesenteric lymph pathway serves as the primary route by which gut injury leads to systemic inflammation and distant organ injury. The inflammation of the intestinal tract is partially mediated by vasoactive intestinal peptide (VIP). Therefore, the aim of this study was to test whether exogenous VIP affects mesenteric lymph pathway during early intestinal ischemia-reperfusion (IIR) injury. Rats were randomized into control, control+VIP, IIR and IIR+VIP groups. The observation of mesenteric lymph flow was carried out by cannulation of mesenteric lymphatics. The distribution of in vivo lymphocyte trafficking was performed by (51)Cr labeled lymphocytes and was measured by γ-counter. Endotoxin concentration was assayed using the limulus test kit and TNF-α level was detected by ELISA. When IIR injury treated with VIP, the volumes of lymph flow increased by 80%, which caused the number of lymphocytes exiting in mesenteric lymphatic increased by 50% while the proportion of (51)Cr-lymphocytes in Peyer's patches, intestinal effector tissues, mesenteric nodes, large intestine, stomach decreased by 58%, 51%, 58%, 63%, 64% respectively at the 6th h after reperfusion following intestinal ischemia. Meanwhile, endotoxin and TNF-α levels in intestinal lymph decreased by 51% and 83%. These results suggest that exogenous VIP ameliorates IIR induced splanchnic organ damage via inhibition of toxic mediators reaching systemic circulation and reinforcement of the effective immune responses in gut-associated lymphoid tissues (GALT).
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroentrology, Nanjing Children's Hospital, Nanjing Medical University, 210008, China
| | | | | | | |
Collapse
|
17
|
Levels of dipeptidyl peptidase IV/CD26 substrates neuropeptide Y and vasoactive intestinal peptide in rheumatoid arthritis patients. Rheumatol Int 2013; 33:2867-74. [DOI: 10.1007/s00296-013-2823-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 07/05/2013] [Indexed: 01/28/2023]
|
18
|
Carrión M, Pérez-García S, Jimeno R, Juarranz Y, González-Álvaro I, Pablos JL, Gutiérrez-Cañas I, Gomariz RP. Inflammatory mediators alter interleukin-17 receptor, interleukin-12 and -23 expression in human osteoarthritic and rheumatoid arthritis synovial fibroblasts: immunomodulation by vasoactive intestinal Peptide. Neuroimmunomodulation 2013; 20:274-84. [PMID: 23880957 DOI: 10.1159/000350892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS To assess the contribution of fibroblast-like synoviocytes (FLS) to the inflammatory joint microenvironment under different pathogenic stimuli and their potential to respond to interleukin (IL)-17 and to determine whether the neuroimmunomodulatory vasoactive intestinal peptide (VIP) is able to modulate IL-17 receptor (IL-17R) and related cytokines. METHODS The effect of proinflammatory cytokines [tumor necrosis factor α (TNFα) and IL-17] and Toll-like receptor (TLR) ligands [poly(I:C) and lipopolysaccharide (LPS)] on IL-17R expression and IL-12 and IL-23 production was studied in osteoarthritis (OA)- and rheumatoid arthritis (RA)-FLS, involved in Th1/Th17 differentiation. The effect of VIP was also determined. IL-17RA, IL-17RC, IL-12p35 and IL-23p19 expression was measured by real-time polymerase chain reaction. IL-12 and IL-23 protein levels were measured by ELISA in supernatant cultures. RESULTS TNFα, LPS and poly(I:C) induced an increase in IL-17RA in RA-FLS, whereas TNFα, TNFα plus IL-17 and poly(I:C) enhanced IL-17RC transcripts in FLS. VIP diminished the upregulated expression of IL-17RA in RA-FLS following TNFα and poly(I:C). TNFα, LPS and poly(I:C) increased IL-12 and IL-23 levels in cells derived from patients presenting both pathologies. However, IL-17A DECREASED IL-12 AND AUGMENTED IL-23. VIP DECREASED IL-12P35 MRNA UPREGULATION BY POLY(I:C) AND IL-23P19 TRANSCRIPTS IN LPS-TREATED FLS. CONCLUSIONS Inflammatory cytokines and TLR ligands modulate IL-17R, IL-12 and IL-23 possibly favoring the cross talk between FLS and Th1/Th17 cells. The ability of VIP to counteract the enhancing effect of proinflammatory molecules on IL-17R and the IL-12 family of cytokines corroborates and amplifies the beneficial effect of this endogenous neuroimmunopeptide in rheumatic diseases.
Collapse
Affiliation(s)
- Mar Carrión
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang W, Gao SG, Chen XG, Xu XC, Xu M, Luo W, Tu M, Zhang FJ, Zeng C, Lei GH. Expression of synovial fluid and articular cartilage VIP in human osteoarthritic knee: a new indicator of disease severity? Clin Biochem 2012; 45:1607-12. [PMID: 22959974 DOI: 10.1016/j.clinbiochem.2012.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Vasoactive intestinal peptide (VIP) is a molecule shared by the neuroendocrine immune network and is considered to be a potential candidate for treatment of inflammatory and autoimmune diseases. Although some recent studies demonstrate that VIP has a protective role in animal RA models, its variant in different disease grade of OA remains uncertain. DESIGN AND METHODS Fifty patients with primary knee OA and ten controls with severe trauma were enrolled. Synovial fluid and articular cartilage samples were collected from specimens of total knee arthroplasty (TKA) or knee above amputation. VIP levels in these samples were assessed by ELISA and immunohistochemistry. Kellgren-Lawrence criteria and Mankin score were taken to determine the disease severity. RESULTS Compared to the controls, OA patients have lower VIP concentration in synovial fluid (659.70±112.79, 95%CI 579.01-740.38 vs 470.83±156.40, 95%CI 426.38-515.28 pg/mL, P<0.001) and articular cartilage (0.26±0.02, 95%CI 0.24-0.28 vs 0.20±0.04, 95%CI 0.18-0.21, P<0.001). Subsequent analysis show that the VIP expression in synovial fluid is markedly correlated with its OD in articular cartilage (Pearson's r=0.580, P<0.001). Furthermore, the synovial fluid and articular cartilage levels of VIP both demonstrated to be negatively correlated with severity of disease (Spearman's ρ=0.838, P<0.001; Spearman's ρ=0.814, P<0.001). CONCLUSIONS VIP in synovial fluid and articular cartilage is negatively associated with progressive joint damage in OA and is a potential indictor of disease severity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan 410008, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pérez-García S, Juarranz Y, Carrión M, Gutiérrez-Cañas I, Margioris A, Pablos JL, Tsatsanis C, Gomariz RP. Mapping the CRF-urocortins system in human osteoarthritic and rheumatoid synovial fibroblasts: effect of vasoactive intestinal peptide. J Cell Physiol 2011; 226:3261-9. [PMID: 21360527 DOI: 10.1002/jcp.22687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to the brain and pituitary gland, the corticotrophin-releasing factor (CRF) system is expressed in peripheral tissues. In this study we characterize the expression of CRF, urocortins (UCN1, UCN2, and UCN3), and their receptors (CRFR1 and CRFR2) in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). Moreover, we analyze the vasoactive intestinal peptide (VIP) effect on the CRF system, as well as its physiological consequences on mediators of inflammatory/destructive processes. CRF and UCNs exhibit differential pattern in OA and RA-FLS. By real-time PCR we detected more expression of CRF and UCN1 in RA, and UCN2 and UCN3 in OA, while the CRFR2 expression was similar. In RA-FLS VIP treatment resulted in a significant decrease of the proinflammatory peptides, CRF and UCN1, and a significant increase of the potential anti-inflammatory agents, UCN3 and CRFR2. Using Western blot assays, we showed that the ratio between phospho-CREB (p-CREB) and c-AMP response element-binding (CREB) is higher in OA and significantly lower in RA-FLS after VIP treatment, with consequences upon cAMP response element in CRF and UCN1 genes. Real-time PCR and EIA proved that VIP significantly inhibits cycloxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in RA-FLS. In all cases, we consider significant data when P < 0.05. These data indicate a role of endogenous CRF, UCNs, and CRFR2 in the OA and RA joint microenvironment. We confirm the anti-inflammatory function of VIP, through the modulation of the expression of CRF system that impacts in a reduction of mediators with inflammatory/destructive functions, supporting its therapeutic potential in rheumatic diseases.
Collapse
Affiliation(s)
- Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Carrión M, Juarranz Y, Pérez-García S, Jimeno R, Pablos JL, Gomariz RP, Gutiérrez-Cañas I. RNA sensors in human osteoarthritis and rheumatoid arthritis synovial fibroblasts: immune regulation by vasoactive intestinal peptide. ACTA ACUST UNITED AC 2011; 63:1626-36. [PMID: 21337319 DOI: 10.1002/art.30294] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to analyze both the constitutive and induced expression and function of double-stranded RNA (dsRNA; Toll-like receptor 3 [TLR-3], retinoic acid-inducible gene I [RIG-I], and melanoma differentiation-associated gene 5 [MDA5]) and single-stranded RNA (ssRNA; TLR-7) receptors in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), by studying the transcription factors involved and the subsequent effects on antiviral interferon-β (IFNβ), the proinflammatory CXCL8 chemokine, and matrix metalloproteinase 3 (MMP-3). An additional goal was to study the effect of vasoactive intestinal peptide (VIP). METHODS The expression of TLR-3, TLR-7, RIG-I, and MDA5 in cultured FLS was studied by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and Western blotting. Transcription factors were studied using the ELISA-based TransAM transcription factor kit. The expression of IFNβ, CXCL8 (interleukin-8), and MMP-3 was analyzed by RT-PCR and ELISA. RESULTS FLS expressed TLR-3, TLR-7, RIG-I, and MDA5. The expression of TLR-3 and RIG-I was higher in RA FLS, while the expression of TLR-7 and MDA5 was higher in OA FLS. Stimulation with poly(I-C) induced the activation of IFN regulatory factor 3 (IRF-3), NF-κB, and activator protein 1 (AP-1) c-Jun as well as the subsequent production of IFNβ, CXCL8, and MMP-3. VIP reduced the activation of IRF-3 and the production of IFNβ in both OA and RA FLS. Imiquimod induced the activation of NF-κB, AP-1 c-Fos, and AP-1 c-Jun and the synthesis of CXCL8 and MMP-3. VIP significantly diminished MMP-3 production only in imiquimod-treated RA FLS. CONCLUSION The results of this study revealed a prominent function of FLS in the recognition of both dsRNA and ssRNA, which may be present in the joint microenvironment. This study also advances the healing function of the endogenous neuroimmune peptide VIP, which inhibited TLR-3-, RIG-I-, MDA5-, and TLR-7-mediated stimulation of antiviral, proinflammatory, and joint destruction mediators.
Collapse
Affiliation(s)
- Mar Carrión
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, and Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
McFadden JP, Basketter DA, Dearman RJ, Kimber IR. Extra domain A-positive fibronectin-positive feedback loops and their association with cutaneous inflammatory disease. Clin Dermatol 2011; 29:257-65. [PMID: 21496732 DOI: 10.1016/j.clindermatol.2010.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cutaneous inflammation can show Th1 or Th2 predominance, but the precise mechanisms by which such selectivity is determined are unknown. A recent study has demonstrated that Th1 cells, but not Th2 cells, produce an endogenous ligand for Toll-like receptor (TLR) 4, namely extradomain A+ fibronectin containing extra type III domain A (FnEDA+). As TLR4 stimulation leads to production of proinflammatory cytokines that recruit (via altered endothelial adhesion molecule expression and chemokine production) more Th1/Th17 cells, a positive feedback mechanism for Th1/Th17 inflammation exists. We propose that FnEDA+ positive feedback loops are a potential driver of Th1/Th17 inflammation. Conversely, the inflammatory EDA+ fibronectin loop is negatively regulated in atopic dermatitis, Th2 cytokines actively suppress TLR4 expression of Th1 cytokines, and recruited Th2 cells do not produce FnEDA+. In psoriasis, there are multiple FnEDA+ loops, comprising inflammatory, keratinocyte, and autoimmune loops. In allergic contact dermatitis, a single inflammatory loop operates. In atopic dermatitis, the FnEDA+ loop is actively suppressed by Th2 cytokines, and recruited Th2 cells do not "feedback" FnEDA+. We review endogenous ligands for TLR in relation to inflammatory disease, FnEDA+ function, and the potential role for FnEDA+ in psoriasis, allergic contact dermatitis, and atopic dermatitis.
Collapse
Affiliation(s)
- John P McFadden
- Department of Cutaneous Allergy, St John's Institute of Dermatology, St Thomas' Hospital, SE1 7EH London, UK.
| | | | | | | |
Collapse
|
23
|
Li JM, Southerland L, Hossain MS, Giver CR, Wang Y, Darlak K, Harris W, Waschek J, Waller EK. Absence of vasoactive intestinal peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1057-65. [PMID: 21677142 DOI: 10.4049/jimmunol.1100686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasoactive intestinal peptide (VIP) induces regulatory dendritic cells (DC) in vitro that inhibit cellular immune responses. We tested the role of physiological levels of VIP on immune responses to murine CMV (mCMV) using VIP-knockout (VIP-KO) mice and radiation chimeras engrafted with syngenic VIP-KO hematopoietic cells. VIP-KO mice had less weight loss and better survival following mCMV infection compared with wild-type (WT) littermates. mCMV-infected VIP-KO mice had lower viral loads, faster clearance of virus, with increased numbers of IFN-γ(+) NK and NKT cells, and enhanced cytolytic activity of NK cells. Adaptive antiviral cellular immunity was increased in mCMV-infected VIP-KO mice compared with WT mice, with more Th1/Tc1-polarized T cells, fewer IL-10(+) T cells, and more mCMV-M45 epitope peptide MHC class I tetramer(+) CD8(+) T cells (tetramer(+) CD8 T cells). mCMV-immune VIP-KO mice had enhanced ability to clear mCMV peptide-pulsed target cells in vivo. Enhanced antiviral immunity was also seen in WT transplant recipients engrafted with VIP-KO hematopoietic cells, indicating that VIP synthesized by neuronal cells did not suppress immune responses. Following mCMV infection there was a marked upregulation of MHC-II and CD80 costimulatory molecule expression on DC from VIP-KO mice compared with DC from WT mice, whereas programmed death-1 and programmed death ligand-1 expression were upregulated in activated CD8(+) T cells and DC, respectively, in WT mice, but not in VIP-KO mice. Because the absence of VIP in immune cells increased innate and adaptive antiviral immunity by altering costimulatory and coinhibitory pathways, selective targeting of VIP signaling represents an attractive therapeutic target to enhance antiviral immunity.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jimeno R, Leceta J, Martínez C, Gutiérrez-Cañas I, Pérez-García S, Carrión M, Gomariz RP, Juarranz Y. Effect of VIP on the balance between cytokines and master regulators of activated helper T cells. Immunol Cell Biol 2011; 90:178-86. [PMID: 21445087 DOI: 10.1038/icb.2011.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD4T helper cells are decisive in the struggle against pathogens and in maintaining immune homeostasis. Nevertheless, they also drive immune-mediated disease. Recently, emerging evidence suggests that seemingly committed Th cells possess plasticity and may convert into other types of effector cells. Vasoactive Intestinal Peptide (VIP) is an immunomodulator neuropeptide, which is able to promote or inhibit individually the differentiation or function of some T-helper subsets. We conducted ex vivo study with erythrocyte-depleted spleen cells from healthy mice to check the balance between cytokines and master regulators of different T-helper subsets. This neuropeptide adversely affected the differentiation and functionality phases of Th17 cells and had a negative influence on cytokines related to Th1 function, increasing Th17 cells over those of the Th1 cell subset. With respect to Th2 subsets, VIP augmented the interleukin (IL)-4/IL-9 mRNA ratio, and a negative correlation between IL-4 and IL-9 was observed in culture supernatants. VIP augmented Th2 relative to Th1 in cell subsets. VIP decreased the iTreg/Th17 balance. Regarding the induced T-regulatory (iTreg)/Th1 balance, VIP increased the presence of immunoregulatory cytokines in relation to IFNγ. Although additional studies are needed to clarify the role of VIP on the balance between cytokines and master regulators during T-helper differentiation, our data show that VIP reduces Th17/Th1 and Th1/Th2 ratios. However, the iTreg/Th17 ratio was differently counterbalanced, probably because of culture conditions. Finally, this is the first study showing that VIP also modulates Th2/Th9 and iTreg/Th1 ratios.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jimeno R, Gomariz RP, Gutiérrez-Cañas I, Martínez C, Juarranz Y, Leceta J. New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol Cell Biol 2010; 88:734-45. [PMID: 20309012 DOI: 10.1038/icb.2010.29] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type I diabetes is an autoimmune T-cell-mediated disease associated with overexpression of inflammatory mediators and the disturbance of different T-cell subsets. Vasoactive intestinal peptide (VIP) is a potent anti-inflammatory agent with regulatory effects on activated T cells. As the equilibrium between different T-cell subsets is involved in the final outcome, leading to tolerance or autoimmunity, we studied the evolution of markers for T cells in nonobese diabetic (NOD) mice. The study of different transcription factors, cytokines or cytokine receptors, shows that VIP interferes with functional phase of T helper 17 (Th17) cells and prevents the increase in the proportion of Th1 to Th17 cells. On the other hand, VIP-treated NOD mice show an increase in the proportion of CD4(+)CD25(+) cells in the spleen. Thus, VIP switches the Tregs/Th17 ratio leading to tolerance in NOD mice. Similarly, VIP reverses the ratio of Th1-/Th2-cell subsets associated with autoimmune pathology. All these effects on the ratio of T-cell subsets and the anti-inflammatory effect of VIP in decreasing proinflammatory mediators result in a reduction of β-cell destruction in pancreas. Taken together, these results show that VIP provides significant protection against spontaneous diabetes by modulating T-cell subsets and counterbalancing tolerance and immunity.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Kim JY, Kim TH, Kim SS. NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia. BMB Rep 2009; 42:380-6. [PMID: 19558798 DOI: 10.5483/bmbrep.2009.42.6.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In neurodegenerative diseases, such as Alzheimer's and Parkinson's, microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1beta, and TNF-alpha in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 muM of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-kappaB was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-kappaB (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
27
|
DELGADO MARIO, GANEA DOINA. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 2008; 22:1146-51. [PMID: 18598752 PMCID: PMC2784101 DOI: 10.1016/j.bbi.2008.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 06/07/2008] [Indexed: 02/08/2023] Open
Abstract
Resolution of inflammation and induction of immune tolerance are essential to stabilize immune homeostasis and to limit the occurrence of exacerbated inflammatory and autoimmune conditions. Multiple mechanisms act together to ensure the re-establishment of immune homeostasis and maintenance of tolerance. The identification of endogenous factors that regulate these processes is crucial for the development of new therapies for inflammatory/autoimmune conditions. Neuropeptides produced during an ongoing inflammatory response emerged as endogenous anti-inflammatory agents that participate in processes leading to the resolution of inflammation and maintenance of tolerance. Anti-inflammatory neuropeptides and hormones such as vasoactive intestinal peptide, urocortin, adrenomedullin, melanocyte stimulating hormone, ghrelin, and cortistatin have beneficial effects in a variety of experimental inflammatory and autoimmune models. Their therapeutic effect has been attributed to their capacity to downregulate innate immunity, to inhibit antigen-specific T(H)1-driven responses, and to generate regulatory T cells. Finally, some of these neuropeptides have been identified as mediators of innate defense acting as natural antimicrobial peptides. Here we present the research findings in the neuropeptide immunoregulatory field, and examine possible therapies based on anti-inflammatory neuropeptides and hormones as a new pharmacologic platform.
Collapse
Affiliation(s)
- MARIO DELGADO
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - DOINA GANEA
- Temple University School of Medicine, Dept. Microbiology and Immunology, Philadelphia, PA 19140
| |
Collapse
|