1
|
Hirose M, Leliavski A, de Assis LVM, Matveeva O, Skrum L, Solbach W, Oster H, Heyde I. Chronic Inflammation Disrupts Circadian Rhythms in Splenic CD4+ and CD8+ T Cells in Mice. Cells 2024; 13:151. [PMID: 38247842 PMCID: PMC10814081 DOI: 10.3390/cells13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.
Collapse
Affiliation(s)
- Misa Hirose
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | | | - Leonardo Vinícius Monteiro de Assis
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Olga Matveeva
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
| | - Ludmila Skrum
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, 23562 Lübeck, Germany;
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Isabel Heyde
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
2
|
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Vitiello MV, Sanford LD, Tang X. Sleep in multiple sclerosis: a systematic review and meta-analysis of polysomnographic findings. J Clin Sleep Med 2023; 19:253-265. [PMID: 36117421 PMCID: PMC9892728 DOI: 10.5664/jcsm.10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
STUDY OBJECTIVES This study aims to explore the polysomnographically measured sleep differences between patients with multiple sclerosis (MS) and healthy control patients. METHODS An electronic literature search was conducted in EMBASE, MEDLINE, all EBM databases, CINAHL, and PsycINFO from inception to March 2022. A random-effects model was applied to explore the pooled effect sizes of polysomnographic differences between patients with MS and control patients. RESULTS Thirteen studies were identified for meta-analysis. The meta-analyses revealed significant reductions in stage N2 sleep and sleep efficiency and increases in wake time after sleep onset, the periodic limb movement index, and the periodic limb movement arousal index in patients with MS compared with control patients. Meta-regression analyses showed that some of the heterogeneity was explained by age and daytime sleepiness of patients with MS. CONCLUSIONS Our study showed that polysomnographic abnormalities are present in MS. Our findings also underscore the need for a comprehensive polysomnographic assessment of sleep changes in patients with MS. Furthermore, the effects of age and daytime sleepiness in patients with MS on sleep changes should also be carefully considered and closely monitored in the management of MS. CITATION Zhang Y, Ren R, Yang L, et al. Sleep in multiple sclerosis: a systematic review and meta-analysis of polysomnographic findings. J Clin Sleep Med. 2023;19(2):253-265.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haipeng Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Shi
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Michael V. Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chronobiotic effect of melatonin in experimental optic neuritis. Neuropharmacology 2020; 182:108401. [PMID: 33197466 DOI: 10.1016/j.neuropharm.2020.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve, which leads to retinal ganglion cell (RGC) loss. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system (NIFVS) functions such as pupillary light reflex (PLR) and circadian rhythms. Melatonin is a chronobiotic agent able to regulate the circadian system. We analyzed the effect of ON on the NIFVS, and the effect of melatonin on the NIFVS alterations induced by ON. For this purpose, optic nerves from male Wistar rats received vehicle or bacterial lipopolysaccharide (LPS), and one group of animals received a subcutaneous pellet of melatonin or a sham procedure. The NIFVS was analyzed in terms of: i) blue light-evoked PLR, ii) the communication between the retina and the suprachiasmatic nuclei (by anterograde transport, and ex vivo magnetic resonance images), iii) locomotor activity rhythm, and iv) Brn3a(+) and melanopsin(+) RGC number (by immunohistochemistry). Experimental ON significantly decreased the blue light-evoked PLR, induced a misconnection between the retina and the suprachiasmatic nuclei, decreased Brn3a(+) RGCs, but not melanopsin(+) RGC number. A bilateral injection of LPS significantly increased the light (but not dark) phase locomotor activity, rhythm periodicity, and time of offset activity. Melatonin prevented the decrease in blue light-evoked PLR, and locomotor activity rhythm alterations induced by ON. These results support that ON provoked alterations of the circadian physiology, and that melatonin could restore the circadian system misalignment.
Collapse
|
4
|
de Vivo L, Bellesi M. The role of sleep and wakefulness in myelin plasticity. Glia 2019; 67:2142-2152. [PMID: 31237382 PMCID: PMC6771952 DOI: 10.1002/glia.23667] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Myelin plasticity is gaining increasing recognition as an essential partner to synaptic plasticity, which mediates experience-dependent brain structure and function. However, how neural activity induces adaptive myelination and which mechanisms are involved remain open questions. More than two decades of transcriptomic studies in rodents have revealed that hundreds of brain transcripts change their expression in relation to the sleep-wake cycle. These studies consistently report upregulation of myelin-related genes during sleep, suggesting that sleep represents a window of opportunity during which myelination occurs. In this review, we summarize recent molecular and morphological studies detailing the dependence of myelin dynamics after sleep, wake, and chronic sleep loss, a condition that can affect myelin substantially. We present novel data about the effects of sleep loss on the node of Ranvier length and provide a hypothetical mechanism through which myelin changes in response to sleep loss. Finally, we discuss the current findings in humans, which appear to confirm the important role of sleep in promoting white matter integrity.
Collapse
Affiliation(s)
- Luisa de Vivo
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Michele Bellesi
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
5
|
Brandstadter R, Sand IK, Sumowski JF. Beyond rehabilitation: A prevention model of reserve and brain maintenance in multiple sclerosis. Mult Scler 2019; 25:1372-1378. [PMID: 31469354 PMCID: PMC6719722 DOI: 10.1177/1352458519856847] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Persons with multiple sclerosis (MS) experience cognitive and physical decline despite more effective disease-modifying therapies (DMTs), and symptomatic treatments currently have limited efficacy. The best treatment of MS disability may, therefore, be prevention of decline. Here, we present a working model of reserve and brain maintenance, with a focus on modifiable risk and protective factors. At disease onset, patients have varying degrees of reserve, broadly conceptualized as the dynamic availability of cerebral resources to support functional capacity. A clinical focus on prevention aims to minimize factors that deplete reserve (e.g. disease burden, comorbidities) and maximize factors that preserve reserve (e.g. DMTs, cardiovascular health). We review evidence for cardiovascular health, diet, and sleep as three potentially important modifiable factors that may modulate cerebral reserve generally, but also in disease-specific ways. We frame the brain as a limited capacity system in which inefficient usage of available cerebral capacity (reserve) leads to or exacerbates functional deficits, and we provide examples of factors that may lead to such inefficiency (e.g. poor mood, obesity, cognitive-motor dual-tasking). Finally, we discuss the challenges and responsibilities of MS neurologists and patients in pursuing comprehensive brain maintenance as a preventive approach.
Collapse
Affiliation(s)
- Rachel Brandstadter
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| | - James F. Sumowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
6
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
7
|
Abstract
Background Several immunological functions are dependent on circadian rhythms. However, there are still relatively few studies about circadian rhythms in neuromyelitis optica spectrum disorders (NMOSD) and 2D2 transgenic mice. We explore whether 2D2 mice have abnormalities in circadian rhythms and the potential underlying molecular mechanism. Material/Methods We first observed the wheel-running motion of the control and 2D2 mice using wheel-running measurements. The cytokine levels were also analyzed using enzyme-linked immunosorbent assay (ELISA), and the results of clock gene expressions in the suprachiasmatic nucleus (SCN) were investigated using real-time polymerase chain reaction (real-time PCR). Results The wheel-running rhythm in 2D2 mice differed from that of the controls. The TNF-α and IL-10 rhythms were disrupted in 2D2 mice. Additionally, the rhythm of the clock genes, Per1 and Per2, and expression in the SCN of 2D2 mice were also changed. Conclusions The results presented here indicate that alteration of circadian rhythms in 2D2 mice affects behavior and immune function, and the potential molecular mechanism might be the Per1 and Per2 expression disorders in the SCN. 2D2 mice might be a suitable model for studying circadian disruption in NMOSD.
Collapse
Affiliation(s)
- Huiru Xue
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China (mainland).,Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Xiuli Cao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Meini Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
8
|
Gul A, Memtily N, Aihemaiti A, Abdukadir A, Wushuer P. Severity of obstructive sleep apnea (OSA) in 382 Han and Uyghur patients with sleep disorders. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018500106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: Race and ethnicity may impact the prevalence and severity of Obstructive Sleep Apnea (OSA) in adults and children. In this study, we aim to investigate the ethnologic influence on OSA severity between Han and Uyghur OSA patients in Xinjiang, China.Methods: We enrolled total of 382 (205 Han and 177 Uyghur) patients diagnosed with OSA with apnea/hypopnea index (AHI) or respiratory disturbance index (RDI) [Formula: see text] 5. During admission, the severity of OSA was evaluated by polysomnography (PSG).Results: From demographic characteristics of enrolled patients, we found that there was no significant difference in sex, age, BMI, and neck circumference between two study populations. Uyghur OSA patients had longer sleep latency, longer REM sleep and N3 stage, but shorter N1 phase than Han OSA patients. AHI and apnea RDI level, but not hypopnea RDI, were evidently higher in Han patients compared with Uyghur patients. There was no distinctive difference between two ethnic populations in average and minimum peripheral capillary oxygen saturation (SaO2) level.Conclusion: Better understanding of impact factors encompassing ethnicity may help improve OSA diagnosis accuracy, management and treatment for patients in Xinjiang.
Collapse
Affiliation(s)
- Aman Gul
- Central Laboratory, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Nassirhadjy Memtily
- Traditional Uyghur Medicine Institute, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Aikeranmu Aihemaiti
- Department of Public Health, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Amir Abdukadir
- Traditional Uyghur Medicine Institute, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Palidan Wushuer
- Department of Psychosomatic, The Affiliated Chinese Medicine Hospital, Xinjiang Medical University, Urumqi 830000, P. R. China
| |
Collapse
|
9
|
De Somma E, Jain RW, Poon KW, Tresidder KA, Segal JP, Ghasemlou N. Chronobiological regulation of psychosocial and physiological outcomes in multiple sclerosis. Neurosci Biobehav Rev 2018; 88:73-83. [DOI: 10.1016/j.neubiorev.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
|
10
|
Sragovich S, Merenlender-Wagner A, Gozes I. ADNP Plays a Key Role in Autophagy: From Autism to Schizophrenia and Alzheimer's Disease. Bioessays 2017; 39. [PMID: 28940660 DOI: 10.1002/bies.201700054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/13/2017] [Indexed: 12/19/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.
Collapse
Affiliation(s)
- Shlomo Sragovich
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avia Merenlender-Wagner
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
12
|
He Y, Cornelissen-Guillaume GG, He J, Kastin AJ, Harrison LM, Pan W. Circadian rhythm of autophagy proteins in hippocampus is blunted by sleep fragmentation. Chronobiol Int 2016; 33:553-60. [PMID: 27078501 DOI: 10.3109/07420528.2015.1137581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for normal cellular survival and activity. Circadian rhythms of autophagy have been studied in several peripheral organs but not yet reported in the brain. Here, we measured the circadian rhythm of autophagy-related proteins in mouse hippocampus and tested the effect of sleep fragmentation (SF). Expressions of the autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3) and beclin were determined by western blotting and immunohistochemistry. Both the hippocampal LC3 signal and the ratio of its lipid-conjugated form LC3-II to its cytosolic form LC3-I showed a 24 h rhythm. The peak was seen at ZT6 (1 pm) and the nadir at ZT16 (1 am). The LC3 immunoreactivity in hippocampal CA1 pyramidal neurons also distributed differently, with more diffuse cytoplasmic appearance at ZT16. Chronic SF had a mild effect to disrupt the 24 h rhythm of LC3 and beclin expression. Interestingly, a greater effect of SF was seen after 24 h of recovery sleep when LC3-II expression was attenuated at both the peak and trough of circadian activities. Overall, the results show for the first time that the hippocampus has a distinct rhythm of autophagy that can be altered by SF.
Collapse
Affiliation(s)
- Yi He
- a Biopotentials Sleep Center , Baton Rouge , LA , USA.,b Beijing Key Laboratory of Mental Disorders, Anding Hospital , Capitol Medical University , Beijing , China
| | | | - Junyun He
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Abba J Kastin
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Laura M Harrison
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Weihong Pan
- a Biopotentials Sleep Center , Baton Rouge , LA , USA
| |
Collapse
|
13
|
Abstract
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.
Collapse
|
14
|
He J, Hsuchou H, He Y, Kastin AJ, Mishra PK, Fang J, Pan W. Leukocyte infiltration across the blood-spinal cord barrier is modulated by sleep fragmentation in mice with experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2014; 11:27. [PMID: 25601899 PMCID: PMC4298076 DOI: 10.1186/2045-8118-11-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background We have recently shown that mice with experimental autoimmune encephalomyelitis (EAE) have increased sleep fragmentation (SF) and reduced sleep efficiency, and that the extent of SF correlates with the severity of disease. It is not yet clear whether and how sleep promotes recovery from autoimmune attacks. We hypothesized that SF promotes leukocyte infiltration across the blood-spinal cord barrier, impairs immune regulation, and thus worsens EAE. Methods Three groups of C57 mice were studied: Resting EAE; SF EAE with the mice subjected to the SF maneuver 12 h /day during zeitgeber time (ZT) 0–12 h; and naïve controls with neither EAE nor SF. Besides monitoring of the incidence and severity of EAE, the immune profiles of leukocytes in the spinal cord as well as those in the spleen were determined. Results When analyzed 16 days after EAE induction, at which time the SF was terminated, the SF group had a greater number of CD4+ T cells and a higher percent of CD4+ cells among all leukocytes in the spinal cord than the resting EAE group. When allowed to recover to 28 days after EAE induction, the SF mice had lower EAE scores than the resting EAE group. EAE induced splenomegaly and an increase of Gr1+CD11b+ myeloid-derived suppressor cells in the splenocytes. However, SF treatment had no additional effect on either peripheral splenocytes or granulocytes that reached the spinal cord. Conclusion The SF maneuver facilitated the migration of encephalopathic lymphocytes into the spinal cord. Paradoxically, these mice had a better EAE score after cessation of SF compared with mice without SF.
Collapse
Affiliation(s)
- Junyun He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Yi He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Abba J Kastin
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Pramod K Mishra
- Department of Biology, University of Texas, San Antonio, TX 78249 USA
| | - Jidong Fang
- Department of Psychiatry, Pennsylvania State University, Hershey, PA 17033 USA
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA ; BioPotentials Sleep Center, 8032 Summa Ave, Ste A, Baton Rouge, LA 70809 USA
| |
Collapse
|