1
|
Huang D, Li M, Qiao Z, Zhou H, Cai Y, Li X, Zhang Z, Zhou J. Effects of adolescent alcohol exposure on oligodendrocyte lineage cells and myelination in mice: Age and subregion differences. IBRO Neurosci Rep 2024; 17:220-234. [PMID: 39282551 PMCID: PMC11401168 DOI: 10.1016/j.ibneur.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Adolescence is an important phase for the structural and functional development of the brain. The immaturity of adolescent brain development is associated with high susceptibility to exogenous disturbances, including alcohol. In this study, the acquisition of conditioned place preference (CPP) in adolescent mice by alcohol (2 g/kg) and the parvalbumin-positive interneurons (PV+ interneurons), oligodendrocyte lineage cells (OPCs), and myelination in the medial prefrontal cortex (mPFC) were assessed. We aim to determine the age- and subregional-specificity of the effects of alcohol. Alcohol (2 g/kg) was injected intraperitoneally on even days, and saline was injected intraperitoneally on odd days. The control group received a continuous intraperitoneal injection with saline. Differences in alcohol-induced CPP acquisition were assessed, followed by immunohistochemical staining. The results showed a pronounced CPP acquisition in 4- and 5-week-old mice. In the mPFC, there were reduced PV+ interneurons and OPCs in 3-week-old mice and reduced oligodendrocyte numbers in 4-week-old mice. The 5-week-old mice showed impaired myelination and a decrease in the number of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC. Since the alterations in 5-week-old mice are more pronounced, we further explored the mPFC-associated subregional-specificity. In the alcohol-exposed mice, the oligodendrocyte numbers were decreased in the anterior cingulate cortex (ACC), PV+ interneuron numbers were declined in the prelimbic cortex (PL), and the number of oligodendrocytes, PV+ interneurons, and OPCs was also decreased with impaired myelination in the infralimbic cortex (IL). Our data suggest that adolescent alcohol exposure notably affected the acquisition of CPP, myelin formation, and the counts of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC in 5-week-old mice. Also, the IL subregion was the worst-affected subregion of the mPFC in alcohol-exposed 5-week-old mice. It reveals that the effects of alcohol on adolescence and its mPFC myelination show obvious age- and subregional-specificity.
Collapse
Affiliation(s)
- Dong Huang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Maolin Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifei Qiao
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongli Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Cai
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolong Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zuo Zhang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiyin Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Winkler GA, Grahame NJ. Home cage voluntary alcohol consumption increases binge drinking without affecting abstinence-related depressive-like behaviors or operant responding in crossed high alcohol-preferring mice (cHAPs). Alcohol 2024; 116:9-19. [PMID: 37838352 PMCID: PMC10947980 DOI: 10.1016/j.alcohol.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Chronic alcohol consumption can lead to tolerance and escalation of drinking in humans and animals, but mechanisms underlying these changes are not fully characterized. Preclinical models can delineate which mechanisms are involved. The chronic intermittent ethanol exposure (CIE) procedure uses forced exposure to vaporized alcohol that elicits withdrawal and increased responding for alcohol in operant tasks in C57BL/6J inbred mice. Chronic two-bottle choice (2BC) drinking in the same strain elicits abstinent-related depression-like behavior, suggestive of allostatic changes. Selected lines such as crossed High Alcohol Preferring (cHAP) mice voluntarily drink to blood alcohol concentrations comparable to those attained in CIE and could be used to assess how alcohol affects these same endpoints without the confounds of involuntary vapor inhalation. In three experiments, we assess how 2BC drinking in cHAP mice affects abstinence-related depressive- and anxiety-like behavior, operant responding for alcohol, and binge consumption using drinking-in-the-dark (DID). We hypothesized that cHAPs with home-cage drinking experience would exhibit more depressive behavior after abstinence, increased responding for alcohol in the operant box, and increased DID intake. Of these, a drinking history increased DID intake in female cHAPs only and increased sucrose preference and intake following abstinence, but had no effects on operant responding or NSFT latency and FST immobility following forced abstinence. These results are consistent with recent findings using slice electrophysiology showing tolerance to alcohol's actions on the dorsolateral striatum following 2BC drinking in female, but not male cHAP mice. Overall, these data suggest that cHAPs may require procedures allowing rapid intoxication, such as DID, to demonstrate changes in alcohol's rewarding effects.
Collapse
Affiliation(s)
- Garrett A Winkler
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Nicholas J Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| |
Collapse
|
3
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Nonoguchi HA, Jin M, Narreddy R, Kouo TWS, Nayak M, Trenet W, Mandyam CD. Progenitor Cells Play a Role in Reinstatement of Ethanol Seeking in Adult Male and Female Ethanol Dependent Rats. Int J Mol Sci 2023; 24:12233. [PMID: 37569609 PMCID: PMC10419311 DOI: 10.3390/ijms241512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Female and male glial fibrillary acidic protein-thymidine kinase (GFAP-TK) transgenic rats were made ethanol dependent via a six-week chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. During the last week of CIE, a subset of male and female TK rats was fed valcyte to ablate dividing progenitor cells and continued the diet until the end of this study. Following week six, all CIE rats experienced two weeks of forced abstinence from CIE-ED, after which they experienced relapse to drinking, extinction, and reinstatement of ethanol seeking sessions. CIE increased ED in female and male rats, with females having higher ethanol consumption during CIE and relapse sessions compared with males. In both sexes, valcyte reduced the levels of Ki-67-labeled progenitor cells in the subgranular zone of the dentate gyrus and did not alter the levels in the medial prefrontal cortex (mPFC). Valcyte increased ED during relapse, increased lever responses during extinction and, interestingly, enhanced latency to extinguish ethanol-seeking behaviors in males. Valcyte reduced the reinstatement of ethanol-seeking behaviors triggered by ethanol cues in females and males. Reduced seeking by valcyte was associated with the normalization of cytokines and chemokines in plasma isolated from trunk blood, indicating a role for progenitor cells in peripheral inflammatory responses. Reduced seeking by valcyte was associated with increases in tight junction protein claudin-5 and oligodendrogenesis in the dentate gyrus and reduction in microglial activity in the dentate gyrus and mPFC in females and males, demonstrating a role for progenitor cells in the dentate gyrus in dependence-induced endothelial and microglial dysfunction. These data suggest that progenitor cells born during withdrawal and abstinence from CIE in the dentate gyrus are aberrant and could play a role in strengthening ethanol memories triggered by ethanol cues via central and peripheral immune responses.
Collapse
Affiliation(s)
| | - Michael Jin
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
5
|
Maccioni P, Bratzu J, Lobina C, Acciaro C, Corrias G, Capra A, Carai MAM, Agabio R, Muntoni AL, Gessa GL, Colombo G. Exposure to an enriched environment reduces alcohol self-administration in Sardinian alcohol-preferring rats. Physiol Behav 2022; 249:113771. [PMID: 35247441 DOI: 10.1016/j.physbeh.2022.113771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
Abstract
Living in an enriched environment (EE) produces a notable impact on several rodent behaviors, including those motivated by drugs of abuse. This picture is somewhat less clear when referring to alcohol-motivated behaviors. With the intent of contributing to this research field with data from one of the few rat lines selectively bred for excessive alcohol consumption, the present study investigated the effect of EE on operant oral alcohol self-administration in Sardinian alcohol-preferring (sP) rats. Starting from Postnatal Day (PND) 21, male sP rats were kept under 3 different housing conditions: impoverished environment (IE; single housing in shoebox-like cages with no environmental enrichment); standard environment (SE; small colony cages with 3 rats and no environmental enrichment); EE (large colony cages with 6 rats and multiple elements of environmental enrichment, including 2 floors, ladders, maze, running wheels, and shelter). From PND 60, rats were exposed to different phases of shaping and training of alcohol self-administration. IE, SE, and EE rats were then compared under (i) fixed ratio (FR) 4 (FR4) schedule of alcohol reinforcement for 20 daily sessions and (ii) progressive ratio (PR) schedule of alcohol reinforcement in a final single session. Acquisition of the lever-responding task (shaping) was slower in EE than IE and SE rats, as the likely consequence of a "devaluation" of the novel stimuli provided by the operant chamber in comparison to those to which EE rats were continuously exposed in their homecage or an alteration, induced by EE, of the rat "emotionality" state when facing the novel environment represented by the operant chamber. Training of alcohol self-administration was slower in EE than IE rats, with SE rats displaying intermediate values. A similar ranking order (IE>SE>EE) was also observed in number of lever-responses for alcohol, amount of self-administered alcohol, and breakpoint for alcohol under FR4 and PR schedules of reinforcement. These data suggest that living in a complex environment reduced the reinforcing and motivational properties of alcohol in sP rats. These results are interpreted in terms of the reinforcing and motivational properties of the main components of EE (i.e., social interactions, physical activities, exploration, novelty) substituting, at least partially, for those of alcohol.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Acciaro
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gianluigi Corrias
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Alessandro Capra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, I-09127 Cagliari (CA), Italy
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
6
|
Sexually dimorphic prelimbic cortex mechanisms play a role in alcohol dependence: protection by endostatin. Neuropsychopharmacology 2021; 46:1937-1949. [PMID: 34253856 PMCID: PMC8429630 DOI: 10.1038/s41386-021-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
Angiogenesis or proliferation of endothelial cells plays a role in brain microenvironment homeostasis. Previously we have shown enhanced expression of markers of angiogenesis in the medial prefrontal cortex during abstinence in an animal model of ethanol dependence induced by chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. Here we report that systemic injections of the angiogenesis inhibitor endostatin reduced relapse to drinking behavior in female CIE-ED rats without affecting relapse to drinking in male CIE-ED rats, and female and male nondependent ED rats. Endostatin did not alter relapse to sucrose drinking in both sexes. Endostatin reduced expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in all groups; however, rescued expression of tight junction protein claudin-5 in the prelimbic cortex (PLC) of female CIE-ED rats. In both sexes, CIE-ED enhanced microglial activation in the PLC and this was selectively prevented by endostatin in female CIE-ED rats. Endostatin prevented CIE-ED-induced enhanced NF-kB activity and expression and Fos expression in females and did not alter reduced Fos expression in males. Analysis of synaptic processes within the PLC revealed sexually dimorphic adaptations, with CIE-ED reducing synaptic transmission and altering synaptic plasticity in the PLC in females, and increasing synaptic transmission in males. Endostatin prevented the neuroadaptations in the PLC in females via enhancing phosphorylation of CaMKII, without affecting the neuroadaptations in males. Our multifaceted approach is the first to link PLC endothelial cell damage to the behavioral, neuroimmune, and synaptic changes associated with relapse to ethanol drinking in female subjects, and provides a new therapeutic strategy to reduce relapse in dependent subjects.
Collapse
|
7
|
Somkuwar SS, Villalpando EG, Quach LW, Head BP, McKenna BS, Scadeng M, Mandyam CD. Abstinence from ethanol dependence produces concomitant cortical gray matter abnormalities, microstructural deficits and cognitive dysfunction. Eur Neuropsychopharmacol 2021; 42:22-34. [PMID: 33279357 PMCID: PMC7797163 DOI: 10.1016/j.euroneuro.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 11/07/2020] [Indexed: 12/20/2022]
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence (CIE-PA) produces significant alterations in oligodendrogenesis in the rodent medial prefrontal cortex (mPFC). Specifically, CIE-PA produced an unprecedented increase in premyelinating oligodendroglial progenitor cells and myelin, which have been associated with persistent elevated drinking behaviors during abstinence. The current study used neuroimaging and electron microscopy to evaluate the integrity of enhanced myelin and microstructural deficits underlying enhanced myelination in the mPFC in male rats experiencing forced abstinence for 1 day (D), 7D, 21D and 42D following seven weeks of CIE. In vivo diffusion tensor imaging (DTI) detected altered microstructural integrity in the mPFC and corpus callosum (CC). Altered integrity was characterized as reduced fractional anisotropy (FA) in the CC, and enhanced mean diffusivity (MD) in the mPFC in 7D abstinent rats. Increased MD occurred concomitantly with increases in myelin associated proteins, flayed myelin and enhanced mitochondrial stress in the mPFC in 7D abstinent rats, suggesting that the increases in myelination during abstinence was aberrant. Evaluation of cognitive performance via Pavlovian conditioning in 7D abstinent rats revealed reduced retrieval and recall of fear memories dependent on the mPFC. These findings indicate that forced abstinence from moderate to severe alcohol use disorder produces gray matter damage via myelin dysfunction in the mPFC and that these microstructural changes were associated with deficits in PFC dependent behaviors.
Collapse
Affiliation(s)
| | | | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Benjamin S McKenna
- Departments of Psychiatry, University of California San Diego, San Diego, CA 92161, USA
| | - Miriam Scadeng
- Departments of Radiology, University of California San Diego, San Diego, CA 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA.
| |
Collapse
|
8
|
Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Voluntary wheel running protects against the increase in ethanol consumption induced by social stress in mice. Drug Alcohol Depend 2020; 212:108004. [PMID: 32408137 DOI: 10.1016/j.drugalcdep.2020.108004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that exposure to social defeat (SD), a model of social stress, produces a long-term increase in the consumption of ethanol, most likely through an increase in the neuroinflammation response. The aim of the present study was to evaluate whether exposure to physical activity in the form of voluntary wheel running (VWR) could block the increase in ethanol consumption and the neuroinflammatory response induced by social stress. Mice were exposed to either 4 sessions of repeated social defeat (RSD) or a non-stressful experience. During the whole procedure, half of the mice were exposed to controlled physical activity, being allowed 1 h access to a low-profile running wheel three times a week. Three weeks after the last RSD, animals started the oral self-administration (SA) of ethanol (6% EtOH) procedure. Biological samples were taken 4 h after the first and the fourth RSD, 3 weeks after the last RSD, and after the SA procedure. Brain tissue (striatum) was used to determine protein levels of the chemokines fractalkine (CX3CL1) and SDF-1 (CXCL12). RSD induced an increase in ethanol consumption and caused greater motivation to obtain ethanol. The striatal levels of CX3CL1 and CXCL12 were also increased after the last RSD. VWR was able to reverse the increase in ethanol intake induced by social stress and the neuroinflammatory response. In conclusion, our results suggest that VWR could be a promising tool to prevent and reduce the detrimental effects induced by social stress.
Collapse
Affiliation(s)
- M D Reguilón
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Ferrer-Pérez
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - R Ballestín
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
9
|
Sona Khan M, Trenet W, Xing N, Sibley B, Abbas M, al-Rashida M, Rauf K, Mandyam CD. A Novel Sulfonamide, 4-FS, Reduces Ethanol Drinking and Physical Withdrawal Associated With Ethanol Dependence. Int J Mol Sci 2020; 21:E4411. [PMID: 32575871 PMCID: PMC7352747 DOI: 10.3390/ijms21124411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/11/2023] Open
Abstract
Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing shifts in extracellular pH in the brain and body. These neurophysiological changes by ethanol are hypothesized to contribute to the continued drinking behavior and physical withdrawal behavior in subjects consuming ethanol chronically. We explored whether chronic ethanol self-administration (ethanol drinking, 10% v/v; ED) without or under the influence of chronic intermittent ethanol vapor (CIE-ED) experience alters the expression of CA II in the hippocampus. Postmortem hippocampal tissue analyses demonstrated that CA II levels were enhanced in the hilus region of the hippocampus in ED and CIE-ED rats. We used a novel molecule-4-fluoro-N-(4-sulfamoylphenyl) benzenesulfonamide (4-FS)-a selective CA II inhibitor, to determine whether CA II plays a role in ethanol self-administration in ED and CIE-ED rats and physical withdrawal behavior in CIE-ED rats. 4-FS (20 mg/kg, i.p.) reduced ethanol self-administration in ED rats and physical withdrawal behavior in CIE-ED rats. Postmortem hippocampal tissue analyses demonstrated that 4-FS reduced CA II expression in ED and CIE-ED rats to control levels. In parallel, 4-FS enhanced GABAA receptor expression, reduced ratio of glutamatergic GluN2A/2B receptors and enhanced the expression of Fos, a marker of neuronal activation in the ventral hippocampus in ED rats. These findings suggest that 4-FS enhanced GABAergic transmission and increased activity of neurons of inhibitory phenotypes. Taken together, these findings support the role of CA II in assisting with negative affective behaviors associated with moderate to severe alcohol use disorders (AUD) and that CA II inhibitors are a potential therapeutic target to reduce continued drinking and somatic withdrawal symptoms associated with moderate to severe AUD.
Collapse
Affiliation(s)
- Muhammad Sona Khan
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Nancy Xing
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Britta Sibley
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan;
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College, A Chartered University, Ferozepur Road, Lahore 54600, Pakistan;
| | - Khalid Rauf
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
10
|
Booher WC, Reyes Martínez GJ, Ehringer MA. Behavioral and neuronal interactions between exercise and alcohol: Sex and genetic differences. GENES BRAIN AND BEHAVIOR 2020; 19:e12632. [DOI: 10.1111/gbb.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Winona C. Booher
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Guillermo J. Reyes Martínez
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Marissa A. Ehringer
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| |
Collapse
|
11
|
Somkuwar SS, Mandyam CD. Individual Differences in Ethanol Drinking and Seeking Behaviors in Rats Exposed to Chronic Intermittent Ethanol Vapor Exposure is Associated with Altered CaMKII Autophosphorylation in the Nucleus Accumbens Shell. Brain Sci 2019; 9:brainsci9120367. [PMID: 31835746 PMCID: PMC6955871 DOI: 10.3390/brainsci9120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)—for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic–pituitary–adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
12
|
Transient Chemogenetic Inhibition of D1-MSNs in the Dorsal Striatum Enhances Methamphetamine Self-Administration. Brain Sci 2019; 9:brainsci9110330. [PMID: 31752398 PMCID: PMC6895983 DOI: 10.3390/brainsci9110330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
The dorsal striatum is important for the development of drug addiction; however, the role of dopamine D1 receptor (D1R) expressing medium-sized spiny striatonigral (direct pathway) neurons (D1-MSNs) in regulating excessive methamphetamine intake remains elusive. Here we seek to determine if modulating D1-MSNs in the dorsal striatum alters methamphetamine self-administration in animals that have demonstrated escalation of self-administration. A viral vector-mediated approach was used to induce expression of the inhibitory (Gi coupled-hM4D) or stimulatory (Gs coupled-rM3D) designer receptors exclusively activated by designer drugs (DREADDs) engineered to specifically respond to the exogenous ligand clozapine-N-oxide (CNO) selectively in D1-MSNs in the dorsal striatum. CNO in animals expressing hM4D increased responding for methamphetamine compared to vehicle in a within subject treatment paradigm. CNO in animals that did not express DREADDs (DREADD naïve-CNO) or expressed rM3D did not alter responding for methamphetamine, demonstrating specificity for hM4D-CNO interaction in increasing self-administration. Postmortem tissue analysis reveals that hM4D-CNO animals had reduced Fos immunoreactivity in the dorsal striatum compared to rM3D-CNO animals and DREADD naïve-CNO animals. Cellular mechanisms in the dorsal striatum in hM4D-CNO animals reveal enhanced expression of D1R and Ca2+/calmodulin-dependent kinase II (CaMKII). Conversely, rM3D-CNO animals had enhanced activity of extracellular signal-regulated kinase (Erk1/2) and Akt in the dorsal striatum, supporting rM3D-CNO interaction in these animals compared with drug naïve controls, DREADD naïve-CNO and hM4D-CNO animals. Our studies indicate that transient inhibition of D1-MSNs-mediated strengthening of methamphetamine addiction-like behavior is associated with cellular adaptations that support dysfunctional dopamine signaling in the dorsal striatum.
Collapse
|
13
|
West RK, Wooden JI, Barton EA, Leasure JL. Recurrent binge ethanol is associated with significant loss of dentate gyrus granule neurons in female rats despite concomitant increase in neurogenesis. Neuropharmacology 2019; 148:272-283. [PMID: 30659841 DOI: 10.1016/j.neuropharm.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Binge drinking is becoming increasingly common among American women and girls. We have previously shown significant cell loss, downregulation of neurotrophins and microgliosis in female rats after a single 4-day ethanol exposure. To determine whether recurrent binge exposure would produce similar effects, we administered ethanol (5 g/kg) or iso-caloric control diet once-weekly for 11 weeks to adult female rats. As we have previously shown exercise neuroprotection against binge-induced damage, half the rats were given access to exercise wheels. Blood ethanol concentration (BEC) did not differ between sedentary and exercised groups, nor did it change across time. Using stereology, we quantified the number and/or size of neurons in the medial prefrontal cortex (mPFC) and hippocampal dentate gyrus (DG), as well as the number and activation state of microglia. Binged sedentary rats had significant cell loss in the dentate gyrus, but exercise eliminated this effect. Compared to sedentary controls, sedentary binged rats and all exercised rats showed increased neurogenesis in the DG. Number and nuclear volume of neurons in the mPFC were not changed. In the hippocampus and mPFC, the number of microglia with morphology indicative of partial activation was increased by recurrent binge ethanol and decreased by exercise. In summary, we show significant binge-induced loss of DG granule neurons despite increased neurogenesis, suggesting an unsuccessful compensatory response. Although exercise eliminated cell loss, our results indicate that infrequent, but recurrent exposure to clinically relevant BEC is neurotoxic.
Collapse
Affiliation(s)
- Rebecca K West
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204-5022, United States.
| |
Collapse
|
14
|
Takashima Y, Tseng J, Fannon MJ, Purohit DC, Quach LW, Terranova MJ, Kharidia KM, Oliver RJ, Mandyam CD. Sex Differences in Context-Driven Reinstatement of Methamphetamine Seeking is Associated with Distinct Neuroadaptations in the Dentate Gyrus. Brain Sci 2018; 8:brainsci8120208. [PMID: 30487415 PMCID: PMC6316047 DOI: 10.3390/brainsci8120208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
The present study examined differences in operant responses in adult male and female rats during distinct phases of addiction. Males and females demonstrated escalation in methamphetamine (0.05 mg/kg, i.v.) intake with females showing enhanced latency to escalate, and bingeing. Following protracted abstinence, females show reduced responses during extinction, and have greater latency to extinguish compared with males, indicating reduced craving. Females demonstrated lower context-driven reinstatement compared to males, indicating that females have less motivational significance to the context associated with methamphetamine. Whole-cell patch-clamp recordings on dentate gyrus (DG) granule cell neurons (GCNs) were performed in acute brain slices from controls and methamphetamine experienced male and female rats, and neuronal excitability was evaluated from GCNs. Reinstatement of methamphetamine seeking reduced spiking in males, and increased spiking in females compared to controls, demonstrating distinct neuroadaptations in intrinsic excitability of GCNs in males and females. Reduced excitability of GCNs in males was associated with enhanced levels of neural progenitor cells, expression of plasticity-related proteins including CaMKII, and choline acetyltransferase in the DG. Enhanced excitability in females was associated with an increased GluN2A/2B ratio, indicating changes in postsynaptic GluN subunit composition in the DG. Altered intrinsic excitability of GCNs was associated with reduced mossy fiber terminals in the hilus and pyramidal projections, demonstrating compromised neuroplasticity in the DG in both sexes. The alterations in excitability, plasticity-related proteins, and mossy fiber density were correlated with enhanced activation of microglial cells in the hilus, indicating neuroimmune responses in both sexes. Together, the present results indicate sexually dimorphic adaptive biochemical changes in excitatory neurotransmitter systems in the DG and highlight the importance of including sex as a biological variable in exploring neuroplasticity and neuroimmune changes that predict enhanced relapse to methamphetamine-seeking behaviors.
Collapse
Affiliation(s)
- Yoshio Takashima
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA.
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Joyee Tseng
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | | | | | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | | | | | | | - Chitra D Mandyam
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA.
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
15
|
Somkuwar SS, Quach LW, Quigley JA, Purohit DC, Fannon MJ, Koob GF, Mandyam CD. Ethanol Reinforcement Elicits Novel Response Inhibition Behavior in a Rat Model of Ethanol Dependence. Brain Sci 2018; 8:brainsci8070119. [PMID: 29949891 PMCID: PMC6070985 DOI: 10.3390/brainsci8070119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Lower impulse control is a known risk factor for drug abuse vulnerability. Chronic experience with illicit drugs is suggested to enhance impulsivity and thereby perpetuate addiction. However, the nature of this relationship (directionality, causality) with regard to alcohol use disorder is unclear. The present study tested the hypothesis that higher impulsivity is observed during chronic intermittent ethanol vapor inhalation (CIE; a model of ethanol dependence) and subsequent abstinence from CIE in adult Wistar rats. Impulsivity was tested using a differential reinforcement of low rates 15 s (DRL15) schedule using either nondrug reward (palatable modified sucrose pellets) or sweetened ethanol. A decrease in the efficiency of earning reinforcers (expressed as % reinforcers/responses) is indicative of a decrease in response inhibition or an increase in impulsivity. The efficiency of reinforcement and amount of reinforcers earned were unaltered in CIE and control animals when the reinforcer was sucrose. When the reinforcer was sweetened ethanol, the efficiency of reinforcement increased in CIE rats compared with controls only during protracted abstinence. Responding for sweetened ethanol under a progressive-ratio schedule was more rapid in CIE rats during protracted abstinence. Contrary to the initial hypothesis, impulsivity did not increase in rats with a history of CIE; instead, it decreased when ethanol was used as the reinforcer. Furthermore, although the efficiency of ethanol reinforcement did not differ between CIE and control animals during CIE, CIE rats escalated the amount of sweetened ethanol consumed, suggesting that behavioral adaptations that are induced by CIE in rats that are tested under a DRL15 schedule appear to be targeted toward the maximization of ethanol intake and thus may contribute to escalation and relapse.
Collapse
Affiliation(s)
| | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | | | | | | | - George F Koob
- National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
- The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Takashima Y, Fannon MJ, Galinato MH, Steiner NL, An M, Zemljic-Harpf AE, Somkuwar SS, Head BP, Mandyam CD. Neuroadaptations in the dentate gyrus following contextual cued reinstatement of methamphetamine seeking. Brain Struct Funct 2018; 223:2197-2211. [PMID: 29441405 PMCID: PMC5970030 DOI: 10.1007/s00429-018-1615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Abstinence from unregulated methamphetamine self-administration increases hippocampal dependent, context-driven reinstatement of methamphetamine seeking. The current study tested the hypothesis that alterations in the functional properties of granule cell neurons (GCNs) in the dentate gyrus (DG) of the hippocampus in concert with altered expression of synaptic plasticity-related proteins and ultrastructural changes in the DG are associated with enhanced context-driven methamphetamine-seeking behavior. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naïve (controls) and methamphetamine experienced animals (during acute withdrawal, during abstinence, after extinction and after reinstatement). Spontaneous excitatory postsynaptic currents (sEPSCs) and intrinsic excitability were recorded from GCNs. Reinstatement of methamphetamine seeking increased sEPSC frequency and produced larger amplitude responses in GCNs compared to controls and all other groups. Reinstatement of methamphetamine seeking reduced spiking capability in GCNs compared to controls, and all other groups, as indicated by reduced intrinsic spiking elicited by increasing current injections, membrane resistance and fast after hyperpolarization. In rats that reinstated methamphetamine seeking, these altered electrophysiological properties of GCNs were associated with enhanced expression of Fos, GluN2A subunits and PSD95 and reduced expression of GABAA subunits in the DG and enhanced expression of synaptic PSD in the molecular layer. The alterations in functional properties of GCNs and plasticity related proteins in the DG paralleled with no changes in structure of microglial cells in the DG. Taken together, our results demonstrate that enhanced reinstatement of methamphetamine seeking results in alterations in intrinsic spiking and spontaneous glutamatergic synaptic transmission in the GCNs and concomitant increases in neuronal activation of GCNs, and expression of GluNs and decreases in GABAA subunits that may contribute to the altered synaptic connectivity-neuronal circuitry-and activity in the hippocampus, and enhance propensity for relapse.
Collapse
Affiliation(s)
- Yoshio Takashima
- Department of Neuroscience, University of California San Diego, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| | | | - Melissa H Galinato
- Department of Neuroscience, University of California San Diego, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Michelle An
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Alice E Zemljic-Harpf
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Brian P Head
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Chitra D Mandyam
- Department of Neuroscience, University of California San Diego, San Diego, CA, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
17
|
Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment. Neuropharmacology 2018; 145:25-36. [PMID: 29477298 DOI: 10.1016/j.neuropharm.2018.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Relapse remains the most prominent hurdle to successful rehabilitation from alcoholism. The neural mechanisms underlying relapse are complex, but our understanding of the brain regions involved, the anatomical circuitry and the modulation of specific nuclei in the context of stress and cue-induced relapse have improved significantly in recent years. In particular, stress is now recognised as a significant trigger for relapse, adding to the well-established impact of chronic stress to escalate alcohol consumption. It is therefore unsurprising that the stress-responsive regions of the brain have also been implicated in alcohol relapse, such as the nucleus accumbens, amygdala and the hypothalamus. Environmental enrichment is a robust experimental paradigm which provides a non-pharmacological tool to alter stress response and, separately, alcohol-seeking behaviour and symptoms of withdrawal. In this review, we examine and consolidate the preclinical evidence that alcohol seeking behaviour and stress-induced relapse are modulated by environmental enrichment, and these are primarily mediated by modification of neural activity within the key nodes of the addiction circuitry. Finally, we discuss the limited clinical evidence that stress-reducing approaches such as mindfulness could potentially serve as adjunctive therapy in the treatment of alcoholism. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
18
|
Does exercise augment operant and Pavlovian extinction: A meta-analysis. J Psychiatr Res 2018; 96:73-93. [PMID: 28987515 DOI: 10.1016/j.jpsychires.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Exposure therapy, a behavioral approach to reduce symptomology in fear, anxiety, and drug-related psychiatric disorders, is based on learning and memory principles of extinction, and is subject to relapse. As such, it is important to find ways to enhance outcomes. One such way is through exercise. OBJECTIVES Identify if exercise augments extinction behavior, and whether this depends on the experimental paradigm used (i.e. operant or Pavlovian) and/or stimulus (i.e. appetitive or aversive). Additionally, determine which moderating variables influence the effects of exercise on extinction learning. METHODS A literature search was conducted and a Hedges' g calculation was employed to conduct a meta-analysis (metaSEM) using a structural equation modeling approach. This approach was chosen because of its ability to account for dependencies in effect sizes. RESULTS We found a significant effect of exercise as an augmentation over extinction alone (g = 0.37, p < 0.001), with extinction paradigm (but not stimulus) producing a moderating effect (B = 0.43, p = 0.030). Data were then split by extinction paradigm, with operant extinction models having a significant effect (g = 0.55, p < 0.001), and number of extinction sessions moderating aggregate effects. Pavlovian models did not have significant overall effects (g = 0.11, p = 0.3976), but were moderated by the number of animals housed together and exercise after extinction. CONCLUSIONS The effects of exercise on extinction learning are differentially modulated by the type of paradigm used, the number of extinction sessions, the timing of when exercise treatment was applied (after extinction), and the housing conditions.
Collapse
|
19
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
20
|
Somkuwar SS, Vendruscolo LF, Fannon MJ, Schmeichel B, Nguyen TB, Guevara J, Sidhu H, Contet C, Zorrilla EP, Mandyam CD. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 2017; 84. [PMID: 28647675 PMCID: PMC5557646 DOI: 10.1016/j.psyneuen.2017.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alcohol dependence is linked to dysregulation of the hypothalamic-pituitary-adrenal axis. Here, we investigated effects of repeated ethanol intoxication-withdrawal cycles (using chronic intermittent ethanol vapor inhalation; CIE) and abstinence from CIE on peak and nadir plasma corticosterone (CORT) levels. Irritability- and anxiety-like behaviors as well as glucocorticoid receptors (GR) in the medial prefrontal cortex (mPFC) were assessed at various intervals (2h-28d) after cessation of CIE. Results show that peak CORT increased during CIE, transiently decreased during early abstinence (1-11d), and returned to pre-abstinence levels during protracted abstinence (17-27d). Acute withdrawal from CIE enhanced aggression- and anxiety-like behaviors. Early abstinence from CIE reduced anxiety-like behavior. mPFC-GR signaling (indexed by relative phosphorylation of GR at Ser211) was transiently decreased when measured at time points during early and protracted abstinence. Further, voluntary ethanol drinking in CIE (CIE-ED) and CIE-naïve (ED) rats, and effects of CIE-ED and ED on peak CORT levels and mPFC-GR were investigated during acute withdrawal (8h) and protracted abstinence (28d). CIE-ED and ED increased peak CORT during drinking. CIE-ED and ED decreased expression and signaling of mPFC-GR during acute withdrawal, an effect that was reversed by systemic mifepristone treatment. CIE-ED and ED demonstrate robust reinstatement of ethanol seeking during protracted abstinence and show increases in mPFC-GR expression. Collectively, the data demonstrate that acute withdrawal from CIE produces robust alterations in GR signaling, CORT and negative affect symptoms which could facilitate excessive drinking. The findings also show that CIE-ED and ED demonstrate enhanced relapse vulnerability triggered by ethanol cues and these changes are partially mediated by altered GR expression in the mPFC. Taken together, transition to alcohol dependence could be accompanied by alterations in mPFC stress-related pathways that may increase negative emotional symptoms and increase vulnerability to relapse.
Collapse
Affiliation(s)
| | | | | | - Brooke Schmeichel
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Tran Bao Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | | | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA,Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
21
|
Somkuwar SS, Fannon MJ, Bao Nguyen T, Mandyam CD. Hyper-oligodendrogenesis at the vascular niche and reduced blood-brain barrier integrity in the prefrontal cortex during protracted abstinence. Neuroscience 2017; 362:265-271. [PMID: 28870701 DOI: 10.1016/j.neuroscience.2017.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/13/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism is a relapsing disorder with limited treatment options, in part due to our limited understanding of the disease etiology. We have recently shown that increased ethanol-seeking in a behavioral model of relapse in a rat model of alcoholism was associated with increased oligodendrogenesis which was positively correlated with platelet/endothelial cell adhesion molecule (PECAM-1) expression in the medial prefrontal cortex (mPFC). The current study investigated whether newly born oligodendrocytes form close physical associations with endothelial cells expressing PECAM-1 and whether these changes were accompanied by altered blood-brain barrier (BBB) integrity. Colableling and confocal analysis demonstrate that newly born oligodendroglia were always located in close physical proximity to PECAM-1 in the mPFC of rats that were ethanol dependent and demonstrated high propensity for relapse. Notably, the endothelial proximity of new oligodendrocytes was associated with reduced expression of endothelial barrier antigen (SMI-71), a marker for BBB integrity. Furthermore, voluntary wheel running during abstinence enhanced SMI-71 expression in endothelial cells, indicating protection against abstinence-induced reduction in BBB integrity. Taken together, these results suggest that ethanol experience and abstinence disrupts homeostasis in the oligo-vascular niche in the mPFC. Reversing these mechanisms may hold the key to reducing propensity for relapse in individuals with moderate to severe alcohol use disorder.
Collapse
Affiliation(s)
| | | | - Tran Bao Nguyen
- Skaggs School or Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA; Skaggs School or Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA; Department of Anesthesiology, University of California San Diego, CA, USA.
| |
Collapse
|