1
|
Ahlbrand R, Wilson A, Woller P, Sachdeva Y, Lai J, Davis N, Wiggins J, Sah R. Sex-specific threat responding and neuronal engagement in carbon dioxide associated fear and extinction: Noradrenergic involvement in female mice. Neurobiol Stress 2024; 30:100617. [PMID: 38433995 PMCID: PMC10907837 DOI: 10.1016/j.ynstr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Difficulty in appropriately responding to threats is a key feature of psychiatric disorders, especially fear-related conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD). Most prior work on threat and fear regulation involves exposure to external threatful cues. However, fear can also be triggered by aversive, within-the-body, sensations. This interoceptive signaling of fear is highly relevant to PD and PTSD but is not well understood, especially in the context of sex. Using female and male mice, the current study investigated fear-associated spontaneous and conditioned behaviors to carbon dioxide (CO2) inhalation, a potent interoceptive threat that induces fear and panic. We also investigated whether behavioral sensitivity to CO2 is associated with delayed PTSD-relevant behaviors. CO2 evoked heterogenous freezing behaviors in both male and female animals. However, active, rearing behavior was significantly reduced in CO2-exposed male but not female mice. Interestingly, behavioral sensitivity to CO2 was associated with compromised fear extinction, independent of sex. However, in comparison to CO2-exposed males, females elicited less freezing and higher rearing during extinction suggesting an engagement of active versus passive defensive coping. Persistent neuronal activation marker ΔFosB immuno-mapping revealed attenuated engagement of infralimbic-prefrontal areas in both sexes but higher activation of brain stem locus coeruleus (LC) area in females. Inter-regional co-activation mapping revealed sex-independent disruptions in the infralimbic-amygdala associations but altered LC associations only in CO2-exposed female mice. Lastly, dopamine β hydroxylase positive (DβH + ve) noradrenergic neuronal cell counts in the LC correlated with freezing and rearing behaviors during CO2 inhalation and extinction only in female but not male mice. Collectively, these data provide evidence for higher active defensive responding to interoceptive threat CO2-associated fear in females that may stem from increased recruitment of the brainstem noradrenergic system. Our findings reveal distinct contributory mechanisms that may promote sex differences in fear and panic associated pathologies.
Collapse
Affiliation(s)
- Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allison Wilson
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Patrick Woller
- Neuroscience Graduate Program, University of Cincinnati, USA
| | - Yuv Sachdeva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Jayden Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Nikki Davis
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - James Wiggins
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Neuroscience Graduate Program, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
You MJ, Rim C, Bang M, Sung S, Kim HJ, Lee SH, Kwon MS. A molecular characterization and clinical relevance of microglia-like cells derived from patients with panic disorder. Transl Psychiatry 2023; 13:48. [PMID: 36750547 PMCID: PMC9905570 DOI: 10.1038/s41398-023-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Few studies report the microglia involvement in the pathogenesis of panic disorder (PD), although the crucial role of microglia in other neuropsychiatric diseases is being emphasized. In addition, there is no report to characterize the phenotypic and functional levels of PD patient-derived microglia to find their clinical relevance. Herein, we used a model to induce patient-derived microglia-like cells (iMGs) to clarify the molecular characteristics and function of PD-iMGs. We established iMGs from 17 PD patients and 16 healthy controls (non-psychiatric controls, HC). PD-iMGs showed increased T-cell death-associated gene-8 expression per the proposal of a previous in vivo study. In addition, we found that patient-derived iMGs showed reduced phagocytosis and increased TREM2 expression. We analyzed the phenotype of the PD-iMGs by RNA sequencing. The PD-iMGs clustered together distinct from HC-iMGs. Gene set enrichment analysis revealed the involvement of cholesterol biosynthesis and steroid metabolism in PD-iMGs. Regarding the cholesterol synthesis pathway, we discovered ACAT2 and DHCR7 as the most impacted genes related to a character of PD-iMGs compared to HC-iMGs. The ACAT2, a major cholesterol esterifier, was increased in PD-iMGs. Nevertheless, PD-iMGs did not show lipid droplet accumulation. Interestingly, ACAT2 expression was inversely correlated with the severity of depression and anxiety sensitivity to publicly observable anxiety reactions. We propose that microglia of PD patients have unique characteristics with dysregulation of cholesterol biosynthesis pathway and impaired phagocytosis, reflecting clinical phenotype.
Collapse
Affiliation(s)
- Min-Jung You
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Chan Rim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Minji Bang
- grid.452398.10000 0004 0570 1076Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13497 Republic of Korea
| | - Soyoung Sung
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Hui-Ju Kim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13497, Republic of Korea.
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Imenez Silva PH, Wagner CA. Physiological relevance of proton-activated GPCRs. Pflugers Arch 2022; 474:487-504. [PMID: 35247105 PMCID: PMC8993716 DOI: 10.1007/s00424-022-02671-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The detection of H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-specialized pH-sensing mechanisms. The proton-activated G protein-coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 (Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal adaption to changes in acid-base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these receptors in physiological processes and will briefly discuss some implications for disease processes.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
5
|
Subfornical organ interleukin 1 receptor: A novel regulator of spontaneous and conditioned fear associated behaviors in mice. Brain Behav Immun 2022; 101:304-317. [PMID: 35032573 PMCID: PMC9836229 DOI: 10.1016/j.bbi.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1β/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.
Collapse
|
6
|
Liu CH, Hua N, Yang HY. Alterations in Peripheral C-Reactive Protein and Inflammatory Cytokine Levels in Patients with Panic Disorder: A Systematic Review and Meta-Analysis. Neuropsychiatr Dis Treat 2021; 17:3539-3558. [PMID: 34908836 PMCID: PMC8665884 DOI: 10.2147/ndt.s340388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulating evidence has shown the important role of the inflammatory process in the pathophysiology of mental disorders. However, the relative levels of inflammatory markers in patients with panic disorder (PD) have rarely been evaluated. The aim of the present study was to conduct a systematic review to determine the correlation of peripheral C-reactive protein (CRP) and inflammatory cytokine profiles with PD. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched for quantitative research studies published up to July 31, 2021 that measured peripheral levels of CRP and inflammatory cytokines in people with PD compared with controls. Meta-analysis using a random-effects model was performed for the levels of CRP and inflammatory cytokines with data from three or more studies. RESULTS Fourteen identified studies met the inclusion criteria. In total, 18 cytokines were evaluated. Markers that were reported in more than 3 studies were included in this meta-analysis. The results showed that peripheral levels of CRP, IL-6, IL-2 and TNF-α were significantly higher in PD patients than in healthy controls, while there was no significant difference in peripheral levels of IL-1β, IL-10 and IFN-γ between groups. Notably, the relevant studies involving IL-6, IL-1β, IL-10 and IFN-γ in PD patients were highly heterogeneous. Similar to meta-analyses of other inflammatory factors in mental disorders, our meta-analysis also reflected differences in participant medication use, comorbid anxiety or depression, sampling methods and detection methods. Eight inflammatory cytokines were reported in only one study, and their expression levels were higher, lower, or unchanged compared with those in healthy controls. CONCLUSION There is preliminary evidence to suggest a significant inflammatory response in PD patients, but the role of inflammatory markers in PD remains unclear. Studying inflammatory markers in PD will help to clarify the etiology and pathophysiological mechanisms of the disorder.
Collapse
Affiliation(s)
- Chang-He Liu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Na Hua
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Huai-Yu Yang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| |
Collapse
|
7
|
Strawn JR, Levine A. Treatment Response Biomarkers in Anxiety Disorders: From Neuroimaging to Neuronally-Derived Extracellular Vesicles and Beyond. Biomark Neuropsychiatry 2020; 3:100024. [PMID: 32974615 PMCID: PMC7508464 DOI: 10.1016/j.bionps.2020.100024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple and diverse psychotherapeutic or psychopharmacologic treatments effectively reduce symptoms for many patients with anxiety disorders, but the trajectory and magnitude of response vary considerably. This heterogeneity of treatment response has invigorated the search for biomarkers of treatment response in anxiety disorders, across the lifespan. In this review, we summarize evidence for biomarkers of treatment response in children, adolescents and adults with generalized, separation and social anxiety disorders as well as panic disorder. We then discuss the relationship between these biomarkers of treatment response and the pathophysiology of anxiety disorders. Finally, we provide context for treatment response biomarkers of the future, including neuronally-derived extracellular vesicles in anxiety disorders and discuss challenges that must be overcome prior to the debut of treatment response biomarkers in the clinic. A number of promising treatment response biomarkers have been identified, although there is an urgent need to replicate findings and to identify which biomarkers might guide clinicians in selecting from available treatments rather than just simply identifying patients who may be less likely to respond to a given intervention.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience; Anxiety Disorders Research Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, Division of Child & Adolescent Psychiatry and Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| |
Collapse
|
8
|
High Behavioral Sensitivity to Carbon Dioxide Associates with Enhanced Fear Memory and Altered Forebrain Neuronal Activation. Neuroscience 2020; 429:92-105. [PMID: 31930959 DOI: 10.1016/j.neuroscience.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 01/06/2023]
Abstract
There is considerable interest in pre-trauma individual differences that may contribute to increased risk for developing post-traumatic stress disorder (PTSD). Identification of underlying vulnerability factors that predict differential responses to traumatic experiences is important. Recently, the relevance of homeostatic perturbations in shaping long-term behavior has been recognized. Sensitivity to CO2 inhalation, a homeostatic threat to survival, was shown to associate with the later development of PTSD symptoms in veterans. Here, we investigated whether behavioral sensitivity to CO2 associates with PTSD-relevant behaviors and alters forebrain fear circuitry in mice. Mice were exposed to 5% CO2 or air inhalation and tested one week later on acoustic startle and footshock contextual fear conditioning, extinction and reinstatement. CO2 inhalation evoked heterogenous freezing behaviors (high freezing CO2-H and low freezing CO2-L) that significantly associated with fear conditioning and extinction behaviors. CO2-H mice elicited potentiated conditioned fear and delayed extinction while behavioral responses in CO2-L mice were similar to the air group. Persistent neuronal activation marker ΔFosB immunostaining revealed altered regional neuronal activation within the hippocampus, amygdala and medial pre-frontal cortex that correlated with conditioned fear and extinction. Inter-regional co-activation mapping revealed disruptions in the coordinated activity of hippocampal dentate-amygdala-infralimbic regions and infralimbic-prelimbic associations in CO2-H mice that may explain their enhanced fear phenotype. In conclusion, our data support an association of behavioral sensitivity to interoceptive threats such as CO2 with altered fear responding to exteroceptive threats and suggest that "CO2-sensitive" individuals may be susceptible to developing PTSD.
Collapse
|
9
|
The role of acid-sensitive ion channels in panic disorder: a systematic review of animal studies and meta-analysis of human studies. Transl Psychiatry 2018; 8:185. [PMID: 30194289 PMCID: PMC6128878 DOI: 10.1038/s41398-018-0238-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/08/2022] Open
Abstract
Acid-sensitive ion channels, such as amiloride-sensitive cation channel (ACCN), transient receptor potential vanilloid-1 (TRPV1), and T-cell death-associated gene 8 (TDAG8) are highly related to the expression of fear and are expressed in several regions of the brain. These molecules can detect acidosis and maintain brain homeostasis. An important role of pH homeostasis has been suggested in the physiology of panic disorder (PD), with acidosis as an interoceptive trigger for panic attacks. To examine the effect of acid-sensitive channels on PD symptoms, we conducted a systematic review and meta-analysis of these chemosensors in rodents and humans. Following PRISMA guidelines, we systematically searched the Web of Science, Medline/Pubmed, Scopus, Science Direct, and SciELO databases. The review included original research in PD patients and animal models of PD that investigated acid-sensitive channels and PD symptoms. Studies without a control group, studies involving patients with a comorbid psychiatric diagnosis, and in vitro studies were excluded. Eleven articles met the inclusion criteria for the systematic review. The majority of the studies showed an association between panic symptoms and acid-sensitive channels. PD patients appear to display polymorphisms in the ACCN gene and elevated levels of TDAG8 mRNA. The results showed a decrease in panic-like symptoms after acid channel blockade in animal models. Despite the relatively limited data on this topic in the literature, our review identified evidence linking acid-sensitive channels to PD in humans and preclinical models. Future research should explore possible underlying mechanisms of this association, attempt to replicate the existing findings in larger populations, and develop new therapeutic strategies based on these biological features.
Collapse
|