1
|
Chen R, Routh BN, Straetker JE, Gibson CR, Weitzner AS, Bell KS, Gaudet AD, Fonken LK. Microglia depletion ameliorates neuroinflammation, anxiety-like behavior, and cognitive deficits in a sex-specific manner in Rev-erbα knockout mice. Brain Behav Immun 2023; 114:287-298. [PMID: 37648007 PMCID: PMC10788180 DOI: 10.1016/j.bbi.2023.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
The circadian system is an evolutionarily adaptive system that synchronizes biological and physiological activities within the body to the 24 h oscillations on Earth. At the molecular level, circadian clock proteins are transcriptional factors that regulate the rhythmic expression of genes involved in numerous physiological processes such as sleep, cognition, mood, and immune function. Environmental and genetic disruption of the circadian clock can lead to pathology. For example, global deletion of the circadian clock gene Rev-erbα (RKO) leads to hyperlocomotion, increased anxiety-like behaviors, and cognitive impairments in male mice; however, the mechanisms underlying behavioral changes remain unclear. Here we hypothesized that RKO alters microglia function leading to neuroinflammation and altered mood and cognition, and that microglia depletion can resolve neuroinflammation and restore behavior. We show that microglia depletion (CSF1R inhibitor, PLX5622) in 8-month-old RKO mice ameliorated hyperactivity, memory impairments, and anxiety/risky-like behaviors. RKO mice exhibited striking increases in expression of pro-inflammatory cytokines (e.g., IL-1β and IL-6). Surprisingly, these increases were only fully reversed by microglia depletion in the male but not female RKO hippocampus. In contrast, male RKO mice showed greater alterations in microglial morphology and phagocytic activity than females. In both sexes, microglia depletion reduced microglial branching and decreased CD68 production without altering astrogliosis. Taken together, we show that male and female RKO mice exhibit unique perturbations to the neuroimmune system, but microglia depletion is effective at rescuing aspects of behavioral changes in both sexes. These results demonstrate that microglia are involved in Rev-erbα-mediated changes in behavior and neuroinflammation.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Brandy N Routh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA; Institute for Neuroscience, The University of Texas at Austin, USA
| | | | - Cecily R Gibson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA; Institute for Neuroscience, The University of Texas at Austin, USA
| | - Aidan S Weitzner
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Kiersten S Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Andrew D Gaudet
- Institute for Neuroscience, The University of Texas at Austin, USA; Department of Psychology, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA; Institute for Neuroscience, The University of Texas at Austin, USA.
| |
Collapse
|
2
|
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep 2023; 13:9181. [PMID: 37280307 PMCID: PMC10244337 DOI: 10.1038/s41598-023-35898-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.
Collapse
Affiliation(s)
- Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA.
| |
Collapse
|
3
|
Phillips DJ, Blaine S, Wallace NK, Karatsoreos IN. Brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of circadian desynchronization on activity and sleep in male mice. Front Neurosci 2023; 16:1013673. [PMID: 36699530 PMCID: PMC9868941 DOI: 10.3389/fnins.2022.1013673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Understanding how environmental interact challenges with genetic predispositions modulate health and wellbeing is an important area of biomedical research. Circadian rhythms play an important role in coordinating the multitude of cellular and tissue processes that organisms use to predict and adapt to regular changes in the environment, and robust circadian rhythms contribute to optimal physiological and behavioral responses to challenge. However, artificial lighting and modern round-the-clock lifestyles can disrupt the circadian system, leading to desynchronization of clocks throughout the brain and body. When coupled with genetic predispositions, circadian desynchronization may compound negative outcomes. Polymorphisms in the brain-derived neurotrophic (BDNF) gene contribute to variations in neurobehavioral responses in humans, including impacts on sleep, with the common Val66Met polymorphism linked to several negative outcomes. Methods We explored how the Val66Met polymorphism modulates the response to environmental circadian desynchronization (ECD) in a mouse model. ECD was induced by housing adult male mice in a 20 h light-dark cycle (LD10:10; 10 h light, 10 h dark). Sleep and circadian activity were recorded in homozygous (Met) mice and their wild-type (Val) littermates in a standard 24 h LD cycle (LD12:12), then again after 20, 40, and 60 days of ECD. Results We found ECD significantly affected the sleep/wake timing in Val mice, however, Met mice maintained appropriate sleep timing after 20 days ECD, but not after 40 and 60 days of ECD. In addition, the rise in delta power at lights on was absent in Val mice but was maintained in Met mice. To elucidate the circadian and homeostatic contribution to disrupted sleep, mice were sleep deprived by gentle handling in LD12:12 and after 20 days in ECD. Following 6 h of sleep deprivation delta power was increased for both Val and Met mice in LD12:12 and ECD conditions. However, the time constant was significantly longer in the Val mice during ECD compared to LD12:12, suggesting a functioning but altered sleep homeostat. Discussion These data suggest the Val66Met mutation is associated with an ability to resist the effects of LD10:10, which may result in carriers suffering fewer negative impacts of ECD.
Collapse
Affiliation(s)
- Derrick J. Phillips
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | - Scott Blaine
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Naomi K. Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Ilia N. Karatsoreos
- Neuroscience and Behavior Program, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Abstract
The immune system is highly time-of-day dependent. Pioneering studies in the 1960s were the first to identify immune responses to be under a circadian control. Only in the last decade, however, have the molecular factors governing circadian immune rhythms been identified. These studies have revealed a highly complex picture of the interconnectivity of rhythmicity within immune cells with that of their environment. Here, we provide a global overview of the circadian immune system, focusing on recent advances in the rapidly expanding field of circadian immunology.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lydia Kay Lutes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
McEwen BS, Karatsoreos IN. Sleep Deprivation and Circadian Disruption Stress, Allostasis, and Allostatic Load. Sleep Med Clin 2022; 17:253-262. [DOI: 10.1016/j.jsmc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sun Z, Yuan W, Li L, Cai H, Mao X, Zhang L, Zang G, Wang Z. Macrophage CD36 and TLR4 Cooperation Promotes Foam Cell Formation and VSMC Migration and Proliferation Under Circadian Oscillations. J Cardiovasc Transl Res 2022; 15:985-997. [PMID: 35257279 DOI: 10.1007/s12265-022-10225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Circadian rhythm disorders can accelerate atherosclerosis. This study aimed to determine the role of circadian disordered macrophages in atherosclerotic development. Mice were divided into NC group (normal circadian rhythm), L24 group (constant light), D12L12 group (weekly shift light/dark cycle), and D24 group (constant dark). Atherosclerotic progression was significantly accelerated in L24, D12L12, and D24 groups. Peritoneal macrophages from circadian disruption groups exhibited enhanced cytokine secretion and foam cell formation. Migration and proliferation of vascular smooth muscle cells (VSMCs) were increased under the conditioned medium of circadian disordered macrophages. The blockade of CD36 markedly inhibited foam cell formation. Compared with blocking CD36 or TLR4 alone, the co-inhibition of CD36 and TLR4 in macrophages further reduced cytokine secretion and more effectively inhibited VSMC migration and proliferation. In conclusion, the activation of CD36 and TLR4 in circadian disordered macrophages promotes foam cell formation and cytokine secretion and enhances VSMC migration and proliferation. Circadian rhythm disorders promote lipid uptake and cytokine secretion of macrophages by regulating CD36 and TLR4, and enhance VSMC migration and proliferation through the paracrine effect of macrophages.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Honghua Cai
- Department of Burn Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
7
|
Mohammad A, Finch MS, Sweezey-Munroe J, MacPherson REK. Voluntary wheel running alters markers of amyloid-beta precursor protein processing in an ovarian hormone depleted model. Front Endocrinol (Lausanne) 2022; 13:1069404. [PMID: 36561562 PMCID: PMC9763310 DOI: 10.3389/fendo.2022.1069404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Aberrant cleavage of the transmembrane protein, amyloid-beta precursor protein (ABPP), results in the overproduction of amyloid-beta (AB) peptides which can form senile plaques in the brain. These plaques can get lodged within synapses and disrupt neuronal communication ultimately leading to rampant neuron death. The rate-limiting enzyme in AB production is beta-site ABPP cleaving enzyme 1 (BACE1). In females, estrogen loss is associated with increases in AB and BACE1 content and activity. Exercise is known to have anti-amyloidogenic effects and may be able to alter BACE1 in cases of ovarian hormone depletion. This study aimed to examine the effects of physical activity on BACE1 in intact and ovariectomized female mice. METHODS Female C57BL/6 mice (24 weeks old) underwent bilateral ovariectomy (OVX; n=20) or SHAM surgery (SHAM; n=20). Mice were assigned to one of four groups (n=10/group) for 8 weeks: (1) sham (SHAM), (2) sham with a wheel (SHAM VWR), (3) ovariectomized (OVX), or (4) ovariectomized with a wheel (OVX VWR). RESULTS Novel object recognition testing demonstrated that OVX mice had a lower percentage of novel object investigation time compared to SHAM. OVX mice also had higher prefrontal cortex BACE1 activity compared to SHAM (p<0.0001), while the OVX+VWR activity was not different from SHAM. DISCUSSIONS Our results demonstrate that voluntary wheel running in an ovariectomized model prevented increases in BACE1 activity, maintained memory recall, and may provide a method of slowing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michael S. Finch
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | | | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- *Correspondence: Rebecca E. K. MacPherson,
| |
Collapse
|
8
|
Finger A, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231:e13548. [PMID: 32846050 DOI: 10.1111/apha.13548] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.
Collapse
Affiliation(s)
- Anna‐Marie Finger
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Achim Kramer
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
9
|
Felger JC, Capuron L. Special Issue: The intersection of inflammation and metabolism in neuropsychiatric disorders. Brain Behav Immun 2021; 93:331-334. [PMID: 33378714 DOI: 10.1016/j.bbi.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Lucile Capuron
- University of Bordeaux, INRAE, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|
10
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|