1
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
2
|
Gao X, Sun H, Hao S, Sun H, Ge J. Melatonin protects HT-22 cells against palmitic acid-induced glucolipid metabolic dysfunction and cell injuries: Involved in the regulation of synaptic plasticity and circadian rhythms. Biochem Pharmacol 2023; 217:115846. [PMID: 37804870 DOI: 10.1016/j.bcp.2023.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MLT) is ahormonal substance reported with various pharmacological activities.Based on its effects of neuroprotection and metabolic regulation, the aim of the present study is to investigate its potential effect on palmitic acid (PA)-induced cell injuries and glucolipid metabolic dysfunction and explore the possible mechanism. Briefly, HT-22 cells were challenged with PA (0.1 mM, 24 h) and treated with MLT (10-6-10-8 mol/L). Cell proliferation, lipid accumulation and glucose consumption were detected. The protein expression of key molecular involved with the function of synaptic plasticity and circadian rhythms were measured via western blotting, and the expression of Map-2, MT1A, MT1B and Bmal1 were measured via immunofluorescence staining. The results showed that MLT could alleviate the neurotoxicity induced by PA, as indicated by the increased cell proliferation, enhanced fluorescence intensity of Map-2, and decreased lipid deposition and insulin resistance. Moreover, treatment of MLT could reverse the imbalanced expression of p-Akt, p-ERK, Synapsin I, Synaptotagmin I, BDNF, MT1B, Bmal1, and Clock in PA-induced HT-22 cells. These results suggested a remarkably neuroprotective effect of MLT against PA-induced cell injury and glucolipid metabolic dysfunction, the mechanism of which might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
3
|
Daniels LJ, Kay D, Marjot T, Hodson L, Ray DW. Circadian regulation of liver metabolism: experimental approaches in human, rodent, and cellular models. Am J Physiol Cell Physiol 2023; 325:C1158-C1177. [PMID: 37642240 PMCID: PMC10861179 DOI: 10.1152/ajpcell.00551.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.
Collapse
Affiliation(s)
- Lorna J Daniels
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danielle Kay
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Morais VND, Gomes MJC, Grancieri M, Moreira LDPD, Toledo RCL, Costa NMB, da Silva BP, Martino HSD. Chia (Salvia hispanica L.) flour modulates the intestinal microbiota in Wistar rats fed a high-fat and high-fructose diet. Food Res Int 2023; 172:113095. [PMID: 37689868 DOI: 10.1016/j.foodres.2023.113095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Legnaro 16,35020, PD, Italy; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Viken, Norway
| | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | | | | |
Collapse
|
5
|
Akpınar Ş, Tek NA. Age-Related Changes in Circadian Rhythm and Association with Nutrition. Curr Nutr Rep 2023; 12:376-382. [PMID: 37195400 DOI: 10.1007/s13668-023-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE OF REVIEW Considering the increase in life expectancy, there is a time-related decline in biological functions. Age-related changes are also observed in the circadian clock which directly leads to appropriate rhythms in the endocrine and metabolic pathways required for organism homeostasis. Circadian rhythms are affected by the sleep/wake cycle, environmental changes, and nutrition. The aim of this review is to show the relationship between age-related changes in circadian rhythms of physiological and molecular processes and nutritional differences in the elderly. RECENT FINDINGS Nutrition is an environmental factor that is particularly effective on peripheral clocks. Age-related physiological changes have an impact on nutrient intake and circadian processes. Considering the known effects of amino acid and energy intakes on peripheral and circadian clocks, it is thought that the change in circadian clocks in aging may occur due to anorexia due to physiological changes.
Collapse
Affiliation(s)
- Şerife Akpınar
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Bişkek Main St. 6. St No: 2, 06490, Ankara, Emek, Turkey.
| | - Nilüfer Acar Tek
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Bişkek Main St. 6. St No: 2, 06490, Ankara, Emek, Turkey
| |
Collapse
|
6
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Gao X, Wei Y, Sun H, Hao S, Ma M, Sun H, Zang D, Qi C, Ge J. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 2023:10.1007/s12035-023-03360-5. [PMID: 37126129 DOI: 10.1007/s12035-023-03360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
8
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
9
|
Akowuah PK, Lema C, Rumbaut RE, Burns AR. A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation. Int J Mol Sci 2023; 24:931. [PMID: 36674448 PMCID: PMC9865780 DOI: 10.3390/ijms24020931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if it has an effect on corneal wound healing. In this study, 6-week-old C57BL/6 male mice were fed either a normal diet or a high-fat/sucrose diet for 20 weeks. A third group (diet reversal) was placed on a high-fat/sucrose diet for 10 weeks followed by a normal diet for an additional 10 weeks. A central corneal epithelial abrasion wound was created, and wound closure was monitored. Neutrophil and platelet recruitment was assessed by immunofluorescence microscopy. Mice fed the high-fat/sucrose diet-only had greater adiposity (p < 0.005) than normal diet-only fed mice; diet reversal markedly reduced adiposity. Following corneal abrasion, wound closure was delayed by ~6 h (p ≤ 0.01) and, at 30 h post-wounding, fewer neutrophils reached the wound center and fewer extravascular platelets were present at the limbus (p < 0.05). Diet restored normal wound closure and neutrophil and platelet influx in the injured cornea. These data suggest compositional changes to the diet may be an effective diet-based therapeutic strategy for maintaining or restoring corneal health.
Collapse
Affiliation(s)
| | - Carolina Lema
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Rolando E. Rumbaut
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical, Houston, TX 77030, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Peng X, Fan R, Xie L, Shi X, Wang F, Xu W, Dong K, Zhang S, Ma D, Yu X, Yang Y. Time-restricted feeding rescues circadian disruption-aggravated progression of Alzheimer's disease in diabetic mice. J Nutr Biochem 2022; 110:109128. [PMID: 35977665 DOI: 10.1016/j.jnutbio.2022.109128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023]
Abstract
Circadian rhythms, type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are closely related and interacted with each other. We have previously showed circadian disruption aggravated progression of AD in T2DM mice. Time-restricted feeding (TRF) is shown to be a potential synchronizer. This study aims to determine whether TRF has a protective effect against the circadian disruption-aggravated progression of AD in T2DM. 6-week-old male diabetic (db/db) mice and wildtype (wt/wt) mice were kept under normal 12:12 light/dark cycles or altered 6:18 light/dark cycles (dark extended to 18 h) with or without TRF (food restricted to 8 h during the active (dark) period). After 8 weeks, three behavioral tests (open field test, novel object recognition test, barnes maze test) were performed and the circadian gene expression, body weight, lipid levels and AD-associated tau phosphorylation were evaluated. We found altered light/dark cycles contributed to disruptive circadian rhythms in the hippocampus of db/db mice, while TRF prevented this effect. TRF also ameliorated circadian disruption-aggravated increased body weight and lipid accumulation in db/db mice. Importantly, the db/db mice under circadian disruption showed impaired cognition accompanied by increased tau phosphorylation, whereas TRF reversed these changes. The altered light/dark cycles only affected circadian rhythms but not other indicators like plasma/liver lipids, cognition and tau phosphorylation in the wt/wt mice. Collectively, TRF has a protective effect against altered light/dark cycles-aggravated AD progression in diabetic mice.
Collapse
Affiliation(s)
- Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Fen Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Chellammal HSJ, Hasan MH, Kshirsagar RP, Musukula VKR, Ramachandran D, Diwan PV. Metformin inhibits cardiometabolic syndrome associated cognitive deficits in high fat diet rats. J Diabetes Metab Disord 2022; 21:1415-1426. [PMID: 36404813 PMCID: PMC9672285 DOI: 10.1007/s40200-022-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Objectives Glucose intolerance and insulin resistance are hallmarks of metabolic syndrome and lead to Alzheimer's disease (AD). The purpose of this study is to elucidate the neuroprotective effect of metformin through insulin regulation with cardiometabolic and neurotransmitter metabolic enzyme regulation in high-fat, high-sucrose diet and streptozotocin (HFHS-STZ)-induced rats. Methods Male Wistar rats were treated with metformin (180 mg/kg and 360 mg/kg). STZ (35 mg/kg i.p.) injection was performed on the 14th day of 42 days of HFHS diet treatment. Brain neurotransmitter metabolic enzymes (acetylcholinesterase and monoamine oxidase) were determined along with sodium-potassium ATPase (Na+K+-ATPase). Plasma lipids and homeostasis model assessment of insulin resistance (HOMA-IR) was performed. Mean arterial blood pressure, heart rate and electrocardiogram (QT, QTc and RR intervals) were analysed with PowerLab. Results Metformin treatment significantly (p < 0.001) reduced the HOMA-IR index and decreased neurotransmitter metabolic enzymes such as AChE and MAO (p < 0.01 and p < 0.05). The lipid profile was significantly (p < 0.001) controlled with cardiometabolic functions. Conclusions Our investigation revealed that metformin has a remarkable role in regulating brain insulin, vascular system with monoaminergic metabolic enzymes and enhancing synaptic plasticity. Metformin may be a selective early therapeutic agent in metabolic syndrome associated with cognitive decline.
Collapse
Affiliation(s)
- Hanish Singh Jayasingh Chellammal
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300 Malaysia
| | - Mizaton Hazizul Hasan
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300 Malaysia
| | - Rahul P Kshirsagar
- Department of Pharmacology, Yashodeep Institute of Pharmacy, Sangram Nagar, Aurangabad, 431001 India
- Department of Pharmacology, Anurag Group of Institutions, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088 India
| | | | - Dhani Ramachandran
- Unit of Pathology, International Medical School, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor Darul Ehsan 40100 Malaysia
| | - Prakash V Diwan
- Department of Pharmacology, Anurag Group of Institutions, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088 India
- Central Research Laboratory, Maratha Mandal Group of Institutions, Belgaum, Karnataka 590019 India
| |
Collapse
|
12
|
The Circadian Regulation of Nutrient Metabolism in Diet-Induced Obesity and Metabolic Disease. Nutrients 2022; 14:nu14153136. [PMID: 35956312 PMCID: PMC9370226 DOI: 10.3390/nu14153136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and other metabolic diseases are major public health issues that are particularly prevalent in industrialized societies where circadian rhythmicity is disturbed by shift work, jet lag, and/or social obligations. In mammals, daylight entrains the hypothalamic suprachiasmatic nucleus (SCN) to a ≈24 h cycle by initiating a transcription/translation feedback loop (TTFL) of molecular clock genes. The downstream impacts of the TTFL on clock-controlled genes allow the SCN to set the rhythm for the majority of physiological, metabolic, and behavioral processes. The TTFL, however, is ubiquitous and oscillates in tissues throughout the body. Tissues outside of the SCN are entrained to other signals, such as fed/fasting state, rather than light input. This system requires a considerable amount of biological flexibility as it functions to maintain homeostasis across varying conditions contained within a 24 h day. In the face of either circadian disruption (e.g., jet lag and shift work) or an obesity-induced decrease in metabolic flexibility, this finely tuned mechanism breaks down. Indeed, both human and rodent studies have found that obesity and metabolic disease develop when endogenous circadian pacing is at odds with the external cues. In the following review, we will delve into what is known on the circadian rhythmicity of nutrient metabolism and discuss obesity as a circadian disease.
Collapse
|
13
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
14
|
Klein CJMI, Budiman T, Homberg JR, Verma D, Keijer J, van Schothorst EM. Measuring Locomotor Activity and Behavioral Aspects of Rodents Living in the Home-Cage. Front Behav Neurosci 2022; 16:877323. [PMID: 35464142 PMCID: PMC9021872 DOI: 10.3389/fnbeh.2022.877323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Automatization and technological advances have led to a larger number of methods and systems to monitor and measure locomotor activity and more specific behavior of a wide variety of animal species in various environmental conditions in laboratory settings. In rodents, the majority of these systems require the animals to be temporarily taken away from their home-cage into separate observation cage environments which requires manual handling and consequently evokes distress for the animal and may alter behavioral responses. An automated high-throughput approach can overcome this problem. Therefore, this review describes existing automated methods and technologies which enable the measurement of locomotor activity and behavioral aspects of rodents in their most meaningful and stress-free laboratory environment: the home-cage. In line with the Directive 2010/63/EU and the 3R principles (replacement, reduction, refinement), this review furthermore assesses their suitability and potential for group-housed conditions as a refinement strategy, highlighting their current technological and practical limitations. It covers electrical capacitance technology and radio-frequency identification (RFID), which focus mainly on voluntary locomotor activity in both single and multiple rodents, respectively. Infrared beams and force plates expand the detection beyond locomotor activity toward basic behavioral traits but discover their full potential in individually housed rodents only. Despite the great premises of these approaches in terms of behavioral pattern recognition, more sophisticated methods, such as (RFID-assisted) video tracking technology need to be applied to enable the automated analysis of advanced behavioral aspects of individual animals in social housing conditions.
Collapse
Affiliation(s)
- Christian J. M. I. Klein
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
- TSE Systems GmbH, Berlin, Germany
| | | | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
15
|
A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23010504. [PMID: 35008933 PMCID: PMC8745289 DOI: 10.3390/ijms23010504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.
Collapse
|
16
|
Liška K, Sládek M, Houdek P, Shrestha N, Lužná V, Ralph MR, Sumová A. High Sensitivity of the Circadian Clock in the Hippocampal Dentate Gyrus to Glucocorticoid- and GSK3-Beta-Dependent Signals. Neuroendocrinology 2022; 112:384-398. [PMID: 34111876 DOI: 10.1159/000517689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
AIMS Circadian clocks in the hippocampus (HPC) align memory processing with appropriate time of day. Our study was aimed at ascertaining the specificity of glycogen synthase kinase 3-beta (GSK3β)- and glucocorticoid (GC)-dependent pathways in the entrainment of clocks in individual HPC regions, CA1-3, and dentate gyrus (DG). METHODS The role of GCs was addressed in vivo by comparing the effects of adrenalectomy (ADX) and subsequent dexamethasone (DEX) supplementation on clock gene expression profiles (Per1, Per2, Nr1d1, and Bmal1). In vitro the effects of DEX and the GSK3β inhibitor, CHIR-99021, were assessed from recordings of bioluminescence rhythms in HPC organotypic explants of mPER2Luc mice. RESULTS Circadian rhythms of clock gene expression in all HPC regions were abolished by ADX, and DEX injections to the rats rescued those rhythms in DG. The DEX treatment of the HPC explants significantly lengthened periods of the bioluminescence rhythms in all HPC regions with the most significant effect in DG. In contrast to DEX, CHIR-99021 significantly shortened the period of bioluminescence rhythm. Again, the effect was most significant in DG which lacks the endogenously inactivated (phosphorylated) form of GSK3β. Co-treatment of the explants with CHIR-99021 and DEX produced the CHIR-99021 response. Therefore, the GSK3β-mediated pathway had dominant effect on the clocks. CONCLUSION GSK3β- and GC-dependent pathways entrain the clock in individual HPC regions by modulating their periods in an opposite manner. The results provide novel insights into the mechanisms connecting the arousal state-relevant signals with temporal control of HPC-dependent memory and cognitive functions.
Collapse
Affiliation(s)
- Karolína Liška
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Norzin Shrestha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vendula Lužná
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
18
|
Vaziri A, Dus M. Brain on food: The neuroepigenetics of nutrition. Neurochem Int 2021; 149:105099. [PMID: 34133954 DOI: 10.1016/j.neuint.2021.105099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Humans have known for millennia that nutrition has a profound influence on health and disease, but it is only recently that we have begun mapping the mechanisms via which the dietary environment impacts brain physiology and behavior. Here we review recent evidence on the effects of energy-dense and methionine diets on neural epigenetic marks, gene expression, and behavior in invertebrate and vertebrate model organisms. We also discuss limitations, open questions, and future directions in the emerging field of the neuroepigenetics of nutrition.
Collapse
Affiliation(s)
- Anoumid Vaziri
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA
| | - Monica Dus
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA.
| |
Collapse
|
19
|
Disruption of Circadian Clocks Promotes Progression of Alzheimer's Disease in Diabetic Mice. Mol Neurobiol 2021; 58:4404-4412. [PMID: 34018152 DOI: 10.1007/s12035-021-02425-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
The circadian clock is an endogenous system designed to anticipate and adapt to daily changes in the environment. Alzheimer's disease (AD) is a progressive neurodegenerative disease, which is more prevalent in patients with type 2 diabetes mellitus (T2DM). However, the effects of circadian disruption on mental and physical health for T2DM patients are not yet fully understood, even though circadian disruption has been confirmed to promote the progression of AD in population. By housing db/db mice on a disrupted (a 6:18 light/dark cycle) circadian rhythm, we assessed the circadian gene expression, body weight, cognitive ability, and AD-related pathophysiology. Our results indicated that housing in these conditions led to disrupted diurnal circadian rhythms in the hippocampus of db/db mice and contributed to their weight gain. In the brain, the circadian-disrupted db/db mice showed a decreased cognitive ability and an increased hyperphosphorylation of tau protein, even though no difference was found in amyloid protein (Aβ) plaque deposition. We also found that the hyperphosphorylated tau protein exhibited more disruptive daily oscillations in db/db mice hippocampus under the 6:18 light/dark cycle. Circadian alterations could promote the development of AD in T2DM.
Collapse
|
20
|
Lago-Sampedro A, Ho-Plagaro A, Garcia-Serrano S, Santiago-Fernandez C, Rodríguez-Díaz C, Lopez-Gómez C, Martín-Reyes F, Ruiz-Aldea G, Alcaín-Martínez G, Gonzalo M, Montiel-Casado C, Fernández JR, García-Fuentes E, Rodríguez-Pacheco F. Oleic acid restores the rhythmicity of the disrupted circadian rhythm found in gastrointestinal explants from patients with morbid obesity. Clin Nutr 2021; 40:4324-4333. [PMID: 33531179 DOI: 10.1016/j.clnu.2021.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS We investigated whether oleic acid (OA), one of the main components of the Mediterranean diet, participates in the regulation of the intestinal circadian rhythm in patients with morbid obesity. METHODS Stomach and jejunum explants from patients with morbid obesity were incubated with oleic acid to analyze the regulation of clock genes. RESULTS Stomach explants showed an altered circadian rhythm in CLOCK, BMAL1, REVERBα, CRY1, and CRY2, and an absence in PER1, PER2, PER3 and ghrelin (p > 0.05). OA led to the emergence of rhythmicity in PER1, PER2, PER3 and ghrelin (p < 0.05). Jejunum explants showed an altered circadian rhythm in CLOCK, BMAL1, PER1 and PER3, and an absence in PER2, REVERBα, CRY1, CRY2 and GLP1 (p > 0.05). OA led to the emergence of rhythmicity in PER2, REVERBα, CRY1 and GLP1 (p < 0.05), but not in CRY2 (p > 0.05). OA restored the rhythmicity of acrophase and increased the amplitude for most of the genes studied in stomach and jejunum explants. OA placed PER1, PER2, PER3, REVERBα, CRY1 and CRY2 in antiphase with regard to CLOCK and BMAL1. CONCLUSIONS There is an alteration in circadian rhythm in stomach and jejunum explants in morbid obesity. OA restored the rhythmicity of the genes related with circadian rhythm, ghrelin and GLP1, although with slight differences between tissues, which could determine a different behaviour of the explants from jejunum and stomach in obesity.
Collapse
Affiliation(s)
- Ana Lago-Sampedro
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Ailec Ho-Plagaro
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Sara Garcia-Serrano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Concepción Santiago-Fernandez
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Carlos Lopez-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Flores Martín-Reyes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Gonzalo Ruiz-Aldea
- Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Guillermo Alcaín-Martínez
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Montserrat Gonzalo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Custodia Montiel-Casado
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - José R Fernández
- Bioengineering & Chronobiology Labs, atlanTTic Research Center, University of Vigo, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| | - Francisca Rodríguez-Pacheco
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| |
Collapse
|
21
|
Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc Natl Acad Sci U S A 2020; 117:29904-29913. [PMID: 33172990 DOI: 10.1073/pnas.2016589117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.
Collapse
|