1
|
Li X, Yuan L, Wang F. Health outcomes of electronic cigarettes. Chin Med J (Engl) 2024; 137:1903-1911. [PMID: 38973260 PMCID: PMC11332784 DOI: 10.1097/cm9.0000000000003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT The usage of electronic cigarettes (e-cigarettes) sparked an outbreak of unidentified vaping-related lung disease in the US during late 2019. With e-cigarettes becoming more and more popular, smokers have more options other than conventional cigarettes. Under these circumstances, a comprehensive evaluation of the general safety of new tobacco and tobacco-related products, represented by e-cigarettes, to human health is necessary. In this review, we summarize the current research on potential negative impacts of e-cigarette exposure on human health. In particular, studies detailing the relationship between e-cigarettes and the digestive system are summarized, with mechanisms mainly including hepatic metabolic dysfunction, impaired gut barrier, and worsened outcomes of inflammatory bowel disease (IBD). Although believed to be safer than traditional cigarettes, e-cigarettes exert adverse effects on systemic health and induce the development of multiple diseases including asthma, cardiovascular disease, and IBD. Moreover, nicotine-containing e-cigarettes have a negative impact on the childhood development and increase the risk of arterial stiffness compared to the non-nicotine e-cigarettes. However, non-nicotine e-cigarette components have detrimental effects including promoting liver damage and metabolic disorders.
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
2
|
Novak ML, Gyawali P, Wang GY. Association Between E-Cigarettes, Cognition and Mood in Adolescents. Subst Use Misuse 2024; 59:1820-1827. [PMID: 39054646 DOI: 10.1080/10826084.2024.2383597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Research has indicated potentially neutral or even positive cognitive effects of e-cigarette usage in adults, but whether these findings extend to adolescents remains uncertain. This study aimed to examine the interplay between e-cigarette use, mind wandering and self-efficacy, and mood. METHOD The responses of 432 adolescents aged 11-18 years from an online survey were analyzed. Among them, 88 adolescents had used e-cigarettes. RESULTS Adolescents who have used e-cigarettes reported poorer academic self-efficacy, t (430) = 3.26, 95% CI [1.12, 4.51], p < 0.001; greater mind-wandering tendencies t(430) = -3.38, 95% CI [-4.14, -1.10], p < 0.001; and greater severity of depression, t(430) = -3.38, p < 0.001, anxiety t(430) = -2.67, p = 0.01, and stress t(430) = -3.32, p < .001. Increased frequency of e-cigarette use was also associated with attitudes toward e-cigarette use, r (86) = 0.31, p = 0.003 and lower academic self-efficacy, r (86) = -0.27, p = .010. However, there was no significant correlation between frequency of use and mind-wandering. Further network analysis suggested negative relationships between frequency of e-cigarette use, academic self-efficacy and mind-wandering. CONCLUSION Our findings suggest a potential adverse impact of e-cigarette use on mind-wandering and academic confidence among adolescents. However, the direct or indirect relationship between e-cigarette use and these effects could not be definitively determined due to the cross-sectional survey design employed in our study. Nonetheless, our findings underscore the importance of considering developmental differences and the unique vulnerabilities of adolescents when assessing the impact of e-cigarette use.
Collapse
Affiliation(s)
- Marissa L Novak
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Australia
| | - Prajwal Gyawali
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, Australia
| | - Grace Y Wang
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, Australia
| |
Collapse
|
3
|
Alateeq R, Akhtar A, De Luca SN, Chan SMH, Vlahos R. Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice. Antioxidants (Basel) 2024; 13:855. [PMID: 39061923 PMCID: PMC11274253 DOI: 10.3390/antiox13070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ross Vlahos
- Respiratory Research Group, Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (R.A.); (A.A.); (S.N.D.L.)
| |
Collapse
|
4
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Chaaya R, Steele JR, Oliver BG, Chen H, Machaalani R. Effects of e-vapour and high-fat diet on the immunohistochemical staining of nicotinic acetylcholine receptors, apoptosis, microglia and astrocytes in the adult male mouse hippocampus. J Chem Neuroanat 2023; 132:102303. [PMID: 37343645 DOI: 10.1016/j.jchemneu.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The use of e-cigarettes/e-vapour, and the consumption of a high-fat diet (HFD), are two popular lifestyle choices associated with alterations in the hippocampus. This study, using a mouse model, investigated the effects of exposure to e-vapour (± nicotine) and HFD (43% fat) consumption, on the expression of nicotinic acetylcholine receptor (nAChR) subunits α3, α4, α7 and β2, apoptosis markers caspase-3 and TUNEL, microglial marker Iba-1, and astrocyte marker GFAP, in hippocampal subregions of dentate gyrus (DG) and cornu ammonis (CA) 1-3. The major findings included: (1) HFD alone had minimal effect with no consistent pattern or interaction between the markers, (2) E-vapour (± nicotine) predominantly affected the CA2 subregion, decreasing α7 and β2 nAChR subunits and Iba-1, (3) Nicotine e-vapour increased TUNEL across all subregions, and (4) HFD, in the presence of nicotine-free e-vapour, decreased caspase-3 and increased TUNEL across all regions, and decreased Iba-1 in the CA subregions, while HFD and nicotine-containing e-vapour, subregion specifically affected the α3, α4 and α7 nAChR subunits, with a protective effect against change in GFAP in the DG and Iba-1 in the CA1 and CA3. These findings highlight that e-vapour itself alters nAChRs, particularly in the CA2 subregion, associated with a decrease in neuroinflammatory response (Iba-1) across the whole hippocampus, and the addition of nicotine increases cell apoptosis across the whole hippocampus. HFD alone was not detrimental in our model, but in the presence of nicotine-free e-vapour, it differentially affected apoptosis, while the addition of nicotine increased nAChR subunits.
Collapse
Affiliation(s)
- Rita Chaaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Joel R Steele
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Feng M, Bai X, Thorpe AE, Nguyen LT, Wang M, Oliver BG, Chou ASY, Pollock CA, Saad S, Chen H. Effect of E-Vaping on Kidney Health in Mice Consuming a High-Fat Diet. Nutrients 2023; 15:3140. [PMID: 37513558 PMCID: PMC10384319 DOI: 10.3390/nu15143140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
High-fat diet (HFD) consumption and tobacco smoking are risk factors for chronic kidney disease. E-cigarettes have gained significant popularity among younger populations worldwide, especially among overweight individuals. It is unclear whether vaping interacts with HFD consumption to impact renal health. In this study, Balb/c mice (male, 7 weeks old) were fed a pellet HFD (43% fat, 20 kJ/g) for 16 weeks when exposed to nicotine or nicotine-free e-vapour from weeks 11 to 16. While HFD alone increased collagen Ia and IV depositions, it did not cause significant oxidative stress and inflammatory responses in the kidney itself. On the other hand, e-vapour exposure alone increased oxidative stress and damaged DNA and mitochondrial oxidative phosphorylation complexes without significant impact on fibrotic markers. However, the combination of nicotine e-vapour and HFD increased inflammatory responses, oxidative stress-induced DNA injury, and pro-fibrotic markers, suggesting accelerated development of renal pathology. Nicotine-free e-vapour exposure and HFD consumption suppressed the production of mitochondrial OXPHOS complexes and extracellular matrix protein deposition, which may cause structural instability that can interrupt normal kidney function in the future. In conclusion, our study demonstrated that a HFD combined with e-cigarette vapour exposure, especially when containing nicotine, can increase susceptibility to kidney disease.
Collapse
Affiliation(s)
- Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Andrew E Thorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Long The Nguyen
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Meng Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Angela S Y Chou
- NSW Health Pathology, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Carol A Pollock
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Chen H, Burke C, Donovan C, Faiz A, Saad S, Oliver BG. E-Cigarette Vapour Alters High-Fat Diet-Induced Systemic Inflammatory Responses but Has No Effect on High-Fat Diet-Induced Changes in Gut Microbiota. Nutrients 2023; 15:nu15071783. [PMID: 37049622 PMCID: PMC10096781 DOI: 10.3390/nu15071783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background: The gut microbiome, which can be altered by different diets or smoking, has been implicated in the pathogenesis of lung conditions. E-cigarette vaping is now recognised to have detrimental health effects, with several of these being similar to cigarette smoking. However, whether e-cigarettes can alter high-fat diet (HFD)-induced systemic effects and gut microbiota is unknown. In this study, we investigated the effects of HFD in the absence/presence of e-cigarette exposure on systemic inflammation, lipid metabolic markers, and the gut microbiome. Methods: Mice were fed a HFD (or chow) in the absence/presence of e-vapour exposure (±nicotine) and serum inflammation, lipid levels, and microbial diversity were assessed. Results: HFD increased the circulating levels of both triglycerides and non-esterified fatty acids, which were significantly reduced by e-vapour exposure in HFD-fed mice. Serum TNF-α was increased by HFD consumption or e-vapour. HFD had a significant effect on microbial diversity, but there were no additional effects of e-vapour exposure. Conclusions: This study highlights both similarities and differences in how the body responds to e-cigarette vapours, and it is therefore likely that the long-term sequelae of e-cigarette vapour exposure/vaping might not involve the significant alteration of the gut microbiome.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Catherine Burke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alen Faiz
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| |
Collapse
|
8
|
Ali D, Kuyunov I, Baskaradoss JK, Mikami T. Comparison of periodontal status and salivary IL-15 and -18 levels in cigarette-smokers and individuals using electronic nicotine delivery systems. BMC Oral Health 2022; 22:655. [PMID: 36585711 PMCID: PMC9801525 DOI: 10.1186/s12903-022-02700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It is hypothesized that periodontal status is compromised and whole salivary (WS) interleukin (IL)-15 and IL-18 levels are higher among cigarette-smokers and electronic-nicotine-delivery-systems (ENDS)-users than never-smokers. The aim of the present case-control study was to compare the periodontal status and WS IL-15 and -18 levels among cigarette-smokers, ENDS-users and controls (never-smokers). METHODS Participants were divided into 4 groups as follows: Group-1:Current cigarette-smokers; Group-2:ENDS-users; Group-3:Never-smokers with periodontitis; and Group-4: Never-smokers without periodontitis. Demographic data was collected and plaque index (PI), gingival index (GI), probing-depth (PD), clinical attachment-loss (AL), and marginal bone loss (MBL) were measured. Number of missing teeth were recorded and WS IL-15 and IL-18 levels were determined. Group-comparisons were done and P < 0.01 was selected as an indicator of statistical analysis. RESULTS Nineteen, 18, 19 and 19 individuals were enrolled in groups 1, 2, 3 and 4, respectively. Scores of PI, clinical AL, PD, and number of missing-teeth were elevated in groups 1(P < 0.001), 2 (P < 0.001) and 3 (P < 0.001) than -4. Scores of PI, clinical AL, PD, MBL and missing teeth were comparable among patients in groups 1, 2 and 3. Levels of IL-15 and IL-18 were elevated in groups 1 (P < 0.001) and 2 (P < 0.001) than groups 3 and 4. The levels of IL-15 and -18 were higher in Group-3 than in Group-4 (P < 0.001). CONCLUSION Clinically, cigarette-smokers and never-smokers demonstrate similar periodontal statuses; however, WS immunoinflammatory biomarkers (IL-15 and -18) are elevated in these individuals than non-smokers.
Collapse
Affiliation(s)
- Dena Ali
- grid.411196.a0000 0001 1240 3921Department of General Dental Practice, Kuwait University, Safat, P. O. Box 24923, 13110 Kuwait City, Kuwait
| | - Isaac Kuyunov
- Specialist in Prosthodontics, Dental Prosthodontics of Rochester, Rochester, NY 14618 USA
| | - Jagan Kumar Baskaradoss
- grid.411196.a0000 0001 1240 3921Department of Developmental and Preventive Sciences, Kuwait University, Kuwait City, Kuwait
| | - Toshinari Mikami
- Pax Creation Medical Lab, Morioka, Japan ,grid.412449.e0000 0000 9678 1884Department of Oral Pathology, Oral Lab Central College of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chen H, Chan YL, Thorpe AE, Pollock CA, Saad S, Oliver BG. Inhaled or Ingested, Which Is Worse, E-Vaping or High-Fat Diet? Front Immunol 2022; 13:913044. [PMID: 35784293 PMCID: PMC9240210 DOI: 10.3389/fimmu.2022.913044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long term e-cigarette vaping induces inflammation, which is largely nicotine independent. High-fat diet (HFD) consumption is anoter cause of systemic low-grade inflammation. The likelihood of using e-cigarettes as a weight control strategy is concomitant with the increase in obesity. In Australia, only nicotine-free e-fluid is legal for sale. Therefore, this study aimed to investigate how nicotine-free e-cigarette vapour exposure affects inflammatory responses in mice with long term HFD consumption. Mice were fed a HFD for 16 weeks, while in the last 6 weeks, half of the chow and HFD groups were exposed to nicotine-free e-vapour, while the other half to ambient air. Serum, lung, liver and epididymal fat were collected to measure inflammatory markers. While both e-vapour exposure and HFD consumption independently increased serum IFN-γ, CX3CL1, IL-10, CCL20, CCL12, and CCL5 levels, the levels of IFN-γ, CX3CL1, and IL-10 were higher in mice exposed to e-vapour than HFD. The mRNA expression pattern in the epididymal fat mirrors that in the serum, suggesting the circulating inflammatory response to e-vapour is from the fat tissue. Of the upregulated cytokines in serum, none were found to change in the lungs. The anti-inflammatory cytokine IL-10 was increased by combining e-vapour and HFD in the liver. We conclude that short-term nicotine-free e-vapour is more potent than long term HFD consumption in causing systemic inflammation. Future studies will be needed to examine the long-term health impact of nicotine-free e-cigarettes.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Andrew E. Thorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Carol A. Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Brian G. Oliver,
| |
Collapse
|
10
|
Xu Z, Tian Y, Li AX, Tang J, Jing XY, Deng C, Mo Z, Wang J, Lai J, Liu X, Guo X, Li T, Li S, Wang L, Lu Z, Chen Z, Liu XA. Menthol Flavor in E-Cigarette Vapor Modulates Social Behavior Correlated With Central and Peripheral Changes of Immunometabolic Signalings. Front Mol Neurosci 2022; 15:800406. [PMID: 35359576 PMCID: PMC8960730 DOI: 10.3389/fnmol.2022.800406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The use of electronic cigarette (e-cigarette) has been increasing dramatically worldwide. More than 8,000 flavors of e-cigarettes are currently marketed and menthol is one of the most popular flavor additives in the electronic nicotine delivery systems (ENDS). There is a controversy over the roles of e-cigarettes in social behavior, and little is known about the potential impacts of flavorings in the ENDS. In our study, we aimed to investigate the effects of menthol flavor in ENDS on the social behavior of long-term vapor-exposed mice with a daily intake limit, and the underlying immunometabolic changes in the central and peripheral systems. We found that the addition of menthol flavor in nicotine vapor enhanced the social activity compared with the nicotine alone. The dramatically reduced activation of cellular energy measured by adenosine 5′ monophosphate-activated protein kinase (AMPK) signaling in the hippocampus were observed after the chronic exposure of menthol-flavored ENDS. Multiple sera cytokines including C5, TIMP-1, and CXCL13 were decreased accordingly as per their peripheral immunometabolic responses to menthol flavor in the nicotine vapor. The serum level of C5 was positively correlated with the alteration activity of the AMPK-ERK signaling in the hippocampus. Our current findings provide evidence for the enhancement of menthol flavor in ENDS on social functioning, which is correlated with the central and peripheral immunometabolic disruptions; this raises the vigilance of the cautious addition of various flavorings in e-cigarettes and the urgency of further investigations on the complex interplay and health effects of flavoring additives with nicotine in e-cigarettes.
Collapse
Affiliation(s)
- Zhibin Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - A.-Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Forensic Medicine, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jiahang Tang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao-Yuan Jing
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunshan Deng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhizhun Mo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxuan Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juan Lai
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuemei Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Zuxin Chen,
| | - Xin-an Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zuxin Chen,
| |
Collapse
|
11
|
Chen H, Li G, Chan YL, Zhang HE, Gorrell MD, Pollock CA, Saad S, Oliver BG. Differential Effects of 'Vaping' on Lipid and Glucose Profiles and Liver Metabolic Markers in Obese Versus Non-obese Mice. Front Physiol 2021; 12:755124. [PMID: 34803738 PMCID: PMC8599937 DOI: 10.3389/fphys.2021.755124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Tobacco smoking increases the risk of metabolic disorders due to the combination of harmful chemicals, whereas pure nicotine can improve glucose tolerance. E-cigarette vapour contains nicotine and some of the harmful chemicals found in cigarette smoke at lower levels. To investigate how e-vapour affects metabolic profiles, male Balb/c mice were exposed to a high-fat diet (HFD, 43% fat, 20kJ/g) for 16weeks, and e-vapour in the last 6weeks. HFD alone doubled fat mass and caused dyslipidaemia and glucose intolerance. E-vapour reduced fat mass in HFD-fed mice; only nicotine-containing e-vapour improved glucose tolerance. In chow-fed mice, e-vapour increased lipid content in both blood and liver. Changes in liver metabolic markers may be adaptive responses rather than causal. Future studies can investigate how e-vapour differentially affects metabolic profiles with different diets.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Gerard Li
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Hui Emma Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Tyler K, Geilman S, Bell DM, Taylor N, Honeycutt SC, Garrett PI, Hillhouse TM, Covey TM. Acyl Peptide Enzyme Hydrolase (APEH) activity is inhibited by lipid metabolites and peroxidation products. Chem Biol Interact 2021; 348:109639. [PMID: 34508712 DOI: 10.1016/j.cbi.2021.109639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Acyl Peptide Enzyme Hydrolase (APEH) activity is decreased in certain diseases but the mechanism and impact behind this loss in activity is not well understood. We hypothesized that lipid metabolites and lipid peroxidation products produced in inflammatory diseases may bind to and inhibit APEH activity. In vitro studies carried out in mammalian cell lysates, as well as with purified APEH protein, support our hypothesis that cellular lipid metabolites and lipid peroxidation products significantly decrease APEH activity. Enzymatic assays and molecular docking in silico analysis suggest that larger lipid metabolites are the best APEH inhibitors. APEH activity was measured in vivo in mice exposed to chronic e-cigarette vapor, as e-cigarettes are known to increase reactive oxygen species and lipid peroxidation products. In support of our in vitro findings, APEH activity in our mouse model demonstrates decreased APEH activity in the brains of mice exposed to e-cigarette vapor. These results provide a novel mechanism by which APEH activity may be inhibited in disease states. Furthermore, APEH inhibition may contribute to disease development and progression in pathologies associated with redox imbalances and can potentially act as biomarker for oxidative stress in disease.
Collapse
Affiliation(s)
- Kate Tyler
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA
| | - Shelby Geilman
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA
| | - Deborah M Bell
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA
| | - Natalie Taylor
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA
| | - Sarah C Honeycutt
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Patrick I Garrett
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Todd M Hillhouse
- Department of Psychological Science, Weber State University, Ogden, UT, USA; Department of Psychology, University of Wisconsin, Green Bay, WI, USA
| | - Tracy M Covey
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA.
| |
Collapse
|
13
|
Vlahos R. E-vaping and high-fat diet consumption: It's all a hazy memory. Brain Behav Immun 2021; 95:23-24. [PMID: 33872706 DOI: 10.1016/j.bbi.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia.
| |
Collapse
|
14
|
Garrett PI, Honeycutt SC, Marston C, Allen N, Barraza AG, Dewey M, Turner B, Peterson AM, Hillhouse TM. Nicotine-free vapor inhalation produces behavioral disruptions and anxiety-like behaviors in mice: Effects of puff duration, session length, sex, and flavor. Pharmacol Biochem Behav 2021; 206:173207. [PMID: 34019915 DOI: 10.1016/j.pbb.2021.173207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Electronic-cigarette's (ECIGs) popularity has grown over the last decade and changed the way individuals administer nicotine. Preclinical research is imperative for understanding the addictive properties and health-risks associated with ECIG use; however, there is not a standard dosing regimen used across research laboratories. The main objective was to determine how vapor puff durations, administration session length, and flavored e-liquid alter general and mood-disorder related behaviors while providing a foundation of vapor administration parameters. Adult male and female C57BL/6 mice were exposed to several nicotine-free unflavored vapor puff durations (1, 3, 6, or 10 s) and vapor administration session lengths (10 and 30 min) then measured on the following assays: locomotor activity (LMA), tail suspension test (TST), and light-dark test. The effects of mecamylamine and the time-course of vapor-induced depression of LMA also were assessed. Additionally, mice were exposed to flavored (strawberry and adventurers tobacco blend) vapor inhalation and measured on locomotor activity, tail suspension test, and light-dark test. Following both 10 and 30 min vapor administration session, there was a puff duration-dependent decrease in distance traveled, time in center, and rearing. The vapor-induced depression of LMA was not mediated by nicotine or nicotinic acetylcholine receptor (nAChR) activation and lasted 60-90 min. The 10 s puff duration produced an anxiogenic-like effect in the light-dark test by decreasing the time spent in the light side. Vapor inhalation did not significantly alter TST behavior. No significant effects of sex or flavor were found. The anxiogenic-like effects of nicotine-free vapor inhalation are concerning as many adolescents vape nicotine-free flavored e-liquid, and there is an association between ECIGs and mood disorders. Additionally, these studies demonstrate that vapor puff duration, but not vapor administration session length, is an important variable to consider during research design as it can become a confounding variable and alter baseline behaviors.
Collapse
Affiliation(s)
- Patrick I Garrett
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY, USA; Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Sarah C Honeycutt
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Clarissa Marston
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Nicole Allen
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Allyson G Barraza
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Megan Dewey
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Breeann Turner
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Ashley M Peterson
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Todd M Hillhouse
- Department of Psychological Science, Weber State University, Ogden, UT, USA; Department of Psychology, University of Wisconsin Green Bay, Green Bay, WI, USA.
| |
Collapse
|