1
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
2
|
Zhang YY, Zhu DX, Wang MY, Yi YT, Feng YH, Zhou C, Li CJ, Liu F, Shen JF. Activation of NR2A-Wnt-TLR2 Signaling Axis in Satellite Glial Cells of the Dorsal Root Ganglion Contributes to Neuropathic Pain Induced by Nerve Injury in Diabetic Mice. Mol Neurobiol 2025:10.1007/s12035-025-04754-3. [PMID: 39964585 DOI: 10.1007/s12035-025-04754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Diabetic peripheral neuropathic pain (DPNP), a common diabetic mellitus (DM) complication, may result from the activation of satellite glial cells (SGCs) in the dorsal root ganglion (DRG), potentially enhancing peripheral sensitization. The N-methyl-D-aspartate receptor (NMDAR) subtype NR2A and Toll-like receptor (TLR)2 play key roles in neuroimmune interactions. However, their roles in SGCs of DRG and the precise mechanisms mediating peripheral sensitization in DPNP remain unclear. Here, we found that the expression of glial fibrillary acidic protein (GFAP), NR2A, and TLR2 in SGCs from DRG significantly increased under increased glucose and NMDA stimulation in vitro. Additionally, upregulation of interleukin (IL)-6 and nerve growth factor (NGF) was observed. Notably, lentivirus-induced NR2A knockdown (KD) and C29 (TLR2 inhibitor) significantly blocked the above SGCs changes induced by NMDA and increased glucose. Behavior tests showed mechanical and thermal sensitivities induced by sciatic nerve ligation (SNL) were more obvious in DM background related to streptozotocin (STZ) injection than non-DM background mice, which were significantly alleviated by NR2A conditional knockout (CKO) in SGCs and TLR2 KO. Moreover, immunofluorescence (IF) results revealed the co-expression of NR2A and TLR2 in neurons and SGCs in the DRG. Following SNL in DM mice, the upregulation of NR2A, TLR2, GFAP, β-catenin, p-GSK-3β, p-nuclear factor kappa (NF-κ)-B, IL-6, NGF, Bcl-2-associated X protein (Bax), and Caspase 3, and the significant downregulation of Bcl-2 were consistent with the changes observed after increased glucose and NMDA treatment. The upregulation of TLR2 was blocked by NR2A CKO and Wnt signal pathway inhibition. Additionally, the activation of SGCs, upregulated IL-6 as well as NGF secretion and increased apoptosis, associated with nerve injury in DM background were altered by TLR2 KO and NF-κB pathway inhibition. In conclusion, the activation of the NR2A-Wnt-TLR2 signaling axis mediated peripheral sensitization in the DRG by influencing SGCs' activation, and the synthesis and secretion of pro-inflammatory cytokines and NGF, promoting SGCs' apoptosis, thus exacerbating a peripheral nerve injury related-NP in DM background. Our study provided insights into the role of NR2A-Wnt-TLR2 signaling axis of SGCs in mediating the generation and maintenance of DPNP and suggested targeting this signaling axis may be a promising therapeutic approach for DPNP.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - De-Xin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mu-Yun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Ting Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang J, Zhang N, Liu HZ, Wang JL, Zhang YB, Su DD, Zhang LM, Li BD, Miao HT, Miao J. Hydrogen Sulfide (H 2S) Generated in the Colon Induces Neuropathic Pain by Activating Spinal NMDA Receptors in a Rodent Model of Chronic Constriction Injury. Neurochem Res 2025; 50:90. [PMID: 39883291 DOI: 10.1007/s11064-025-04342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (H2S) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis. However, whether traumatic stress in the nervous system leading to excessive production of H2S in the gut can ultimately cause neuropathic pain through the gut-brain axis remains to be investigated. This study established a model of chronic constriction injury (CCI) in mice to determine its effects on gut H2S production, the associated damage via the gut-brain axis, the potential neuropathic pain, as well as the probable mechanism. A CCI mouse model was developed using a spinal nerve ligation approach. Subsequently, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were used to determine the mice's pain thresholds. A variety of assays were performed, including immunofluorescence, western blotting, real-time quantitative Polymerase Chain Reaction (PCR), and membrane clamp whole-cell recordings. Mice subjected to CCI showed decreased MWT and TWL, decreased ZO-1 staining, decreased HuD staining, increased Glial fibrillary acidic protein (GFAP) staining, increased expression of tumor necrosis factor-alpha (TNF-α) protein and interleukin-6 (IL-6) protein, increased expression of NMDAR2B (NR2B) protein and NR2B mRNA, increased colocalization of vGlut2- and c-fos-positive cells, and a higher amplitude of evoked excitatory postsynaptic potential (EPSP) compared to Sham group. These changes were significantly reversed by H2S inhibitor treatment, and the specific NMDA receptor inhibitor MK-801 effectively restored the neurotoxicity of H2S. H2S is involved in CCI-induced neuropathic pain in mice, which might be mediated by the activation of the NMDA signaling pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Nan Zhang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Hong-Zheng Liu
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jin-Liang Wang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yong-Bo Zhang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Dong-Dong Su
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Jun Miao
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Zha T, Fang X, Wan J, Chen X, Lin J, Chen Q. Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential. Biomolecules 2025; 15:165. [PMID: 40001468 PMCID: PMC11852603 DOI: 10.3390/biom15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic pain and mental health disorders, such as depression and anxiety, frequently co-occur and share underlying mechanisms involving neuronal excitability and synaptic transmission. The inwardly rectifying potassium channel 4.1 (Kir4.1), predominantly expressed in glial cells, is crucial for maintaining extracellular potassium and glutamate homeostasis. Dysregulation of Kir4.1 leads to altered neuronal activity, contributing to both chronic pain and mental health disorders. In chronic pain, downregulation of Kir4.1 impairs potassium buffering and glutamate clearance, increasing neuronal excitability and enhancing pain signaling through peripheral and central sensitization. In mental health disorders, impaired Kir4.1 function disrupts neurotrophic factor secretion and neuroinflammatory pathways, leading to mood disturbances. This review primarily summarizes findings from preclinical studies to examine the relationship between Kir4.1 and the pathogenesis of chronic pain and mental health disorders, discussing its molecular structure, expression patterns, and functional roles. Furthermore, we explore therapeutic strategies targeting Kir4.1, including pharmacological modulators and gene therapy approaches, emphasizing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Jiu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China; (T.Z.); (X.F.); (J.W.); (X.C.)
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China; (T.Z.); (X.F.); (J.W.); (X.C.)
| |
Collapse
|
5
|
Awad-Igbaria Y, Abu-Ata S, Sakas R, Bang S, Fishboom T, Shamir A, Bornstein J, Lowenstein L, Palzur E. The Involvement of Glutamate-mGluR5 Signaling in the Development of Vulvar Hypersensitivity. Int J Mol Sci 2025; 26:523. [PMID: 39859236 PMCID: PMC11765200 DOI: 10.3390/ijms26020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Provoked vulvodynia (PV) is the leading cause of vulvar pain and dyspareunia. The etiology of PV is multifactorial and remains poorly understood. PV is associated with a history of repeated vulvar inflammation and is often accompanied by sensory neuromodulation as a result of activation of the metabotropic glutamate receptor 5 (mGluR5) in the sensory nerve terminals. Therefore, this study aims to examine the role of glutamate-mGluR5 signaling during the initial inflammatory phase in chronic vulvar pain development in an animal model of PV.Thermal and mechanical vulvar sensitivity was assessed for three weeks following zymosan vulvar challenges. Anxiety-like behavior and locomotor activity were assessed at the end of the experiment. To investigate the role of glutamate mGluR5, the MTEP (mGluR5 antagonist) was injected into the vulva during vulvar inflammation. On the other hand, glutamate or CHPG (mGluR5 agonist) were injected in order to examine the effects of mGluR5 activation. RT-PCR was performed to assess changes in the transcription of genes related to neuroinflammation, neuromodulation, and neuroplasticity in the spinal cord (L6-S3). Zymosan-induced inflammation resulted in a significant thermal and mechanical vulvar hypersensitivity that persisted for over a month after the zymosan injection. However, local treatment with MTEP enhanced the vulvar mechanical and thermal hypersensitivity. On the other hand, activation of the mGluR5 via injection of glutamate or CHPG into the vulva leads to long-lasting vulvar mechanical and thermal hypersensitivity. The activation of the glutamate pathway was found to be accompanied by an increase in the transcription level of genes related to neuroinflammation and neuroplasticity in the sacral spine region. The present findings indicate that vulvar hypersensitivity is mediated by mGluR5 activation during inflammation. Hence, modulation of the mGluR5 pathway during the critical period of inflammation contributes to preventing chronic vulvar pain development. Conversely, activation of the mGluR5 pathway leads to long-lasting mechanical and thermal hypersensitivity.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Saher Abu-Ata
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Reem Sakas
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Sarina Bang
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel
| | - Tom Fishboom
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3478403, Israel
| | - Jacob Bornstein
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Lior Lowenstein
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel
| | - Eilam Palzur
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
6
|
Li YL, Zhang YY, Song QX, Liu F, Liu YJ, Li YK, Zhou C, Shen JF. N-methyl-D-aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation. Mol Neurobiol 2025; 62:1247-1265. [PMID: 38976127 DOI: 10.1007/s12035-024-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
7
|
Song QX, Zhang YY, Li YL, Liu F, Liu YJ, Li YK, Li CJ, Zhou C, Shen JF. The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation. Neuropharmacology 2024; 261:110173. [PMID: 39357737 DOI: 10.1016/j.neuropharm.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Temporomandibular joint inflammatory diseases are a significant subtype of temporomandibular disorders (TMD) characterized by inflammatory pain in the orofacial area. The N-methyl-D-aspartate receptor (NMDAR), specifically the NR2A subtype, was crucial in neuropathic pain. However, the exact role of NR2A in inflammatory pain in the TMJ and the molecular and cellular mechanisms mediating peripheral sensitization in the trigeminal ganglion (TG) remain unclear. This study utilized male and female mice to induce the TMJOA model by injecting Complete Freund's adjuvant (CFA) into the TMJ and achieve conditional knockout (CKO) of NR2A in the TG using Cre/Loxp technology. The Von-Frey filament test results showed that CFA-induced orofacial pain with reduced mechanical withdrawal threshold (MWT), which was not developed in NR2A CKO mice. Additionally, the up-regulation of interleukin (IL)-1β, IL-6, and nerve growth factor (NGF) in the TG induced by CFA did not occur by NR2A deficiency. In vitro, NMDA activated satellite glial cells (SGCs) with high expression of glial fibrillary acidic protein (GFAP), and both NMDA and LPS led to increased IL-1β, IL-6, and NGF in SGCs. NR2A deficiency reduced these stimulating effects of NMDA and LPS. The regulation of IL-1β involved the p38, Protein Kinase A (PKA), and Protein Kinase C (PKC) pathways, while IL-6 signaling relied on PKA and PKC pathways. NGF regulation was primarily through the p38 pathway. This study highlighted NR2A's crucial role in the TG peripheral sensitization during TMJ inflammation by mediating ILs and NGF, suggesting potential targets for orofacial inflammatory pain management.
Collapse
Affiliation(s)
- Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Liu F, Liao H, Fang Z, Tang Q, Liu Y, Li C, Zhou C, Zhang Y, Shen J. MicroRNA-6954-3p Downregulation Contributes to Orofacial Neuropathic Pain in Mice Via Targeting Voltage-Gated Sodium Channel β2 Subunit Protein. THE JOURNAL OF PAIN 2024; 25:104598. [PMID: 38866121 DOI: 10.1016/j.jpain.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
The voltage-gated sodium channel β2 subunit protein (SCN2B) plays a crucial role in neuropathic pain. However, the role and mechanisms of SCN2B in orofacial neuropathic pain are still unclear. This study aimed to investigate the upstream regulatory mechanisms of SCN2B in the trigeminal ganglion (TG) underlying orofacial neuropathic pain. Chronic constriction injury of the infraorbital nerve (CCI-ION) of mice was performed to establish the model of orofacial neuropathic pain. Von Frey filament test was performed to detect the head withdrawal threshold (HWT) of mice. Quantitative reverse transcription-polymerase chain, western blotting (WB), fluorescence in situ hybridization, and immunofluorescence (IF) staining were used to detect the expression and distribution of SCN2B and miR-6954-3p in the TG of mice. A luciferase activity assay was carried out to prove the binding between SCN2B messenger ribonucleic acid (mRNA) and miR-6954-3p. After the CCI-ION surgery, the levels of Scn2b mRNA and protein significantly increased and miR-6954-3p decreased in the TG of mice with decreasing HWT. IF staining revealed that SCN2B was expressed specifically in the TG neurons. Silencing SCN2B in the TG of CCI-ION mice significantly increased the HWT. Importantly, the 3'-untranslated region of Scn2b mRNA was proved to bind with miR-6954-3p. Fluorescence in situ hybridization and IF staining demonstrated that miR-6954-3p was expressed in TG neurons and co-expressed with SCN2B. Furthermore, intraganglionic injection of miR-6954-3p agomir into the TG of CCI-ION mice resulted in the downregulation of SCN2B and increased the HWT. These findings suggest that the downregulation of miR-6954-3p in the TG promotes orofacial neuropathic pain by promoting SCN2B expression following trigeminal nerve injury. PERSPECTIVE: This study points to the important role of SCN2B in orofacial neuropathic pain. Furthermore, miR-6954-3p is proven to regulate the expression of SCN2B by binding to the 3'-untranslated region of Scn2b mRNA. These findings indicate that SCN2B and miR-6954-3p are potential therapeutic targets for the treatment of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Honglin Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhonghan Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qingfeng Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajing Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chen Zhou
- Laboratory of Anesthesia and Critical Care Medicine & Translational Neuroscience Center & West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Iwata K, Hayashi Y, Hitomi S, Tsuboi Y, Shinoda M. Non-neuronal cells act as crucial players in neuropathic orofacial pain. J Oral Biosci 2024; 66:491-495. [PMID: 39032826 DOI: 10.1016/j.job.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Following peripheral nerve damage, various non-neuronal cells are activated, triggering accumulation in the peripheral and central nervous systems, and communicate with neurons. Evidence suggest that neuronal and non-neuronal cell communication is a critical mechanism of neuropathic pain; however, its detailed mechanisms in contributing to neuropathic orofacial pain development remain unclear. HIGHLIGHT Neuronal and non-neuronal cell communication in the trigeminal ganglion (TG) is believed to cause neuronal hyperactivation following trigeminal nerve damage, resulting in neuropathic orofacial pain. Trigeminal nerve damage activates and accumulates non-neuronal cells, such as satellite cells and macrophages in the TG and microglia, astrocytes, and oligodendrocytes in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). These non-neuronal cells release various molecules, contributing to the hyperactivation of TG, Vc, and C1-C2 nociceptive neurons. These hyperactive nociceptive neurons release molecules that enhance non-neuronal cell activation. This neuron and non-neuronal cell crosstalk causes hyperactivation of nociceptive neurons in the TG, Vc, and C1-C2. Here, we addressed previous and recent data on the contribution of neuronal and non-neuronal cell communication and its involvement in neuropathic orofacial pain development. CONCLUSION Previous and recent data suggest that neuronal and non-neuronal cell communication in the TG, Vc, and C1-C2 is a key mechanism that causes neuropathic orofacial pain associated with trigeminal nerve damage.
Collapse
Affiliation(s)
- Koichi Iwata
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Yoshinori Hayashi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Suzuro Hitomi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
10
|
Fu Q, Li H, Zhu Z, Li W, Ruan Z, Chang R, Wei H, Xu X, Xu X, Wu Y. Dock4 contributes to neuropathic pain by regulating spinal synaptic plasticity in mice. Front Mol Neurosci 2024; 17:1417567. [PMID: 39282658 PMCID: PMC11392915 DOI: 10.3389/fnmol.2024.1417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.
Collapse
Affiliation(s)
- Qiaochu Fu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuanxu Zhu
- Department of Gynaecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wencui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhihua Ruan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ruijie Chang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Huixia Wei
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xunliang Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang H, Wang H, Zheng W, Wang D, Sun C, Dong J, Yu W, Du Q. OTULIN's influence on neuroinflammation and pain modulation in trigeminal neuralgia. CNS Neurosci Ther 2024; 30:e70006. [PMID: 39169794 PMCID: PMC11339468 DOI: 10.1111/cns.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Trigeminal neuralgia (TN), marked by chronic pain from neural damage, is closely associated with inflammation. The role of OTULIN, a key regulator in inflammation and autophagy, is not fully understood in TN. The regulatory mechanism of OTULIN, a key protein involved in modulating inflammatory responses and autophagy processes, remains incompletely elucidated, particularly in the context of TN and neuroinflammation. METHODS An infraorbital nerve ligation-induced rat model of TN was used. OTULIN's expression was modulated using adenovirus vectors and short hairpin RNA. The impact on pain and inflammatory responses was assessed via quantitative real-time polymerase chain reaction, western blot, immunofluorescence, and transcriptomic analysis. RESULTS Enhanced OTULIN expression significantly increased head withdrawal thresholds and reduced pain sensitivity and neuroinflammatory markers in the model. Conversely, silencing OTULIN exacerbated pain and inflammation. Transcriptomic data revealed OTULINs influence on both inflammatory and autophagy pathways, specifically in suppressing NLR family pyrin domain containing 3 (NLRP3) inflammasome and promoting autophagy. In vitro experiments demonstrated OTULIN's inhibition of inflammatory markers in microglia and neurons. CONCLUSION OTULIN is crucial in modulating TN, reducing neuropathic pain and neuroinflammation by activating the autophagy pathway and inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Heng Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Wenhao Zheng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Ding Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Chenglong Sun
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Jun Dong
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| |
Collapse
|
12
|
Zhang W, Zhang X, Lei M, Zhang D, Qin G, Zhou J, Ji L, Chen L. Dopamine D2 Receptor Activation Blocks GluA2/ROS Positive Feedback Loop to Alienate Chronic-Migraine-Associated Pain Sensitization. Antioxidants (Basel) 2024; 13:725. [PMID: 38929165 PMCID: PMC11201052 DOI: 10.3390/antiox13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic migraine is a disabling disorder without effective therapeutic medicine. AMPA receptors have been proven to be essential to pathological pain and headaches, but the related regulatory mechanisms in chronic migraine have not yet been explored. In this study, we found that the level of surface GluA2 was reduced in chronic migraine rats. Tat-GluR23Y (a GluA2 endocytosis inhibitor) reduced calcium inward flow and weakened synaptic structures, thus alleviating migraine-like pain sensitization. In addition, the inhibition of GluA2 endocytosis reduced the calcium influx and alleviated mitochondrial calcium overload and ROS generation in primary neurons. Furthermore, our results showed that ROS can induce allodynia and GluA2 endocytosis in rats, thus promoting migraine-like pain sensitization. In our previous study, the dopamine D2 receptor was identified as a potential target in the treatment of chronic migraine, and here we found that dopamine D2 receptor activation suppressed chronic-migraine-related pain sensitization through blocking the GluA2/ROS positive feedback loop in vivo and in vitro. Additionally, ligustrazine, a core component of ligusticum chuanxiong, was shown to target the dopamine D2 receptor, thereby alleviating ROS production and abnormal nociception in CM rats. This study provides valuable insight into the treatment of chronic migraine.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Ming Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Lichun Ji
- Department of Respiration, The Thirteenth People’s Hospital of Chongqing, Chongqing 400016, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| |
Collapse
|
13
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
14
|
Liu Y, Liu F, Li Y, Li Y, Feng Y, Zhao J, Zhou C, Li C, Shen J, Zhang Y. LncRNA Anxa10-203 enhances Mc1r mRNA stability to promote neuropathic pain by recruiting DHX30 in the trigeminal ganglion. J Headache Pain 2024; 25:28. [PMID: 38433184 PMCID: PMC10910797 DOI: 10.1186/s10194-024-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.
Collapse
Affiliation(s)
- YaJing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YiKe Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YueLing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YuHeng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JiaShuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - ChunJie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JieFei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - YanYan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Lu W, Yang X, Zhong W, Chen G, Guo X, Ye Q, Xu Y, Qi Z, Ye Y, Zhang J, Wang Y, Wang X, Wang S, Zhao Q, Zeng W, Huang J, Ma H, Xie J. METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J Clin Invest 2024; 134:e174847. [PMID: 38319733 PMCID: PMC10940092 DOI: 10.1172/jci174847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guojun Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingqing Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaqi Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingyun Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shu Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junting Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Tiwari V, Hemalatha S. Sida cordifolia L. attenuates behavioral hypersensitivity by interfering with KIF17-NR2B signaling in rat model of neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117085. [PMID: 37640257 DOI: 10.1016/j.jep.2023.117085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sida cordifolia L., a perennial subshrub belonging to the Malvaceae family, holds noteworthy significance in the Indian Ayurvedic System and global texts. Roots of this plant are reported to be useful in neurodegenerative disorders, facial paralysis, and treating several neuropathic pain conditions such as neuralgia, and sciatica. However, despite these claims, there remains a dearth of experimental evidence showcasing the effectiveness of Sida cordifolia L. roots in mitigating neuropathic pain. AIM OF THE STUDY The primary objective of this study was to assess the analgesic properties of the whole extract (SCE) obtained from the roots of Sida cordifolia L., as well as its aqueous fraction (SAF) in rat model of chronic constriction injury (CCI)-induced neuropathic pain. Furthermore, in-depth phytochemical and molecular biology studies were conducted to identify the potential phytoconstituents and unveil the underlying mechanisms of action. MATERIAL AND METHODS DCM: Methanol (1:1) was used to extract the roots of Sida cordifolia L. to get whole extract (SCE) and was subjected to phytochemical investigations including LC-MS analysis. Analgesic potential of SCE was evaluated in chronic constriction injury (CCI) model of neuropathic pain in rats followed by its bioactivity guided fractionation using in-vitro anti-inflammatory assay and assessment of most potent fraction (SAF) in in-vivo pain model. We have also performed the detailed phytochemical and molecular biology investigations to delineate the mechanism of action of Sida cordifolia root extract. RESULTS Chronic constriction injury leads to significant decrease in paw withdrawal threshold and paw withdrawal latency indicating development of hypersensitivity in rodents. Treatment with SCE and its most potent aqueous fraction (SAF) leads to significant and dose-dependent reduction in pain-like behavior of nerve injured rats. Pro-inflammatory cytokines (TNF-α, IL-1β), glia cell markers (Iba1, ICAM1), neuropeptides (CGRP and Substance P), KIF-17 and NR2B expressions were found to be significantly upregulated in DRG and spinal cord of nerve injured rats. Treatment with SCE and SAF suppressed oxido-inflammatory cascade along with attenuation of KIF-17 mediated NR2B trafficking and neuroinflammation in DRG and spinal tissues of neuropathic rats. HPTLC and HR-MS analysis suggest betaine as major constituent in SAF which along with other phytoconstituents. CONCLUSIONS Both the whole extract (SCE) and the aqueous fraction (SAF) demonstrate a significant reduction in mechanical and thermal hypersensitivity by inhibiting KIF-17 mediated NR2B signaling in nerve injured rats and may be used as a potential alternative for the treatment of chronic pain. Our findings support the use of roots of Sida cordifolia L. in neuropathic pain conditions as acclaimed by its traditional use.
Collapse
Affiliation(s)
- Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Liu F, Zhang YH, Zhang YY, Lin J, Liu YJ, Li YL, Fang ZH, Liao HL, Wang H, Shen JF. Phosphorylation of the AMPARs regulated by protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) contribute to orofacial neuropathic pain. Brain Res 2023; 1820:148578. [PMID: 37709161 DOI: 10.1016/j.brainres.2023.148578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The α-amino-3-hydroxy-5-methylisoxazole-4-isoxazolepropionic acid receptor (AMPAR) has been recognized to play a vital role in the development of neuropathic pain. Recent studies have indicated that protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) are involved in the phosphorylation of AMPARs. However, whether PKC and PICK1 were involved in the AMPAR phosphorylation in the trigeminal ganglion (TG) to participate in orofacial neuropathic pain remains enigmatic. A behavioral test was utilized to evaluate the head withdrawal threshold (HWT) after chronic constriction injury of the infraorbital nerve (CCI-ION). The distribution and expression of GluA1, GluA2, PKC, and PICK1 were examined in the trigeminal ganglion (TG) by immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, immunoblotting, and co-immunoprecipitation. Intra-ganglionic injections of drugs were performed to investigate the regulation mechanism. The present study demonstrated that CCI-ION-induced mechanical allodynia was maintained over at least 21 days. GluA1 and GluA2 were mainly expressed in the neurons. Trigeminal nerve injury potentiated the phosphorylation of GluA1, GluA2, and PKC in the TG, which was prevented by inhibiting PKC with chelerythrine chloride. Additionally, PICK1 colocalized and interacted with GluA2 in the TG. Following blocking PICK1 with FSC-231, the phosphorylation of GluA2 decreased. Finally, inhibition of PKC and PICK1 both alleviated mechanical allodynia in the whisker pad of CCI-ION mice. In conclusion, activation of PKC and PICK1 contribute to orofacial allodynia by regulating AMPAR phosphorylation in the TG of male mice, which provides potential therapeutic targets for alleviating orofacial neuropathic pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Han Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Zhang BW, Dong H, Wu Z, Jiang X, Zou W. An Overview of the Mechanisms Involved in Neuralgia. J Inflamm Res 2023; 16:4087-4101. [PMID: 37745793 PMCID: PMC10516189 DOI: 10.2147/jir.s425966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
Neuralgia is a frequently occurring condition that causes chronic pain and burdens both patients and their families. Earlier research indicated that anti-inflammatory treatment, which was primarily utilized to address conditions like neuralgia, resulted in positive outcomes. However, recent years have witnessed the emergence of various novel mechanisms associated with pain-related disorders. This review provides a concise overview of the inflammatory mechanisms involved in neuralgia. It also examines recent advancements in research, exploring the influence of ion channels and synaptic proteins on neuralgia and its complications. Additionally, the interactions between these mechanisms are discussed with the aim of suggesting innovative therapeutic approaches and research directions for the management of neuralgia.
Collapse
Affiliation(s)
- Bai-Wen Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Hao Dong
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Zhe Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xi Jiang
- Jinzhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
19
|
Bonomini F, Favero G, Castrezzati S, Borsani E. Role of Neurotrophins in Orofacial Pain Modulation: A Review of the Latest Discoveries. Int J Mol Sci 2023; 24:12438. [PMID: 37569811 PMCID: PMC10419393 DOI: 10.3390/ijms241512438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Orofacial pain represents a multidisciplinary biomedical challenge involving basic and clinical research for which no satisfactory solution has been found. In this regard, trigeminal pain is described as one of the worst pains perceived, leaving the patient with no hope for the future. The aim of this review is to evaluate the latest discoveries on the involvement of neurotrophins in orofacial nociception, describing their role and expression in peripheral tissues, trigeminal ganglion, and trigeminal nucleus considering their double nature as "supporters" of the nervous system and as "promoters" of nociceptive transmission. In order to scan recent literature (last ten years), three independent researchers referred to databases PubMed, Embase, Google Scholar, Scopus, and Web of Science to find original research articles and clinical trials. The researchers selected 33 papers: 29 original research articles and 4 clinical trials. The results obtained by the screening of the selected articles show an interesting trend, in which the precise modulation of neurotrophin signaling could switch neurotrophins from being a "promoter" of pain to their beneficial neurotrophic role of supporting the nerves in their recovery, especially when a structural alteration is present, as in neuropathic pain. In conclusion, neurotrophins could be interesting targets for orofacial pain modulation but more studies are necessary to clarify their role for future application in clinical practice.
Collapse
Affiliation(s)
- Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|