1
|
Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z, Song W. FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res 2025; 20:2068-2083. [PMID: 39254567 DOI: 10.4103/nrr.nrr-d-23-01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/13/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00028/figure1/v/2024-09-09T124005Z/r/image-tiff Alzheimer's disease is characterized by deposition of amyloid-β, which forms extracellular neuritic plaques, and accumulation of hyperphosphorylated tau, which aggregates to form intraneuronal neurofibrillary tangles, in the brain. The NLRP3 inflammasome may play a role in the transition from amyloid-β deposition to tau phosphorylation and aggregation. Because NLRP3 is primarily found in brain microglia, and tau is predominantly located in neurons, it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines. Here, we found that neurons also express NLRP3 in vitro and in vivo, and that neuronal NLRP3 regulates tau phosphorylation. Using biochemical methods, we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons. In primary neurons and the neuroblastoma cell line Neuro2A, FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-β is present. In the brains of aged wild-type mice and a mouse model of Alzheimer's disease, FUBP3 expression was markedly increased in cortical neurons. Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses. We also found that FUBP3 trimmed the 5' end of DNA fragments that it bound, implying that FUBP3 functions in stress-induced responses. These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to-phospho-tau transition than microglial NLRP3, and that amyloid-β fundamentally alters the regulatory mechanism of NLRP3 expression in neurons. Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice, FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Kong Y, Cao L, Wang J, Zhuang J, Liu Y, Bi L, Qiu Y, Hou Y, Huang Q, Xie F, Yang Y, Shi K, Rominger A, Guan Y, Jin H, Ni R. Increased Cerebral Level of P2X7R in a Tauopathy Mouse Model by PET Using [ 18F]GSK1482160. ACS Chem Neurosci 2024; 15:2112-2120. [PMID: 38776461 PMCID: PMC11157487 DOI: 10.1021/acschemneuro.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Lei Cao
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
- Institute
for Regenerative Medicine, University of
Zurich, Zurich 8952, Switzerland
| | - Jiao Wang
- Lab
of Molecular
Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Junyi Zhuang
- Lab
of Molecular
Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yongshan Liu
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yifan Qiu
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yuyi Hou
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Qi Huang
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Fang Xie
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yunhao Yang
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Kuangyu Shi
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
| | - Axel Rominger
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
| | - Yihui Guan
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Hongjun Jin
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Ruiqing Ni
- Institute
for Regenerative Medicine, University of
Zurich, Zurich 8952, Switzerland
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
- Institute
for Biomedical Engineering, University of
Zurich & ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
4
|
Heavener K, Kabra K, Yidenk M, Bradshaw E. IL-1RA Disrupts ATP Activation of P2RX7 in Human Monocyte-Derived Microglia-like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588607. [PMID: 38645234 PMCID: PMC11030313 DOI: 10.1101/2024.04.08.588607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immune system has a dynamic role in neurodegenerative diseases, and purinergic receptors allow immune cells to recognize neuronal signaling, cell injury, or stress. Purinergic Receptor 7 (P2RX7) can modulate inflammatory cascades and its expression is upregulated in Alzheimer's disease (AD) brain tissue. P2RX7 expression is enriched in microglia, and elevated levels are found in microglia surrounding amyloid-beta plaques in the brain. While P2RX7 is thought to play a role in neurodegenerative diseases, how it modulates pathology and disease progression is not well understood. Here, we utilize a human monocyte-derived microglia-like cell (MDMi) model to interrogate P2RX7 activation and downstream consequences on microglia function. By using MDMi derived from human donors, we can examine how human donor variation impacts microglia function. We assessed P2RX7-driven IL1β and IL18 production and amyloid-beta peptide 1-42 (Aβ1-42) uptake levels. Our results show that ATP-stimulation of MDMi triggers upregulation of IL1β and IL18 expression. This upregulation of cytokine gene expression is blocked with the A740003 P2RX7 antagonist. We find that high extracellular ATP conditions also reduced MDMi capacity for Aβ1-42 uptake, and this loss of function is prevented through A740003 inhibition of P2RX7. In addition, pretreatment of MDMi with IL-1RA limited ATP-driven IL1β and IL18 gene expression upregulation, indicating that ATP immunomodulation of P2RX7 is IL-1R dependent. Aβ1-42 uptake was higher with IL-1RA pretreatment compared to ATP treatment alone, suggesting P2RX7 regulates phagocytic engulfment through IL-1 signaling. Overall, our results demonstrate that P2RX7 is a key response protein for high extracellular ATP in human microglia-like cells, and its function can be modulated by IL-1 signaling. This work opens the door to future studies examining anti-IL-1 biologics to increase the clearance of amyloid-beta.
Collapse
Affiliation(s)
- Kelsey Heavener
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Khushbu Kabra
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Maedot Yidenk
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth Bradshaw
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
5
|
Yang F, Beltran-Lobo P, Sung K, Goldrick C, Croft CL, Nishimura A, Hedges E, Mahiddine F, Troakes C, Golde TE, Perez-Nievas BG, Hanger DP, Noble W, Jimenez-Sanchez M. Reactive astrocytes secrete the chaperone HSPB1 to mediate neuroprotection. SCIENCE ADVANCES 2024; 10:eadk9884. [PMID: 38507480 PMCID: PMC10954207 DOI: 10.1126/sciadv.adk9884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Molecular chaperones are protective in neurodegenerative diseases by preventing protein misfolding and aggregation, such as extracellular amyloid plaques and intracellular tau neurofibrillary tangles in Alzheimer's disease (AD). In addition, AD is characterized by an increase in astrocyte reactivity. The chaperone HSPB1 has been proposed as a marker for reactive astrocytes; however, its astrocytic functions in neurodegeneration remain to be elucidated. Here, we identify that HSPB1 is secreted from astrocytes to exert non-cell-autonomous protective functions. We show that in human AD brain, HSPB1 levels increase in astrocytes that cluster around amyloid plaques, as well as in the adjacent extracellular space. Moreover, in conditions that mimic an inflammatory reactive response, astrocytes increase HSPB1 secretion. Concomitantly, astrocytes and neurons can uptake astrocyte-secreted HSPB1, which is accompanied by an attenuation of the inflammatory response in reactive astrocytes and reduced pathological tau inclusions. Our findings highlight a protective mechanism in disease conditions that encompasses the secretion of a chaperone typically regarded as intracellular.
Collapse
Affiliation(s)
- Fangjia Yang
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Katherine Sung
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Caoimhe Goldrick
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Cara L. Croft
- UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Agnes Nishimura
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Erin Hedges
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Farah Mahiddine
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Todd E. Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Beatriz G. Perez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Diane P. Hanger
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Department of Biomedical and Clinical Sciences, University of Exeter, Exeter, UK
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
6
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|