1
|
Podzolkov VI, Vetluzhskaya MV, Medvedev ID, Abramova AA, Kislenko GA. [Dyspnea in post-COVID-19 patients: A review]. TERAPEVT ARKH 2024; 96:706-712. [PMID: 39106515 DOI: 10.26442/00403660.2024.07.202785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
New coronavirus infection may lead to long-term consequences, particularly to post-COVID syndrome, one of the most common manifestations of which is dyspnea. Post-COVID-19 shortness of breath may persist from one to several months and even years that results in low quality of life of patients. The review highlights possible risk factors and causes of dyspnea in post-COVID period such as lung damage, cardiovascular pathology, hyperventilation syndrome, dysfunction of the autonomic nervous system, detraining, anemia, etc. The authors present data about COVID-19-associated causes of dyspnea and severity of acute COVID-19. The review emphasizes the importance of a multidisciplinary approach to the diagnosis and treatment of patients with shortness of breath in post-COVID-19 period.
Collapse
Affiliation(s)
- V I Podzolkov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Vetluzhskaya
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I D Medvedev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Abramova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - G A Kislenko
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
2
|
Rus CP, de Vries BEK, de Vries IEJ, Nutma I, Kooij JJS. Treatment of 95 post-Covid patients with SSRIs. Sci Rep 2023; 13:18599. [PMID: 37919310 PMCID: PMC10622561 DOI: 10.1038/s41598-023-45072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
After Covid-19 infection, 12.5% develops post-Covid-syndrome (PCS). Symptoms indicate numerous affected organ systems. After a year, chronic fatigue, dysautonomia and neurological and neuropsychiatric complaints predominate. In this study, 95 PCS patients were treated with selective serotonin reuptake inhibitors (SSRIs). This study used an exploratory questionnaire and found that two-thirds of patients had a reasonably good to strong response on SSRIs, over a quarter of patients had moderate response, while 10% reported no response. Overall, patients experienced substantial improved well-being. Brainfog and sensory overload decreased most, followed by chronic fatigue and dysautonomia. Outcomes were measured with three different measures that correlated strongly with each other. The response to SSRIs in PCS conditions was explained by seven possible neurobiological mechanisms based on recent literature on PCS integrated with already existing knowledge. Important for understanding these mechanisms is the underlying biochemical interaction between various neurotransmitter systems and parts of the immune system, and their dysregulation in PCS. The main link appears to be with the metabolic kynurenine pathway (KP) which interacts extensively with the immune system. The KP uses the same precursor as serotonin: tryptophan. The KP is overactive in PCS which maintains inflammation and which causes a lack of tryptophan. Finally, potential avenues for future research to advance this line of clinical research are discussed.
Collapse
Affiliation(s)
- Carla P Rus
- Independent Researcher, The Hague, The Netherlands.
| | | | - Ingmar E J de Vries
- Donders Institute, Radboud University, 6525 EN, Nijmegen, The Netherlands
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - J J Sandra Kooij
- Department of Psychiatry, Amsterdam UMC/VUMC, 1081 HJ, Amsterdam, The Netherlands
- PsyQ, 2593 HR, The Hague, The Netherlands
| |
Collapse
|
3
|
Thurner L, Fadle N, Regitz E, Preuss KD, Neumann F, Cetin O, Schormann C, Hoffmann MC, Herr C, Kheirodin P, Rixecker TM, Bals R, Muller S, Thurner B, Kessel C, Kabesch M, Bewarder M, Heyne K, Lensch C, Kos IA. Autoantibodies against SUMO1-DHX35 in long-COVID. J Transl Autoimmun 2022; 5:100171. [DOI: 10.1016/j.jtauto.2022.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
|
4
|
Gravelsina S, Vilmane A, Svirskis S, Rasa-Dzelzkaleja S, Nora-Krukle Z, Vecvagare K, Krumina A, Leineman I, Shoenfeld Y, Murovska M. Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2022; 13:928945. [PMID: 36300129 PMCID: PMC9589447 DOI: 10.3389/fimmu.2022.928945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease that is mainly diagnosed based on its clinical symptoms. Biomarkers that could facilitate the diagnosis of ME/CFS are not yet available; therefore, reliable and clinically useful disease indicators are of high importance. The aim of this work was to analyze the association between ME/CFS clinical course severity, presence of HHV-6A/B infection markers, and plasma levels of autoantibodies against adrenergic and muscarinic acetylcholine receptors. A total of 134 patients with ME/CFS and 33 healthy controls were analyzed for the presence of HHV-6A/B using PCRs, and antibodies against beta2-adrenergic receptors (β2AdR) and muscarinic acetylcholine receptors (M3 AChR and M4 AChR) using ELISAs. HHV-6A/B U3 genomic sequence in whole-blood DNA was detected in 19/31 patients with severe ME/CFS, in 18/73 moderate ME/CFS cases, and in 7/30 mild ME/CFS cases. Severity-related differences were found among those with a virus load of more than 1,000 copies/106 PBMCs. Although no disease severity-related differences in anti-β2AdR levels were observed in ME/CFS patients, the median concentration of these antibodies in plasma samples of ME/CFS patients was 1.4 ng/ml, while in healthy controls, it was 0.81 ng/ml, with a statistically significant increased level in those with ME/CFS (p = 0.0103). A significant difference of antibodies against M4 AChR median concentration was found between ME/CFS patients (8.15 ng/ml) and healthy controls (6.45 ng/ml) (p = 0.0250). The levels of anti-M4 plotted against disease severity did not show any difference; however, increased viral load correlates with the increase in anti-M4 level. ME/CFS patients with high HHV-6 load have a more severe course of the disease, thus confirming that the severity of the disease depends on the viral load—the course of the disease is more severe with a higher viral load. An increase in anti-M4 AchR and anti-β2AdR levels is detected in all ME/CFS patient groups in comparison to the control group not depending on ME/CFS clinical course severity. However, the increase in HHV-6 load correlates with the increase in anti-M4 level, and the increase in anti-M4 level, in turn, is associated with the increase in anti-β2AdR level. Elevated levels of antibodies against β2AdR and M4 receptors in ME/CFS patients support their usage as clinical biomarkers in the diagnostic algorithm of ME/CFS.
Collapse
Affiliation(s)
- Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
- *Correspondence: Sabine Gravelsina,
| | - Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | | | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Katrine Vecvagare
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Angelika Krumina
- Department of Infectology, Rīga Stradiņš University, Riga, Latvia
| | - Iana Leineman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
5
|
Hajiasgharzadeh K, Jafarlou M, Mansoori B, Dastmalchi N, Baradaran B, Khabbazi A. Inflammatory reflex disruption in COVID-19. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2022; 13:CEN312703. [PMID: 35600135 PMCID: PMC9111569 DOI: 10.1111/cen3.12703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, in late 2019 and caused coronavirus disease 2019 (COVID-19), which is still a global pandemic. In most infected people, SARS-CoV-2 can only cause moderate symptoms, while in other patients, it leads to severe illness and eventually death. Although the main clinical manifestation of COVID-19 is often seen in the lungs, this disease affects almost all body organs. The excessive and prolonged release of inflammatory cytokines that may occur in COVID-19 patients, known as cytokine storms, stimulates undesired immune responses and can cause various tissues damage. In the current review article, we focus on the potential advantages of the intrinsic cholinergic anti-inflammatory pathway (CAP) as the efferent arm of inflammatory reflex in COVID-19 management. Considering this endogenous protective mechanism against chronic inflammation, we focused on the effects of SARS-CoV-2 in the destruction of this anti-inflammatory system. Several studies indicated the interaction of SARS-CoV-2 with the alpha7 subtype of the nicotinic acetylcholine receptor as the effector molecule of the inflammatory reflex. On the other hand, neurological manifestations have increasingly been identified as significant extrapulmonary manifestations of COVID-19. The rational connection between these findings and COVID-19 pathogenesis may be an important issue in both our understanding and dealing with this disease. COVID-19 is deeply rooted in our daily life and requires an urgent need for the establishment of effective therapeutic options, and all the possible treatments must be considered for the control of such inflammatory conditions.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdi Jafarlou
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Pharmaceutical Analysis Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Pashnina IA, Krivolapova IM, Fedotkina TV, Ryabkova VA, Chereshneva MV, Churilov LP, Chereshnev VA. Antinuclear Autoantibodies in Health: Autoimmunity Is Not a Synonym of Autoimmune Disease. Antibodies (Basel) 2021; 10:9. [PMID: 33668697 PMCID: PMC8006153 DOI: 10.3390/antib10010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence of autoimmune diseases is increasing. Antinuclear antibody (ANA) testing is a critical tool for their diagnosis. However, ANA prevalence in healthy persons has increased over the last decades, especially among young people. ANA in health occurs in low concentrations, with a prevalence up to 50% in some populations, which demands a cutoff revision. This review deals with the origin and probable physiological or compensatory function of ANA in health, according to the concept of immunological clearance, theory of autoimmune regulation of cell functions, and the concept of functional autoantibodies. Considering ANA titers ≤1:320 as a serological marker of autoimmune diseases seems inappropriate. The role of anti-DFS70/LEDGFp75 autoantibodies is highlighted as a possible anti-risk biomarker for autoimmune rheumatic disorders. ANA prevalence in health is different in various regions due to several underlying causes discussed in the review, all influencing additive combinations according to the concept of the mosaic of autoimmunity. Not only are titers, but also HEp-2 IFA) staining patterns, such as AC-2, important. Accepting autoantibodies as a kind of bioregulator, not only the upper, but also the lower borders of their normal range should be determined; not only their excess, but also a lack of them or "autoimmunodeficiency" could be the reason for disorders.
Collapse
Affiliation(s)
- Irina A. Pashnina
- Regional Children’s Clinical Hospital, 620149 Yekaterinburg, Russia;
| | - Irina M. Krivolapova
- Regional Children’s Clinical Hospital, 620149 Yekaterinburg, Russia;
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| | - Tamara V. Fedotkina
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
| | - Varvara A. Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
| | - Margarita V. Chereshneva
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| | - Leonid P. Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| | - Valeriy A. Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| |
Collapse
|