1
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Myburgh-Jacobsz CE, Botha-Le Roux S, Kotliar K, Wentzel A, Jacobs A, De Boever P, Goswami N, Strijdom H, Smith W. Retinal Vessel Functional Responses in South Africans Living With and Without HIV: The EndoAfrica-NWU Study. Microcirculation 2024; 31:e12878. [PMID: 39106121 DOI: 10.1111/micc.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVES The effects of HIV and antiretroviral therapy (ART) on microvascular function are poorly explored. We compared retinal vessel functional responses to flicker light-induced provocation (FLIP) in people living with HIV (PLWH) and people living without HIV (PLWoutH). METHODS We included 115 PLWH and 51 PLWoutH with a median age of 41 years. Treated PLWH received similar first-line fixed-dose combination ART. Clinical characteristics and retinal vessels functional responses to FLIP were compared in (a) PLWH and PLWoutH; and (b) PLWH groups stratified by the median of (i) CD4-count (511 cells/mm3), (ii) viral load (50 copies/mL), and (iii) ART duration (57.6 months). RESULTS PLWH were older, smoked more, and had a lower prevalence of hypertension than PLWoutH (p < 0.05). Almost 64% of PLWH were infected for more than 5 years. Retinal vessel responses to FLIP were similar between PLWH and PLWoutH after taking confounders into account. In addition, PLWH subgroups stratified according to immuno-virological status by CD4-count, viral load, and ART duration showed no differences in retinal vessel responses to FLIP. CONCLUSION Living with HIV and receiving ART were not associated with altered microvascular function as assessed with dynamic retinal vessel analysis in a South African case-control study.
Collapse
Affiliation(s)
| | - Shani Botha-Le Roux
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Juelich, Germany
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Hans Strijdom
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Liu C, Cárdenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:78. [PMID: 38600598 PMCID: PMC11005245 DOI: 10.1186/s13195-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shayna Teitelbaum
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Austin Birmingham
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammed Alfadhel
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad A Yaseen
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Li H, Terrando N, Gelbard HA. Infectious Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:423-444. [PMID: 39207706 DOI: 10.1007/978-3-031-55529-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, brain-resident innate immune cells, have been extensively studied in neurodegenerative contexts like Alzheimer's disease. The Coronavirus disease 2019 (COVID-19) pandemic highlighted how peripheral infection and inflammation can be detrimental to the neuroimmune milieu and initiate microgliosis driven by peripheral inflammation. Microglia can remain deleterious to brain health by sustaining inflammation in the central nervous system even after the clearance of the original immunogenic agents. In this chapter, we discuss how pulmonary infection with Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) can lead to neurovascular and neuroimmune inflammation causing the neurological syndrome of post-acute sequelae of COVID-19 (PASC). Further, we incorporate lessons from the Human Immunodeficiency Virus' (HIV's) effects on microglial functioning in the era of combined antiretroviral therapies (cART) that contribute to HIV-1 associated neurocognitive disorders (HAND). Finally, we describe roles for mixed lineage kinase 3 (MLK3) and leucine-rich repeat kinase (LRRK2) as key regulators of multiple inflammatory and apoptotic pathways important to the pathogenesis of PASC and HAND. Inhibition of these pathways provides a therapeutically synergistic method of treating both PASC and HAND.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Liu C, Cardenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562353. [PMID: 37905082 PMCID: PMC10614808 DOI: 10.1101/2023.10.16.562353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccaride-induced neuroinflammation. Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
|
7
|
Hao G, Conzen-Dilger C, Schmidt TP, Harder E, Schöps M, Clauser JC, Schubert GA, Lindauer U. Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats. Front Cell Neurosci 2023; 17:1115385. [PMID: 37502465 PMCID: PMC10368889 DOI: 10.3389/fncel.2023.1115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.
Collapse
Affiliation(s)
- Guangshan Hao
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Catharina Conzen-Dilger
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Philip Schmidt
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ekaterina Harder
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Malte Schöps
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Brier LM, Chen S, Sherafati A, Bice AR, Lee JM, Culver JP. Transient disruption of functional connectivity and depression of neural fluctuations in a mouse model of acute septic encephalopathy. Cereb Cortex 2023; 33:3548-3561. [PMID: 35972424 PMCID: PMC10068285 DOI: 10.1093/cercor/bhac291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Septic encephalopathy leads to major and costly burdens for a large percentage of admitted hospital patients. Elderly patients are at an increased risk, especially those with dementia. Current treatments are aimed at sedation to combat mental status changes and are not aimed at the underlying cause of encephalopathy. Indeed, the underlying pathology linking together peripheral infection and altered neural function has not been established, largely because good, acutely accessible readouts of encephalopathy in animal models do not exist. Behavioral testing in animals lasts multiple days, outlasting the time frame of acute encephalopathy. Here, we propose optical fluorescent imaging of neural functional connectivity (FC) as a readout of encephalopathy in a mouse model of acute sepsis. Imaging and basic behavioral assessment were performed at baseline, Hr8, Hr24, and Hr72 following injection of either lipopolysaccharide or phosphate buffered saline. Neural FC strength decreased at Hr8 and returned to baseline by Hr72 in motor, somatosensory, parietal, and visual cortical regions. Additionally, neural fluctuations transiently declined at Hr8 and returned to baseline by Hr72. Both FC strength and fluctuation tone correlated with neuroscore indicating this imaging methodology is a sensitive and acute readout of encephalopathy.
Collapse
Affiliation(s)
- L M Brier
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Sherafati
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO 63110, USA
| | - A R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J M Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63110, USA
- Department of Electrical and Systems Engineering, Washington University School of Engineering, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Stachulski AV, Knausenberger TBA, Shah SN, Hoyles L, McArthur S. A host-gut microbial amino acid co-metabolite, p-cresol glucuronide, promotes blood-brain barrier integrity in vivo. Tissue Barriers 2023; 11:2073175. [PMID: 35596559 PMCID: PMC9870004 DOI: 10.1080/21688370.2022.2073175] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sequential activity of gut microbial and host processes can exert a powerful modulatory influence on dietary components, as exemplified by the metabolism of the amino acids tyrosine and phenylalanine to p-cresol by gut microbes, and then to p-cresol glucuronide (pCG) by host enzymes. Although such glucuronide conjugates are classically thought to be biologically inert, there is accumulating evidence that this may not always be the case. We investigated the activity of pCG, studying its interactions with the cerebral vasculature and the brain in vitro and in vivo. Male C57Bl/6 J mice were used to assess blood-brain barrier (BBB) permeability and whole-brain transcriptomic changes in response to pCG treatment. Effects were then further explored using the human cerebromicrovascular endothelial cell line hCMEC/D3, assessing paracellular permeability, transendothelial electrical resistance and barrier protein expression. Mice exposed to pCG showed reduced BBB permeability and significant changes in whole-brain transcriptome expression. Surprisingly, treatment of hCMEC/D3 cells with pCG had no notable effects until co-administered with bacterial lipopolysaccharide, at which point it was able to prevent the permeabilizing effects of endotoxin. Further analysis suggested that pCG acts as an antagonist at the principal lipopolysaccharide receptor TLR4. The amino acid phase II metabolic product pCG is biologically active at the BBB, antagonizing the effects of constitutively circulating lipopolysaccharide. These data add to the growing literature showing glucuronide conjugates to be more than merely metabolic waste products and highlight the complexity of gut microbe to host communication pathways underlying the gut-brain axis.
Collapse
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories, University of Liverpool, Liverpool, UK,contact Lesley Hoyles Department of Bioscience, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Tobias B-A Knausenberger
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK
| | - Sita N. Shah
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK
| | - Lesley Hoyles
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK,CONTACT Simon McArthur Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, 4, Newark Street, LondonE1 2AT, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK,Andrew V. Stachulski Department of Chemistry, Robert Robinson Laboratories, University of Liverpool, LiverpoolL69 7ZD, UK
| |
Collapse
|
10
|
Fruekilde SK, Bailey CJ, Lambertsen KL, Clausen BH, Carlsen J, Xu NL, Drasbek KR, Gutiérrez-Jiménez E. Disturbed microcirculation and hyperaemic response in a murine model of systemic inflammation. J Cereb Blood Flow Metab 2022; 42:2303-2317. [PMID: 35999817 PMCID: PMC9670001 DOI: 10.1177/0271678x221112278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of 'capillary stalls'-a phenomenon previously reported in animal models of stroke and Alzheimer's disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.
Collapse
Affiliation(s)
- Signe Kirk Fruekilde
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Christopher J Bailey
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, 6174University of Southern Denmark, Odense C, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, 6174University of Southern Denmark, Odense C, Denmark.,Department of Neurology, Odense University Hospital, Odense C, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, 6174University of Southern Denmark, Odense C, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, 6174University of Southern Denmark, Odense C, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine (MMF), Department of Clinical Medicine, 1006Aarhus University, Aarhus N, Denmark
| | - Ning-Long Xu
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Kim Ryun Drasbek
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark
| |
Collapse
|
11
|
Schenck H, Netti E, Teernstra O, De Ridder I, Dings J, Niemelä M, Temel Y, Hoogland G, Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol 2021; 9:731641. [PMID: 34540844 PMCID: PMC8446455 DOI: 10.3389/fcell.2021.731641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
The glycocalyx is an important constituent of blood vessels located between the bloodstream and the endothelium. It plays a pivotal role in intercellular interactions in neuroinflammation, reduction of vascular oxidative stress, and provides a barrier regulating vascular permeability. In the brain, the glycocalyx is closely related to functions of the blood-brain barrier and neurovascular unit, both responsible for adequate neurovascular responses to potential threats to cerebral homeostasis. An aneurysmal subarachnoid hemorrhage (aSAH) occurs following rupture of an intracranial aneurysm and leads to immediate brain damage (early brain injury). In some cases, this can result in secondary brain damage, also known as delayed cerebral ischemia (DCI). DCI is a life-threatening condition that affects up to 30% of all aSAH patients. As such, it is associated with substantial societal and healthcare-related costs. Causes of DCI are multifactorial and thought to involve neuroinflammation, oxidative stress, neuroinflammation, thrombosis, and neurovascular uncoupling. To date, prediction of DCI is limited, and preventive and effective treatment strategies of DCI are scarce. There is increasing evidence that the glycocalyx is disrupted following an aSAH, and that glycocalyx disruption could precipitate or aggravate DCI. This review explores the potential role of the glycocalyx in the pathophysiological mechanisms contributing to DCI following aSAH. Understanding the role of the glycocalyx in DCI could advance the development of improved methods to predict DCI or identify patients at risk for DCI. This knowledge may also alter the methods and timing of preventive and treatment strategies of DCI. To this end, we review the potential and limitations of methods currently used to evaluate the glycocalyx, and strategies to restore or prevent glycocalyx shedding.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Inger De Ridder
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jim Dings
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Ochoa-Sanchez R, Tamnanloo F, Rose CF. Hepatic Encephalopathy: From Metabolic to Neurodegenerative. Neurochem Res 2021; 46:2612-2625. [PMID: 34129161 DOI: 10.1007/s11064-021-03372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Farzaneh Tamnanloo
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada.
| |
Collapse
|
13
|
Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020; 21:E9155. [PMID: 33271778 PMCID: PMC7730047 DOI: 10.3390/ijms21239155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecular biology in neurocritical care (NCC) is expanding rapidly and recognizing the important contribution of neuroinflammation, specifically changes in immunometabolism, towards pathological disease processes encountered across all illnesses in the NCC. Additionally, the importance of individualized inflammatory responses has been emphasized, acknowledging that not all individuals have the same mechanisms contributing towards their presentation. By understanding cellular processes that drive disease, we can make better personalized therapy decisions to improve patient outcomes. While the understanding of these cellular processes is evolving, the ability to measure such cellular responses at bedside to make acute care decisions is lacking. In this overview, we review cellular mechanisms involved in pathological neuroinflammation with a focus on immunometabolic dysfunction and review non-invasive bedside tools that have the potential to measure indirect and direct markers of shifts in cellular metabolism related to neuroinflammation. These tools include near-infrared spectroscopy, transcranial doppler, elastography, electroencephalography, magnetic resonance imaging and spectroscopy, and cytokine analysis. Additionally, we review the importance of genetic testing in providing information about unique metabolic profiles to guide individualized interpretation of bedside data. Together in tandem, these modalities have the potential to provide real time information and guide more informed treatment decisions.
Collapse
Affiliation(s)
| | | | - Michael J. Esser
- Alberta Children’s Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada; (K.E.W.); (P.d.J.)
| |
Collapse
|