1
|
Li M, Morse B, Kassim S. Development and clinical translation considerations for the next wave of gene modified hematopoietic stem and progenitor cells therapies. Expert Opin Biol Ther 2022; 22:1177-1191. [PMID: 35833356 DOI: 10.1080/14712598.2022.2101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Consistent and reliable manufacture of gene modified hematopoietic stem and progenitor cell (HPSC) therapies will be of the utmost importance as they become more mainstream and address larger populations. Robust development campaigns will be needed to ensure that these products will be delivered to patients with the highest quality standards. AREAS COVERED Through publicly available manuscripts, press releases, and news articles - this review touches on aspects related to HSPC therapy, development, and manufacturing. EXPERT OPINION Recent advances in genome modification technology coupled with the longstanding clinical success of HSPCs warrants great optimism for the next generation of engineered HSPC-based therapies. Treatments for some diseases that have thus far been intractable now appear within reach. Reproducible manufacturing will be of critical importance in delivering these therapies but will be challenging due to the need for bespoke materials and methods in combination with the lack of off-the-shelf solutions. Continued progress in the field will manifest in the form of industrialization which currently requires attention and resources directed toward the custom reagents, a focus on closed and automated processes, and safer and more precise genome modification technologies that will enable broader, faster, and safer access to these life-changing therapies.
Collapse
Affiliation(s)
| | - Brent Morse
- Dark Horse Consulting Group, Walnut Creek, CA, USA
| | | |
Collapse
|
2
|
Yadav P, Vats R, Bano A, Bhardwaj R. Hematopoietic Stem Cells Culture, Expansion and Differentiation: An Insight into Variable and Available Media. Int J Stem Cells 2020; 13:326-334. [PMID: 32840223 PMCID: PMC7691860 DOI: 10.15283/ijsc19157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to differentiation and self-renewal capacity, hematopoietic stem cells clasp potentiality to engender all blood cell types, leading to their immense competence to play a diverse role in therapeutic applications. Although these stem cells are the most investigated and exploited until now, further research is still essential to comprehend their nature, fate, and potential. Enhanced usage of hematopoietic stem cells in research and therapeutics intensified the requirement of expansion and differentiation of hematopoietic stem cells under in vitro conditions. Since these cells remain in senescence for a prolonged period before isolation, selection of appropriate growth medium along with supplements and culture conditions are crucial to initiate their cell division and to designate their destiny. The precise equilibrium between self-renewal and differentiation of stem cells sustained by exclusive medium along with special growth or differentiation factors is accountable for generating diverse cell lineages. Maintenance of hematopoietic stem and progenitor cell lines along with the advancement of research work generate an inexorable demand for production and commercialization of specialized stem cell culture media, with or without serum along with specific growth factors and supplements. Media commercialization for precise stem cell types, culturing and differentiation is a cost-effective developing field. Here in this review, we are assembling various types of hematopoietic stem cell self-renewal, expansion and differentiation media along with supplements and culture conditions, either developed and used by various scientists or are available commercially.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
3
|
Liu Q, Yang W, Luo N, Liu J, Wu Y, Ding J, Li C, Cheng Z. LPS and IL-8 activated umbilical cord blood-derived neutrophils inhibit the progression of ovarian cancer. J Cancer 2020; 11:4413-4420. [PMID: 32489460 PMCID: PMC7255365 DOI: 10.7150/jca.41035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Immunotherapy including immune checkpoint blockade, cancer vaccines, and adoptive cell therapy. However, no immune therapies support ovarian cancer. It is not clear whether the neutrophils, the component of the immune system derived from umbilical cord blood play a role in inhibiting the progression of ovarian cancer. Methods: We investigate the impact of LPS and IL-8 activated neutrophils derived from umbilical cord blood(UCB)on ovarian cancer progression. After co-culture LPS and IL-8 activated UCB-derived neutrophils with ovarian cancer cell line SKOV3 and OVCAR3, CCK8, Transwell assay, and Flow Cytometry was performed to detect cell proliferation, migration, invasion, and apoptosis of ovarian cancer cell lines SKOV3 and OVCAR3. Furthermore, RT-PCR and western blotting assay were used to analyze the mechanism of metastasis and apoptosis of ovarian cancer cell lines respectively to support previous function experiments. Results: We demonstrate LPS and IL-8 activated neutrophils derived from umbilical cord blood inhibit proliferation, invasion migration and promote apoptosis of SKOV3 and OVCAR3. Meanwhile, LPS and IL-8 activated UCB-derived neutrophils significantly decreased BAX and increased BCL2 expression in SKOV3 and OVCAR3 which account for the mechanism of apoptosis. Moreover, LPS and IL-8 activated UCB derived neutrophils significantly up-regulated E-cadherin and downregulated N-cadherin, MMP2 expression in SKOV3 and OVCAR3. Conclusion: Taken together, these results approved that LPS and IL-8 activated neutrophils from UCB may be the novel strategy in immune therapy for ovarian cancer.
Collapse
Affiliation(s)
- Qi Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Institute of Gynecological Minimally Invasive Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 2015; 6:26. [PMID: 25886612 PMCID: PMC4357059 DOI: 10.1186/s13287-015-0010-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
The overall clinical cardiac regeneration experience suggests that stem cell therapy can be safely performed, but it also underlines the need for reproducible results for their effective use in a real-world scenario. One of the significant challenges is the identification and selection of the best suited stem cell type for regeneration therapy. Bone marrow mononuclear cells, bone marrow-derived mesenchymal stem cells, resident or endogenous cardiac stem cells, endothelial progenitor cells and induced pluripotent stem cells are some of the stem cell types which have been extensively tested for their ability to regenerate the lost myocardium. While most of these cell types are being evaluated in clinical trials for their safety and efficacy, results show significant heterogeneity in terms of efficacy. The enthusiasm surrounding regenerative medicine in the heart has been dampened by the reports of poor survival, proliferation, engraftment, and differentiation of the transplanted cells. Therefore, the primary challenge is to create clearcut evidence on what actually drives the improvement of cardiac function after the administration of stem cells. In this review, we provide an overview of different types of stem cells currently being considered for cardiac regeneration and discuss why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation. Next, we discuss how the experimental variables (type of disease, marker-based selection and use of different isolation techniques) can influence the study outcome. Finally, we provide an outline of the molecular and genetic approaches to increase the functional ability of stem cells before and after transplantation.
Collapse
Affiliation(s)
- Parul Dixit
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| |
Collapse
|
5
|
Lee EJ, Godara P, Haylock D. Biomanufacture of human platelets for transfusion: Rationale and approaches. Exp Hematol 2014; 42:332-46. [DOI: 10.1016/j.exphem.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022]
|
6
|
van Veen T, Hunt JA. Tissue engineering red blood cells: a therapeutic. J Tissue Eng Regen Med 2014; 9:760-70. [DOI: 10.1002/term.1885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Theun van Veen
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - John A. Hunt
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| |
Collapse
|
7
|
Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2013; 2:830-8. [PMID: 24101670 DOI: 10.5966/sctm.2013-0071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.
Collapse
Affiliation(s)
- Patricia Flores-Guzmán
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Andrade PZ, dos Santos F, Cabral JMS, da Silva CL. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 2013; 9:988-1003. [PMID: 23564692 DOI: 10.1002/term.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Umbilical cord blood (UCB) transplantation has observed a significant increase in recent years, due to the unique features of UCB haematopoietic stem/progenitor cells (HSCs) for the treatment of blood-related disorders. However, the low cell numbers available per UCB unit significantly impairs the widespread use of this source for transplantation of adult patients, resulting in graft failure, delayed engraftment and delayed immune reconstitution. In order to overcome this issue, distinct approaches are now being considered in clinical trials, such as double-UCB transplantation, intrabone injection or ex vivo expansion. In this article the authors review the current state of the art, future trends and challenges on the ex vivo expansion of UCB HSCs, focusing on culture parameters affecting the yield and quality of the expanded HSC grafts: novel HSC selection schemes prior to cell culture, cytokine/growth factor cocktails, the impact of biochemical factors (e.g. O2 ) or the addition of supportive cells, e.g. mesenchymal stem/stromal cell (MSC)-based feeder layers) were addressed. Importantly, a critical challenge in cellular therapy is still the scalability, reproducibility and control of the expansion process, in order to meet the clinical requirements for therapeutic applications. Efficient design of bioreactor systems and operation modes are now the focus of many bioengineers, integrating the increasing 'know-how' on HSC biology and physiology, while complying with the GMP standards for the production of cellular products, i.e. through the use of commercially available, highly controlled, disposable technologies.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Francisco dos Santos
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
9
|
Ramesh B, Guhathakurta S. Large-scale in-vitro expansion of RBCs from hematopoietic stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2012; 41:42-51. [PMID: 22834784 DOI: 10.3109/10731199.2012.702315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The quest for RBCs in transfusion medicine has prompted scientists to explore the large-scale expansion of human RBCs from various sources. The successful production of RBCs in the laboratory depends on the selection of potential cell source, optimized culture, bio-physiological parameters, clinically applicable culture media that yields a scalable, contamination-free, non-reactive, non-tumorogenic, stable and functional end product. The expansion protocol considering the in vivo factors involved in homeostasis can generate a cost-effective and readily available cell source for transfusion. This review paper discusses several approaches used to expand RBCs from various sources of stem cells.
Collapse
Affiliation(s)
- Balasundari Ramesh
- Department of Stem Cells and Tissue Engineering, Frontier Life Line Pvt Ltd., Mugappair, Chennai, India
| | | |
Collapse
|
10
|
RNAi screen identifies MAPK14 as a druggable suppressor of human hematopoietic stem cell expansion. Blood 2012; 119:6255-8. [DOI: 10.1182/blood-2012-01-403949] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells, using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.
Collapse
|
11
|
Ventura Ferreira MS, Labude N, Walenda G, Adamzyk C, Wagner W, Piroth D, Müller AM, Knüchel R, Hieronymus T, Zenke M, Jahnen-Dechent W, Neuss S. Ex vivoexpansion of cord blood-CD34+cells using IGFBP2and Angptl-5 impairs short-term lymphoid repopulationin vivo. J Tissue Eng Regen Med 2012; 7:944-54. [DOI: 10.1002/term.1486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | - Norina Labude
- Institute of Pathology; RWTH Aachen University; Germany
| | - Gudrun Walenda
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | | | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | - Daniela Piroth
- Department for Gynecology; RWTH Aachen University; Germany
| | - Albrecht M. Müller
- Institute for Medical Radiation and Cell Research; University of Würzburg; Germany
| | - Ruth Knüchel
- Institute of Pathology; RWTH Aachen University; Germany
| | - Thomas Hieronymus
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Martin Zenke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| | - Sabine Neuss
- Institute of Pathology; RWTH Aachen University; Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| |
Collapse
|
12
|
Blake JM, Nicoud IB, Weber D, Voorhies H, Guthrie KA, Heimfeld S, Delaney C. Improved immunomagnetic enrichment of CD34(+) cells from umbilical cord blood using the CliniMACS cell separation system. Cytotherapy 2012; 14:818-22. [PMID: 22548696 DOI: 10.3109/14653249.2012.681040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS CD34(+) enrichment from cord blood units (CBU) is used increasingly in clinical applications involving ex vivo expansion. The CliniMACS instrument from Miltenyi Biotec is a current good manufacturing practice (cGMP) immunomagnetic selection system primarily designed for processing larger numbers of cells: a standard tubing set (TS) can process a maximum of 60 billion cells, while the larger capacity tubing set (LS) will handle 120 billion cells. In comparison, most CBU contain only 1-2 billion cells, raising a question regarding the optimal tubing set for CBU CD34(+) enrichment. We compared CD34(+) cell recovery and overall viability after CliniMACS processing of fresh CBU with either TS or LS. METHODS Forty-six freshly collected CBU (≤ 36 h) were processed for CD34(+) enrichment; 22 consecutive units were selected using TS and a subsequent 24 processed with LS. Cell counts and immunophenotyping were performed pre- and post-selection to assess total nucleated cells (TNC), viability and CD34(+) cell content. RESULTS Two-sample t-tests of mean CD34(+) recovery and viability revealed significant differences in favor of LS (CD34(+) recovery, LS = 56%, TS = 45%, P = 0.003; viability, LS = 74%, TS = 59%, P = 0.011). Stepwise linear regression, considering pre-processing unit age, viability, TNC and CD34(+) purity, demonstrated statistically significant correlations only with the tubing set used and age of unit. CONCLUSIONS For CD34(+) enrichment from fresh CBU, LS provided higher post-selection viability and more efficient recovery. In this case, a lower maximum TNC specification of TS was not predictive of better performance. The same may hold for smaller scale enrichment of other cell types with the CliniMACS instrument.
Collapse
Affiliation(s)
- Joseph M Blake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Balaji S, Kumar R, Sripriya R, Kakkar P, Ramesh DV, Reddy PNK, Sehgal P. Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.02.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS. Stem cell cultivation in bioreactors. Biotechnol Adv 2011; 29:815-29. [PMID: 21726624 DOI: 10.1016/j.biotechadv.2011.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/11/2011] [Accepted: 06/12/2011] [Indexed: 12/22/2022]
Abstract
Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches.
Collapse
Affiliation(s)
- Carlos A V Rodrigues
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
15
|
Timmins NE, Nielsen LK. Manufactured RBC--rivers of blood, or an oasis in the desert? Biotechnol Adv 2011; 29:661-6. [PMID: 21609758 DOI: 10.1016/j.biotechadv.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/26/2011] [Accepted: 05/08/2011] [Indexed: 12/29/2022]
Abstract
Red blood cell (RBC) transfusion is an essential practice in modern medicine, one that is entirely dependent on the availability of donor blood. Constraints in donor supply have led to proposals that transfusible RBC could be manufactured from stem cells. While it is possible to generate small amounts of RBC in vitro, very large numbers of cells are required to be of clinical significance. We explore the challenges facing large scale manufacture of RBC and technological developments required for such a scenario to be realised.
Collapse
Affiliation(s)
- N E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|
16
|
Abstract
Once considered biological waste, umbilical cord blood (UCB) has become an accepted source of haematopoietic stem cells (HSCs). With initial success in the pediatric setting, UCB transplantation continues to gain favor in the adult patient population. Novel approaches to UCB transplantation include use of two units and a variety of graft manipulations. Additional uses for UCB are currently being explored and include applications in regenerative medicine and immunotherapy.
Collapse
Affiliation(s)
- D H McKenna
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | | |
Collapse
|
17
|
Andrade-Zaldívar H, Kalixto-Sánchez MA, de la Rosa APB, De León-Rodríguez A. Expansion of Human Hematopoietic Cells from Umbilical Cord Blood Using Roller Bottles in CO2and CO2-Free Atmosphere. Stem Cells Dev 2011; 20:593-8. [DOI: 10.1089/scd.2010.0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hera Andrade-Zaldívar
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | | | - Ana P. Barba de la Rosa
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Antonio De León-Rodríguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| |
Collapse
|
18
|
Marturana F, Timmins NE, Nielsen LK. Short-term exposure of umbilical cord blood CD34+ cells to granulocyte–macrophage colony-stimulating factor early in culture improves ex vivo expansion of neutrophils. Cytotherapy 2011; 13:366-77. [DOI: 10.3109/14653249.2010.518610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Kirouac DC, Ito C, Csaszar E, Roch A, Yu M, Sykes EA, Bader GD, Zandstra PW. Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol 2011; 6:417. [PMID: 20924352 PMCID: PMC2990637 DOI: 10.1038/msb.2010.71] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/27/2010] [Indexed: 12/17/2022] Open
Abstract
We have integrated gene expression profiling with database and literature mining, mechanistic modeling, and cell culture experiments to identify intercellular and intracellular networks regulating blood stem cell self-renewal. Blood stem cell fate in vitro is regulated non-autonomously by a coupled positive–negative intercellular feedback circuit, composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). The antagonistic signals converge in a core intracellular network focused around PI3K, Raf, PLC, and Akt. Model simulations enable functional classification of the novel endogenous ligands and signaling molecules.
Intercellular (between cell) communication networks are required to maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the recognized importance of intercellular networks in regulating adult stem and progenitor cell fate, the specific cell populations involved, and the underlying molecular mechanisms are largely undefined. Although a limited number of studies have applied novel bioinformatic approaches to unravel intercellular signaling in other cell systems (Frankenstein et al, 2006), a comprehensive analysis of intercellular communication in a stem cell-derived, hierarchical tissue network has yet to be reported. As a model system to explore intercellular communication networks in a hierarchically organized tissue, we cultured human umbilical cord blood (UCB)-derived stem and progenitor cells in defined, minimal cytokine-supplemented liquid culture (Madlambayan et al, 2006). To systematically explore the molecular and cellular dynamics underlying primitive progenitor growth and differentiation, gene expression profiles of primitive (lineage negative; Lin−) and mature (lineage positive; Lin+) populations were generated during phases of stem cell expansion versus depletion. Parallel phenotypic and subproteomic experiments validated that mRNA expression correlated with complex measures of proteome activity (protein secretion and cell surface expression). Using a curated list of secreted ligand–receptor interactions and published expression profiles of purified mature blood populations, we implemented a novel algorithm to reconstruct the intercellular signaling networks established between stem cells and multi-lineage progeny in vitro. By correlating differential expression patterns with stem cell growth, we predict cell populations, pathways, and secreted ligands associated with stem cell self-renewal and differentiation (Figure 3A). We then tested the correlative predictions in a series of cell culture experiments. UCB progenitor cell cultures were supplemented with saturating amounts of 18 putative regulatory ligands, or cocultured with purified mature blood lineages (megakaryocytes, monocytes, and erythrocytes), and analyzed for effects on total cell, progenitor, and primitive progenitor growth. At the primitive progenitor level, 3/5 novel predicted stimulatory ligands (EGF, PDGFB, and VEGF) displayed significant positive effects, 5/7 predicted inhibitory factors (CCL3, CCL4, CXCL10, TNFSF9, and TGFB2) displayed negative effects, whereas only 1/5 non-correlated ligand (CXCL7) displayed an effect. Also consistent with predictions from gene expression data, megakaryocytes and monocytes were found to stimulate and inhibit primitive progenitor growth, respectively, and these effects were attributable to differential secretome profiles of stimulatory versus inhibitory ligands. Cellular responses to external stimuli, particularly in heterogeneous and dynamic cell populations, represent complex functions of multiple cell fate decisions acting both directly and indirectly on the target (stem cell) populations. Experimentally distinguishing the mode of action of cytokines is thus a difficult task. To address this we used our previously published interactive model of hematopoiesis (Kirouac et al, 2009) to classify experimentally identified regulatory ligands into one of four distinct functional categories based on their differential effects on cell population growth. TGFB2 was classified as a proliferation inhibitor, CCL4, CXCL10, SPARC, and TNFSF9 as self-renewal inhibitors, CCL3 a proliferation stimulator, and EGF, VEGF, and PDGFB as self-renewal stimulators. Stem and progenitor cells exposed to combinatorial extracellular signals must propagate this information through intracellular molecular networks, and respond appropriately by modifying cell fate decisions. To explore how our experimentally identified positive and negative regulatory signals are integrated at the intracellular level, we constructed a blood stem cell self-renewal signaling network through extensive literature curation and protein–protein interaction (PPI) network mapping. We find that signal transduction pathways activated by the various stimulatory and inhibitory ligands converge on a limited set of molecular control nodes, forming a core subnetwork enriched for known regulators of self-renewal (Figure 6A). To experimentally test the intracellular signaling molecules computationally predicted as regulators of stem cell self-renewal, we obtained five small molecule antagonists against the kinases Phosphatidylinositol 3-kinase (PI3K), Raf, Akt, Phospholipase C (PLC), and MEK1. Liquid cultures were supplemented with the five molecules individually, and resultant cell population outputs compared against model simulations to deconvolute the functional effects on proliferation (and survival) versus self-renewal. This analysis classifies inhibition of PI3K and Raf activity as selectively targeting self-renewal, PLC as selectively targeting survival, and Akt as selectively targeting proliferation; MEK inhibition appears non-specific for these processes. This represents the first systematic characterization of how cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny. The complex intercellular communication networks can be approximated as an antagonistic positive–negative feedback circuit, wherein progenitor expansion is modulated by a balance of megakaryocyte-derived stimulatory factors (EGF, PDGF, VEGF, and possibly serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). This complex milieu of endogenous regulatory signals is integrated and processed within a core intracellular signaling network, resulting in modulation of cell-level kinetic parameters (proliferation, survival, and self-renewal). We reconstruct a stem cell associated intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular and intracellular signaling. These findings lay the groundwork for novel strategies to control blood stem cell self-renewal in vitro and in vivo. Intercellular (between cell) communication networks maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the importance of intercellular networks in stem cell biology, their rules, structure and molecular components are poorly understood. Herein, we describe the structure and dynamics of intercellular and intracellular networks in a stem cell derived, hierarchically organized tissue using experimental and theoretical analyses of cultured human umbilical cord blood progenitors. By integrating high-throughput molecular profiling, database and literature mining, mechanistic modeling, and cell culture experiments, we show that secreted factor-mediated intercellular communication networks regulate blood stem cell fate decisions. In particular, self-renewal is modulated by a coupled positive–negative intercellular feedback circuit composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). We reconstruct a stem cell intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular, and intracellular signaling. This represents the first systematic characterization of how stem cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
D’Alessandro A, Grazzini G, Giardina B, Zolla L. In Silico Analyses of Proteomic Data Suggest a Role for Heat Shock Proteins in Umbilical Cord Blood Hematopoietic Stem Cells. Stem Cell Rev Rep 2010; 6:532-47. [DOI: 10.1007/s12015-010-9180-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Audet J. Adventures in time and space: Nonlinearity and complexity of cytokine effects on stem cell fate decisions. Biotechnol Bioeng 2010; 106:173-82. [PMID: 20198618 DOI: 10.1002/bit.22708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cytokines are central factors in the control of stem cell fate decisions and, as such, they are invaluable to those interested in the manipulation of stem and progenitor cells for clinical or research purposes. In their in vivo niches or in optimized cultures, stem cells are exposed to multiple cytokines, matrix proteins and other cell types that provide individual and combinatorial signals that influence their self-renewal, proliferation and differentiation. Although the individual effects of cytokines are well-characterized in terms of increases or decreases in stem cell expansion or in the production of specific cell lineages, their interactions are often overlooked. Factorial design experiments in association with multiple linear regression is a powerful multivariate approach to derive response-surface models and to obtain a quantitative understanding of cytokine dose and interactions effects. On the other hand, cytokine interactions detected in stem cell processes can be difficult to interpret due to the fact that the cell populations examined are often heterogeneous, that cytokines can exhibit pleiotropy and redundancy and that they can also be endogenously produced. This perspective piece presents a list of possible biological mechanisms that can give rise to positive and negative two-way factor interactions in the context of in vivo and in vitro stem cell-based processes. These interpretations are based on insights provided by recent studies examining intra- and extra-cellular signaling pathways in adult and embryonic stem cells. Cytokine interactions have been classified according to four main types of molecular and cellular mechanisms: (i) interactions due to co-signaling; (ii) interactions due to sequential actions; (iii) interactions due to high-dose saturation and inhibition; and (iv) interactions due to intercellular signaling networks. For each mechanism, possible patterns of regression coefficients corresponding to the cytokine main effects, quadratic effects and two-way interactions effects are provided. Finally, directions for future mechanistic studies are presented.
Collapse
Affiliation(s)
- Julie Audet
- Institute of Biomaterials and Biomedical Engineering and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, RS 407, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
The AC133+CD38−, but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures. Blood 2010; 115:257-60. [DOI: 10.1182/blood-2009-07-228106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Phenotypic markers associated with human hematopoietic stem cells (HSCs) were developed and validated using uncultured cells. Because phenotype and function can be dissociated during culture, better markers to prospectively track and isolate HSCs in ex vivo cultures could be instrumental in advancing HSC-based therapies. Using an expansion system previously shown to increase hematopoietic progenitors and SCID-repopulating cells (SRCs), we demonstrated that the rhodamine-low phenotype was lost, whereas AC133 expression was retained throughout culture. Furthermore, the AC133+CD38− subpopulation was significantly enriched in long-term culture-initiating cells (LTC-IC) and SRCs after culture. Preculture and postculture analysis of total nucleated cell and LTC-IC number, and limiting dilution analysis in NOD/SCID mice, showed a 43-fold expansion of the AC133+CD38− subpopulation that corresponded to a 7.3-fold and 4.4-fold expansion of LTC-ICs and SRCs in this subpopulation, respectively. Thus, AC133+CD38− is an improved marker that tracks and enriches for LTC-IC and SRC in ex vivo cultures.
Collapse
|
23
|
Yamanaka N, Wong CJ, Gertsenstein M, Casper RF, Nagy A, Rogers IM. Bone marrow transplantation results in human donor blood cells acquiring and displaying mouse recipient class I MHC and CD45 antigens on their surface. PLoS One 2009; 4:e8489. [PMID: 20046883 PMCID: PMC2796175 DOI: 10.1371/journal.pone.0008489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022] Open
Abstract
Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice.
Collapse
Affiliation(s)
- Nobuko Yamanaka
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christine J. Wong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marina Gertsenstein
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert F. Casper
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ian M. Rogers
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
24
|
Affiliation(s)
- Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, Department of Chemistry, Institute of Biomaterials and Biomedical Engineering, Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 514, Toronto, ON M5S3E1, Canada
| |
Collapse
|
25
|
Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 2009; 5:293. [PMID: 19638974 PMCID: PMC2724979 DOI: 10.1038/msb.2009.49] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/18/2009] [Indexed: 12/18/2022] Open
Abstract
Communication networks between cells and tissues are necessary for homeostasis in multicellular organisms. Intercellular (between cell) communication networks are particularly relevant in stem cell biology, as stem cell fate decisions (self-renewal, proliferation, lineage specification) are tightly regulated based on physiological demand. We have developed a novel mathematical model of blood stem cell development incorporating cell-level kinetic parameters as functions of secreted molecule-mediated intercellular networks. By relation to quantitative cellular assays, our model is capable of predictively simulating many disparate features of both normal and malignant hematopoiesis, relating internal parameters and microenvironmental variables to measurable cell fate outcomes. Through integrated in silico and experimental analyses, we show that blood stem and progenitor cell fate is regulated by cell–cell feedback, and can be controlled non-cell autonomously by dynamically perturbing intercellular signalling. We extend this concept by demonstrating that variability in the secretion rates of the intercellular regulators is sufficient to explain heterogeneity in culture outputs, and that loss of responsiveness to cell–cell feedback signalling is both necessary and sufficient to induce leukemic transformation in silico.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Csaszar E, Gavigan G, Ungrin M, Thérien C, Dubé P, Féthière J, Sauvageau G, Roy DC, Zandstra PW. An automated system for delivery of an unstable transcription factor to hematopoietic stem cell cultures. Biotechnol Bioeng 2009; 103:402-12. [PMID: 19266473 DOI: 10.1002/bit.22297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An automated delivery system for cell culture applications would permit studying more complex culture strategies and simplify measures taken to expose cells to unstable molecules. We are interested in understanding how intracellular TAT-HOXB4 protein concentration affects hematopoietic stem cell (HSC) fate; however, current manual dosing strategies of this unstable protein are labor intensive and produce wide concentration ranges which may not promote optimal growth. In this study we describe a programmable automated delivery system that was designed to integrate into a clinically relevant, single-use, closed-system bioprocess and facilitate transcription factor delivery studies. The development of a reporter cell assay allowed for kinetic studies to determine the intracellular (1.4 +/- 0.2 h) and extracellular (3.7 +/- 1.8 h and 78 +/- 27 h at 37 degrees C and 4 degrees C, respectively) half-lives of TAT-HOXB4 activity. These kinetic parameters were incorporated into a mathematical model, which was used to predict the dynamic intracellular concentration of TAT-HOXB4 and optimize the delivery of the protein. The automated system was validated for primary cell culture using human peripheral blood patient samples. Significant expansion of human primitive progenitor cells was obtained upon addition of TAT-HOXB4 without user intervention. The delivery system is thus capable of being used as a clinically relevant tool for the exploration and optimization of temporally sensitive stem cell culture systems.
Collapse
Affiliation(s)
- Elizabeth Csaszar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, TD-CCBR Rm. 1116, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Large scale production of stem cells and their derivatives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:201-35. [PMID: 19513633 DOI: 10.1007/10_2008_27] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.
Collapse
|
28
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Abstract
Stem cells have emerged as the starting material of choice for bioprocesses to produce cells and tissues to treat degenerative, genetic, and immunological disease. Translating the biological properties and potential of stem cells into therapies will require overcoming significant cell-manufacturing and regulatory challenges. Bioprocess engineering fundamentals, including bioreactor design and process control, need to be combined with cellular systems biology principles to guide the development of next-generation technologies capable of producing cell-based products in a safe, robust, and cost-effective manner. The step-wise implementation of these bioengineering strategies will enhance cell therapy product quality and safety, expediting clinical development.
Collapse
|
30
|
Rogers IM, Yamanaka N, Casper RF. A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system. Biol Blood Marrow Transplant 2008; 14:927-37. [PMID: 18640577 DOI: 10.1016/j.bbmt.2008.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 06/02/2008] [Indexed: 01/07/2023]
Abstract
Umbilical cord blood (UCB) is increasingly being used as a donor source of hematopoietic stem cells (HSCs) to treat blood malignancies. The main limitation to the widespread use of UCB is the low number of HSCs per unit. To compensate, a strategy of in vitro stem cell amplification has been attempted in different research laboratories. The major hurdle blocking success is the creation of culture conditions that support the growth of hematopoietic stem cells without their differentiation. We have designed a simple culture system for stem and progenitor cell expansion that resulted in an increased number of hematopoietic stem cells that maintain their ability to home to the bone marrow and to permanently engraft.
Collapse
Affiliation(s)
- Ian M Rogers
- Department of Obstetrics & Gynaecology, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Expansion of human hematopoietic stem cells for transplantation: trends and perspectives. Cytotechnology 2008; 56:151-60. [PMID: 19002853 DOI: 10.1007/s10616-008-9144-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/13/2008] [Indexed: 10/22/2022] Open
Abstract
Umbilical cord blood transplantation is clinically limited by its low progenitor cell content. Ex vivo expansion has become an alternative to increase the cell dose available for transplants. Expansion has been evaluated in several ways such as static cultures combining growth factors or mimicking the natural microenvironment using co-culture systems. However, static cultures have a small volume capacity and therefore large-scale expansion has been addressed using bioreactors. These and other biotechnological approaches for the expansion of hematopoietic progenitors and their utility to study several aspects of hematopoietic stem cell biology are discussed here.
Collapse
|
32
|
King JA, Miller WM. Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 2007; 11:394-8. [PMID: 17656148 PMCID: PMC2038982 DOI: 10.1016/j.cbpa.2007.05.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
Widespread use of embryonic and adult stem cells for therapeutic applications will require reproducible production of large numbers of well-characterized cells under well-controlled conditions in bioreactors. During the past two years, substantial progress has been made towards this goal. Human mesenchymal stem cells expanded in perfused scaffolds retained multi-lineage potential. Mouse neural stem cells were expanded as aggregates in serum-free medium for 44 days in stirred bioreactors. Mouse embryonic stem cells expanded as aggregates and on microcarriers in stirred vessels retained expression of stem cell markers and could form embryoid bodies. Embryoid body formation from dissociated mouse embryonic stem cells, followed by embryoid body expansion and directed differentiation, was scaled up to gas-sparged, 2-l instrumented bioreactors with pH and oxygen control.
Collapse
Affiliation(s)
- James A. King
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
| | - William M. Miller
- Department of Chemical and Biological Engineering and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
| |
Collapse
|