1
|
Gulec Koksal Z, Bilgic Eltan S, Topyildiz E, Sezer A, Keles S, Celebi Celik F, Ozhan Kont A, Gemici Karaaslan B, Sefer AP, Karali Z, Arik E, Ozek Yucel E, Akcal O, Karakurt LT, Yorgun Altunbas M, Yalcin K, Uygun V, Ozek G, Babayeva R, Aydogmus C, Ozcan D, Cavkaytar O, Keskin O, Kilic SS, Kiykim A, Arikoglu T, Genel F, Gulez N, Guner SN, Karaca NE, Reisli I, Kutukculer N, Altintas DU, Ozen A, Karakoc Aydiner E, Baris S. MHC Class II Deficiency: Clinical, Immunological, and Genetic Insights in a Large Multicenter Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2490-2502.e6. [PMID: 38996837 DOI: 10.1016/j.jaip.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Major histocompatibility complex class II deficiency, a combined immunodeficiency, results from loss of HLA class II expression on antigen-presenting cells. Currently, hematopoietic stem cell transplantation stands as the sole curative approach, although factors influencing patient outcomes remain insufficiently explored. OBJECTIVES To elucidate the clinical, immunologic, and genetic profiles associated with MHC-II deficiency and identify prognostic indicators that affect survival rates. METHODS In this multicenter retrospective analysis, we gathered data from 35 patients with a diagnosis of MHC-II deficiency across 12 centers in Turkey. We recorded infection histories, gene mutations, immune cell subsets, and surface MHC-II expression on blood cells. We conducted survival analyses to evaluate the impact of various factors on patient outcomes. RESULTS Predominant symptoms observed were pneumonia (n = 29; 82.9%), persistent diarrhea (n = 26; 74.3%), and severe infections (n = 26; 74.3%). The RFXANK gene mutation (n = 9) was the most frequent, followed by mutations in RFX5 (n = 8), CIITA (n = 4), and RFXAP (n = 2) genes. Patients with RFXANK mutations presented with later onset and diagnosis compared with those with RFX5 mutations (P =.0008 and .0006, respectively), alongside a more significant diagnostic delay (P = .020). A notable founder effect was observed in five patients with a specific RFX5 mutation (c.616G>C). The overall survival rate for patients was 28.6% (n = 10), showing a significantly higher proportion in individuals with hematopoietic stem cell transplantation (n = 8; 80%). Early death and higher CD8+ T-cell counts were observed in patients with the RFX5 mutations compared with RFXANK-mutant patients (P = .006 and .009, respectively). CONCLUSIONS This study delineates the genetic and clinical panorama of MHC-II deficiency, emphasizing the prevalence of specific gene mutations such as RFXANK and RFX5. These insights facilitate early diagnosis and prognosis refinement, significantly contributing to the management of MHC-II deficiency.
Collapse
Affiliation(s)
- Zeynep Gulec Koksal
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey; Department of Pediatric Allergy and Immunology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Sevgi Bilgic Eltan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ezgi Topyildiz
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ahmet Sezer
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Sevgi Keles
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Figen Celebi Celik
- Department of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Aylin Ozhan Kont
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Betul Gemici Karaaslan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asena Pinar Sefer
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Zuhal Karali
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Elif Arik
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Esra Ozek Yucel
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Omer Akcal
- Department of Pediatric Allergy and Immunology, Gaziantep Cengiz Gokcek Gynecology and Pediatrics Hospital, Gaziantep, Turkey
| | - Leman Tuba Karakurt
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Koray Yalcin
- Department of Pediatric Hematology and Oncology, Pediatric Bone Marrow Transplant Unit, Medical Park Goztepe Hospital, Bahcesehir University, Istanbul, Turkey; Department of Medical Biotechnology, Institute of Health Science, Acibadem University, Istanbul, Turkey
| | - Vedat Uygun
- Department of Pediatric Hematology and Oncology, Pediatric Bone Marrow Transplant Unit, Medical Park Antalya Hospital, Istinye University, Antalya, Turkey
| | - Gulcihan Ozek
- Department of Pediatric Hematology and Oncology, Pediatric Bone Marrow Transplant Unit, Ege University, Izmir, Turkey
| | - Royala Babayeva
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Dilek Ozcan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ozlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ferah Genel
- Department of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Nesrin Gulez
- Department of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Sukru Nail Guner
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Neslihan Edeer Karaca
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ismail Reisli
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Necil Kutukculer
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Derya Ufuk Altintas
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahmet Ozen
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc Aydiner
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Ünsal H, Caka C, Bildik HN, Esenboğa S, Kupesiz A, Kuşkonmaz B, Cetinkaya DU, van der Burg M, Tezcan İ, Çağdaş D. A large single-center cohort of bare lymphocyte syndrome: Immunological and genetic features in Turkey. Scand J Immunol 2024; 99:e13335. [PMID: 38441205 DOI: 10.1111/sji.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 03/07/2024]
Abstract
Major histocompatibility complex class II (MHC-II) deficiency or bare lymphocyte syndrome (BLS) is a rare, early-onset, autosomal recessive, and life-threatening inborn error of immunity. We aimed to assess the demographic, clinical, laboratory, follow-up, and treatment characteristics of patients with MHC-II deficiency, together with their survival. We retrospectively investigated 21 patients with MHC-II deficiency. Female/male ratio was 1.63. The median age at diagnosis was 16.3 months (5 months-9.7 years). Nineteen patients (90.5%) had parental consanguinity. Pulmonary diseases (pneumonia, chronic lung disease) (81%), diarrhoea (47.6%), and candidiasis (28.6%) were common. Four (19%) had autoimmunity, two developed septic arthritis, and three (14%) developed bronchiectasis in the follow-up. Three patients (14%) had CMV viraemia, one with bilateral CMV retinitis. Eight (38.1%) had lymphocytopenia, and four (19%) had neutropenia. Serum IgM, IgA, and IgG levels were low in 18 (85.7%), 15 (71.4%), and 11 (52.4%) patients, respectively. CD4+ lymphocytopenia, a reversed CD4+/CD8+ ratio, and absent/low HLA-DR expressions were detected in 93.3%, 86.7%, and 100% of the patients, respectively. Haematopoietic stem cell transplantation (HSCT) was performed on nine patients, and four died of septicaemia and ARDS after HSCT. The present median age of patients survived is 14 years (1-31 years). Genetic analysis was performed in 10 patients. RFX5 homozygous gene defect was found in three patients (P1, P4 and P8), and RFXANK (P2 and P14) and RFXAP (P18 and P19) heterozygous gene defects were found in each two patients, respectively. This large cohort showed that BLS patients have severe combined immunodeficiency (SCID)-like clinical findings. Flow cytometric MHC-II expression study is crucial for the diagnosis, differential diagnosis with SCID, early haematopoietic stem cell transplantation (HSCT), and post-HSCT follow-up. Genetic studies are required first for matched family donor evaluation before HSCT and then for genetic counselling.
Collapse
Affiliation(s)
- Hilal Ünsal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Canan Caka
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hacer Neslihan Bildik
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alphan Kupesiz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Barış Kuşkonmaz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan Cetinkaya
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory of Immunology, Leiden University, Leiden, The Netherlands
| | - İlhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Mousavi Khorshidi MS, Seeleuthner Y, Chavoshzadeh Z, Behfar M, Hamidieh AA, Alimadadi H, Sherkat R, Momen T, Behniafard N, Eskandarzadeh S, Mansouri M, Behnam M, Mahdavi M, Heydarazad Zadeh M, Shokri M, Alizadeh F, Movahedi M, Momenilandi M, Keramatipour M, Casanova JL, Cobat A, Abel L, Shahrooei M, Parvaneh N. Clinical, Immunological, and Genetic Findings in Iranian Patients with MHC-II Deficiency: Confirmation of c.162delG RFXANK Founder Mutation in the Iranian Population. J Clin Immunol 2023; 43:1941-1952. [PMID: 37584719 DOI: 10.1007/s10875-023-01562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Major histocompatibility complex class II (MHC-II) deficiency is a rare inborn error of immunity (IEI). Impaired antigen presentation to CD4 + T cells results in combined immunodeficiency (CID). Patients typically present with severe respiratory and gastrointestinal tract infections at early ages. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy. METHODS We describe the clinical, immunologic, and genetic features of eighteen unrelated Iranian patients with MHC-II deficiency. RESULTS Consanguinity was present in all affected families. The median age at the initial presentation was 5.5 months (range 7 days to 18 years). The main symptoms included failure to thrive, persistent diarrhea, and pneumonia. Autoimmune and neurologic features were also documented in about one-third of the patients, respectively. Thirteen patients carried RFXANK gene mutations, two carried RFX5 gene mutations, and three carried a RFXAP gene mutation. Six patients shared the same RFXANK founder mutation (c.162delG); limited to the Iranian population and dated to approximately 1296 years ago. Four of the patients underwent HSCT; three of them are alive. On the other hand, nine of the fourteen patients who did not undergo HSCT had a poor prognosis and died. CONCLUSION MHC-II deficiency is not rare in Iran, with a high rate of consanguinity. It should be considered in the differential diagnosis of CID at any age. With the limited access to HSCT and its variable results in MHC-II deficiency, implementing genetic counseling and family planning for the affected families are mandatory. We are better determined to study the c.162delG RFXANK heterozygous mutation frequency in the Iranian population.
Collapse
Affiliation(s)
- Mohadese Sadat Mousavi Khorshidi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University Paris Cité, Paris, France
| | - Zahra Chavoshzadeh
- Allergy and Immunology Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Alimadadi
- Division of Gastroenterology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shabnam Eskandarzadeh
- Allergy and Clinical Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Mansouri
- Allergy and Immunology Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Behnam
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Dr. Shahrooei Lab, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | - Mohadese Mahdavi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Heydarazad Zadeh
- Allergy and Immunology Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Shokri
- Department of Pediatrics, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Alizadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Movahedi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University Paris Cité, Paris, France
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mohammad Shahrooei
- Dr. Shahrooei Lab, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Louvain, Belgium
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Centre, No 62 Gharib St, Tehran, 1419733152, Iran.
| |
Collapse
|
4
|
Improved transplant survival and long-term disease outcome in children with MHC class II deficiency. Blood 2020; 135:954-973. [PMID: 31932845 DOI: 10.1182/blood.2019002690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
MHC class II deficiency is a rare, but life-threatening, primary combined immunodeficiency. Hematopoietic cell transplantation (HCT) remains the only curative treatment for this condition, but transplant survival in the previously published result was poor. We analyzed the outcome of 25 patients with MHC class II deficiency undergoing first HCT at Great North Children's Hospital between 1995 and 2018. Median age at diagnosis was 6.5 months (birth to 7.5 years). Median age at transplant was 21.4 months (0.1-7.8 years). Donors were matched family donors (MFDs; n = 6), unrelated donors (UDs; n = 12), and haploidentical donors (HIDs; n = 7). Peripheral blood stem cells were the stem cell source in 68% of patients. Conditioning was treosulfanbased in 84% of patients; 84% received alemtuzumab (n = 14) or anti-thymocyte globulin (n = 8) as serotherapy. With a 2.9-year median follow-up, OS improved from 33% (46-68%) for HCT before 2008 (n = 6) to 94% (66-99%) for HCT after 2008 (n = 19; P = .003). For HCT after 2008, OS according to donor was 100% for MFDs and UDs and 85% for HIDs (P = .40). None had grade III-IV acute or chronic graft-versus-host disease. Latest median donor myeloid and lymphocyte chimerism were 100% (range, 0-100) and 100% (range, 64-100), respectively. Latest CD4+ T-lymphocyte number was significantly lower in transplant survivors (n = 14) compared with posttransplant disease controls (P = .01). All survivors were off immunoglobulin replacement and had protective vaccine responses to tetanus and Haemophilus influenzae. None had any significant infection or autoimmunity. Changing transplant strategy in Great North Children's Hospital has significantly improved outcomes for MHC class II deficiency.
Collapse
|
5
|
Castano-Jaramillo LM, Bareño-Silva J, Tobon S, Escobar-Gonzalez AF. Meta-analysis of hematopoietic stem cell transplantation in major histocompatibility complex class II deficiency. Pediatr Transplant 2020; 24:e13774. [PMID: 32678504 DOI: 10.1111/petr.13774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Major histocompatibility complex class II deficiency is a rare case of PID. Specific recommendations for hematopoietic stem cell transplant, the only curative treatment option, are still lacking. This meta-analysis aims to identify the factors associated with better prognosis in these patients. Thirteen articles reporting 63 patients with major histocompatibility complex class II deficiency that underwent hematopoietic stem cell transplant were included. The median age for hematopoietic stem cell transplant was 18 months. The most common source of transplant was bone marrow, with alternative sources as umbilical cord blood emerging during recent years. The highest proportion of engraftment was seen with umbilical cord. Engraftment was higher in patients with matched donors, with better overall survival in patients with reduced-intensity conditioning. Graft-vs-host disease developed in 65% of the patients, with grades I-II being the most frequently encountered. There was a higher mortality in patients with myeloablative conditioning and no engraftment. There was an inverse correlation between survival and stage of graft-vs-host disease. The main cause of mortality was infectious disease, mostly secondary to viral infections. Ideally, matched grafts should be used, and reduced-intensity conditioning should be considered to reduce early post-transplant complications. GVHD and viral prophylaxis are fundamental.
Collapse
Affiliation(s)
| | | | - Santiago Tobon
- Department of Economics, Unversidad EAFIT, Medellín, Colombia
| | | |
Collapse
|
6
|
Mitchell R. Hematopoietic Stem Cell Transplantation Beyond Severe Combined Immunodeficiency: Seeking a Cure for Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:776-785. [PMID: 30832892 DOI: 10.1016/j.jaip.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) can provide definitive therapy for patients with primary immunodeficiency disease (PIDD). Modern HSCT techniques and supportive care have significantly improved outcomes for patients with PIDD. This review examines current HSCT practice for PIDD other than severe combined immunodeficiency, and explores indications, risks, and long-term outcomes for this group of challenging diseases.
Collapse
Affiliation(s)
- Richard Mitchell
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia; School of Women and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Marcus N, Stauber T, Lev A, Simon AJ, Stein J, Broides A, Somekh I, Almashanu S, Somech R. MHC II deficient infant identified by newborn screening program for SCID. Immunol Res 2019; 66:537-542. [PMID: 30084052 DOI: 10.1007/s12026-018-9019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Newborn screening (NBS) programs for severe combined immunodeficiency (SCID), using the TREC-based assay, have enabled early diagnosis, prompt treatment, and eventually changed the natural history of affected infants. Nevertheless, it was believed that some affected infants with residual T cell, such as patients with MHC II deficiency, will be misdiagnosed by this assay. A full immune workup and genetic analysis using direct Sanger sequencing and whole exome sequencing have been performed to a patient that was identified by the Israeli NBS program for SCID. The patient was found to have severe CD4 lymphopenia with an inverted CD4/CD8 ratio, low TREC levels in peripheral blood, abnormal response to mitogen stimulation, and a skewed T cell receptor repertoire. HLA-DR expression on peripheral blood lymphocytes was undetectable suggesting a diagnosis of MHC II deficiency. Direct sequencing of the RFX5 gene revealed a stop codon change (p. R239X, c. C715T), which could cause the patient's immune phenotype. His parents were found to be heterozygote carriers for the mutation. Whole exome sequencing could not identify other potential mutations to explain his immunodeficiency. The patient underwent successful conditioned hematopoietic stem cell transplantation from healthy matched unrelated donor and is currently well and alive with full chimerism. Infants with MHC class II deficiency can potentially be identified by the TREC-based assay NBS for SCID. Therefore, MHC II molecules (e.g., HLA-DR) measurement should be part of the confirmatory immune-phenotyping for patients with positive screening results. This will make the diagnosis of such patients straightforward.
Collapse
Affiliation(s)
- Nufar Marcus
- Allergy and Immunology Unit, Felsenstein Medical Research Center, Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Jerry Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Immunology Clinic, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ido Somekh
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shlomo Almashanu
- The National Center for Newborn Screening, Ministry of Health, 52621, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel.
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel.
- The National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
8
|
Lum SH, Neven B, Slatter MA, Gennery AR. Hematopoietic Cell Transplantation for MHC Class II Deficiency. Front Pediatr 2019; 7:516. [PMID: 31921728 PMCID: PMC6917634 DOI: 10.3389/fped.2019.00516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility complex (MHC) class II deficiency is a rare and fatal primary combined immunodeficiency. It affects both marrow-derived cells and thymic epithelium, leading to impaired antigen presentation by antigen presenting cells and delayed and incomplete maturation of CD4+ lymphocyte populations. Affected children are susceptible to multiple infections by viruses, Pneumocystis jirovecii, bacteria and fungi. Immunological assessment usually shows severe CD4+ T-lymphocytopenia, hypogammaglobulinemia, and lack of antigen-specific antibody responses. The diagnosis is confirmed by absence of constitutive and inducible expression of MHC class II molecules on affected cell types which is the immunologic hallmark of the disease. Hematopoietic cell transplantation (HCT) is the only established curative therapy for MHC class II deficiency but it is difficult as affected children have significant comorbidities at the time of HCT. Optimization organ function, implementing a reduced toxicity conditioning regimen, improved T-cell depletion techniques using serotherapy and graft manipulation, vigilant infection surveillance, pre-emptive and aggressive therapy for infection and newer treatments for graft-versus-host disease have improved the transplant survival for children with MHC class II deficiency. Despite persistent low CD4+ T-lymphopenia reported in post-HCT patients, transplanted patients show normalization of antigen-specific T-lymphocyte stimulation and antibody production in response to immunization antigens. There is a need for a multi-center collaborative study to look at transplant survival of HCT and long-term disease outcome in children with MHC class II deficiency in the modern era of HCT.
Collapse
Affiliation(s)
- Su Han Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Benedicte Neven
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1163 and Imagine Institute, Paris, France
| | - Mary A Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Farrokhi S, Shabani M, Aryan Z, Zoghi S, Krolo A, Boztug K, Rezaei N. MHC class II deficiency: Report of a novel mutation and special review. Allergol Immunopathol (Madr) 2018; 46:263-275. [PMID: 28676232 DOI: 10.1016/j.aller.2017.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
The MHC II deficiency is a rare autosomal recessive primary immunodeficiency syndrome with increased susceptibility to respiratory and gastrointestinal infections, failure to thrive and early mortality. This syndrome is caused by mutations in transcription regulators of the MHC II gene and results in development of blind lymphocytes due to the lack of indicatory MHC II molecules. Despite homogeneity of clinical manifestations of patients with MHC II deficiency, the genetic defects underlying this disease are heterogeneous. Herein, we report an Iranian patient with MHC II deficiency harbouring a novel mutation in RFXANK and novel misleading clinical features. He had ataxic gait and dysarthria from 30 months of age. Epidemiology, clinical and immunological features, therapeutic options and prognosis of patients with MHC II are reviewed in this paper.
Collapse
Affiliation(s)
- S Farrokhi
- Department of Immunology, Asthma and Allergy, The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - M Shabani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| | - Z Aryan
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Respiratory Diseases Education and Research Network (PRDERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - S Zoghi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - A Krolo
- CeMM Research Center of Molecular Medicine, Austrian Academy of Sciences, and Division of Neonatal Medicine and Intensive Care, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - K Boztug
- CeMM Research Center of Molecular Medicine, Austrian Academy of Sciences, and Division of Neonatal Medicine and Intensive Care, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - N Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
10
|
Elfeky R, Furtado-Silva JM, Chiesa R, Rao K, Lucchini G, Amrolia P, Worth A, Gaspar B, Qasim W, Veys P. Umbilical cord blood transplantation without in vivo T-cell depletion for children with MHC class II deficiency. J Allergy Clin Immunol 2018; 141:2279-2282.e2. [PMID: 29366700 DOI: 10.1016/j.jaci.2017.10.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Reem Elfeky
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.
| | - Juliana M Furtado-Silva
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Robert Chiesa
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Kanchan Rao
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lucchini
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Persis Amrolia
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Bobby Gaspar
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Waseem Qasim
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Paul Veys
- Departments of Immunology and Bone Marrow Transplant, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Al-Mousa H, Al-Saud B. Primary Immunodeficiency Diseases in Highly Consanguineous Populations from Middle East and North Africa: Epidemiology, Diagnosis, and Care. Front Immunol 2017; 8:678. [PMID: 28694805 PMCID: PMC5483440 DOI: 10.3389/fimmu.2017.00678] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
Middle East and North Africa region (MENA)1 populations are of different ethnic origins. Consanguineous marriages are common practice with an overall incidence ranging between 20 and 50%. Primary immunodeficiency diseases (PIDs) are a group of heterogeneous genetic disorders caused by defects in the immune system that predisposes patients to recurrent infections, autoimmune diseases, and malignancies. PIDs are more common in areas with high rates of consanguineous marriage since most have an autosomal recessive mode of inheritance. Studies of PIDs in the region had contributed into the discovery and the understanding of several novel immunodeficiency disorders. Few MENA countries have established national registries that helped in estimating the prevalence and defining common PID phenotypes. Available reports from those registries suggest a predominance of combined immunodeficiency disorders in comparison to antibody deficiencies seen in other populations. Access to a comprehensive clinical immunology management services is limited in most MENA countries. Few countries had established advanced clinical immunology service, capable to provide extensive genetic testing and stem cell transplantation for various immunodeficiency disorders. Newborn screening for PIDs is an essential need in this population considering the high incidence of illness and can be implemented and incorporated into existing newborn screening programs in some MENA countries. Increased awareness, subspecialty training in clinical immunology, and establishing collaborating research centers are necessary to improve patient care. In this review, we highlight some of the available epidemiological data, challenges in establishing diagnosis, and available therapy for PID patients in the region.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Primary Immunodeficiency Diseases in Saudi Arabia: a Tertiary Care Hospital Experience over a Period of Three Years (2010-2013). J Clin Immunol 2015; 35:651-60. [PMID: 26395454 DOI: 10.1007/s10875-015-0197-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Primary immunodeficiencies (PID) are a group of heterogeneous diseases. Epidemiological studies from databases worldwide show geographical variation. In this study the objective is to determine the spectrum of PID in Saudi Arabia by analyzing the database in a referral tertiary hospital. METHODS This is a prospective data collection by interviews and medical chart review for all PID patients followed at the King Faisal Specialist Hospital & Research Center (KFSH&RC) from May 2010 to April 2013. RESULTS A total of 502 patients presented (53 % male and 47 % female). Combined immunodeficiencies were the most common (59.7 %), followed by predominantly antibody deficiencies (12.3 %), congenital defects of phagocyte (9.4 %), combined immunodeficiencies with associated or syndromic features (6.2 %), disease of immune dysregulation (6 %), complement deficiencies (5.8), and defects in innate immunity (0.6 %). The most common combined immunodeficiencies phenotype was T-B-SCID (17 %). The patients' ages ranged from less than 1 year old to 78 years, and 394 patients (78.2 %) are in the paediatrics age group (<14 years). The overall mean age of symptoms onset was 17 months and the overall mean delay in diagnosis was 21.6 months. Recurrent infections were the most common occurring clinical presentation (66 %), followed by family history (26 %). Consanguinity was found in 75 % of the patients. A total of 308 (61 %) patients had undergone stem cell transplantation (SCT). CONCLUSION The study revealed that combined immunodeficiencies are not uncommon and are the most frequent occurring diagnosis in our patient population. This study is a prerequisite to establish a national registry of primary immunodeficiency in Saudi Arabia.
Collapse
|
13
|
Type II bare lymphocyte syndrome: role of peripheral blood flow cytometry and utility of stem cell transplant in treatment. J Pediatr Hematol Oncol 2015; 37:e245-9. [PMID: 25354255 DOI: 10.1097/mph.0000000000000278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major histocompatibility complex class II (MHCII) deficiency is a rare autosomal recessive immunodeficiency disorder characterized by lack of expression of MHCII molecules, causing defective CD4 lymphocyte function and an impaired immune response. Clinical manifestations include susceptibility to severe bacterial, viral, and fungal infections which can lead to failure to thrive and childhood death. The only definitive treatment to date is allogeneic stem cell transplantation. Here, we share our experience of 2 patients who presented with MHCII deficiency. We will discuss the role of diagnostic modalities and stem cell transplantation.
Collapse
|
14
|
MHC class I and II deficiencies. J Allergy Clin Immunol 2014; 134:269-75. [DOI: 10.1016/j.jaci.2014.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
|
15
|
Abu-Arja RF, Gonzalez BE, Jacobs MR, Cabral L, Egler R, Auletta J, Arnold J, Cooke KR. Disseminated Bacillus Calmette-Guérin (BCG) infection following allogeneic hematopoietic stem cell transplant in a patient with Bare Lymphocyte Syndrome type II. Transpl Infect Dis 2014; 16:830-7. [PMID: 24995715 DOI: 10.1111/tid.12263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
We describe the first case, to our knowledge, of disseminated Mycobacterium bovis Bacillus Calmette-Guérin infection in a child with Bare Lymphocyte Syndrome type II after undergoing hematopoietic stem cell transplantation (HSCT). The patient presented 30 days post HSCT with fever and lymphadenitis. Lymph node, blood, and gastric aspirates were positive for M. bovis. The patient received a prolonged treatment course with a combination of isoniazid, levofloxacin, and ethambutol. Her course was further complicated by granulomatous lymphadenitis and otitis media associated with M. bovis that developed during immune suppression taper and immune reconstitution. Ultimately, the patient recovered fully, in association with restoration of immune function, and has completed 12 months of therapy.
Collapse
Affiliation(s)
- R F Abu-Arja
- Pediatric Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW In this article, we summarize the recent advances in treating primary immune deficiency (PID) disorders by stem cell transplantation (SCT); we have focused on articles published in the past 2 years since the last major review of SCT for PID. RECENT FINDINGS Analyses of the outcomes of SCT for PID by specific molecular defect have clarified which conditions are receptive to unconditioned transplants and which require more myeloablative conditioning. Improved outcomes for 'difficult' conditions [adenosine deaminase-severe combined immunodeficiency (ADA-SCID), major histocompatibility complex class II deficiency] and potential advantages of using cord blood as a stem cell source have also been described. Newborn screening for SCID identifies well babies with SCID: the optimal SCT protocol for such young infants remains to be determined. Reduced toxicity conditioning has been successfully used to treat conditions such as Wiskott-Aldrich syndrome and chronic granulomatous disease, offering curative engraftment with reduced transplant-related mortality. Similarly, treating children with familial hemophagocytic lymphohistiocytosis using reduced intensity conditioning SCT results in much improved outcomes. Advances in next generation sequencing have identified new diseases amenable to SCT, such as DOCK8 deficiency, resulting in improved quality of life and protection from malignancy. SUMMARY Recent studies suggest that further improvements in treating PID with SCT are possible with a greater understanding of the genetics and immunobiology of these diseases, facilitating the matching of donor type and conditioning regimens, or indeed alternative therapies (such as gene therapy) to specific PID disorders.
Collapse
|
17
|
Pontoppidan PL, Shen RL, Petersen BL, Thymann T, Heilmann C, Müller K, Sangild PT. Intestinal response to myeloablative chemotherapy in piglets. Exp Biol Med (Maywood) 2013; 239:94-104. [DOI: 10.1177/1535370213509563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy-induced myeloablation prior to allogeneic hematopoietic stem cell transplantation (HSCT) may be associated with severe toxicity. The current understanding of the pathophysiology of oral and gastrointestinal (GI) toxicity is largely derived from studies in rodents and very little is known from humans, especially children. We hypothesized that milk-fed piglets can be used as a clinically relevant model of GI-toxicity related to a standard conditioning chemotherapy (intravenous busulfan, Bu plus cyclophosphamide, Cy) used prior to HSCT. In study 1, dose–response relationships were investigated in three-day-old pigs (Landrace × Yorkshire × Duroc, n = 6). Pigs were given one of three different dose combinations of Bu and Cy (A: 4 days Bu, 2 × 1.6 mg/kg plus 2 days Cy, 60 mg/kg; B: 4 days Bu, 2 × 0.8 mg/kg plus 2 days Cy, 30 mg/kg; C: 2 days Bu at 2 × 1.6 mg/kg plus 1 day Cy, 60 mg/kg) and bone marrow was collected on day 11. Histology of bone marrow samples showed total aplasia after treatment A. Using this treatment in study 2, Bu–Cy pigs showed lowered spleen and intestinal weights and variable clinical signs of dehydration, sepsis, and pneumonia at tissue collection. Oral mucositis was evident as ulcers in the soft palate in 4/9 Bu–Cy pigs and villus height and brush-border enzyme activities were reduced, especially in the proximal intestine. There were no consistent effects on tissue cytokine levels (IL-8, IL-6, IL-1β, TNF-α) or blood chemistry values (electrolytes, liver transaminases, bilirubin, alkaline phosphatase), except that blood iron levels were higher in Bu–Cy pigs. We conclude that a myeloablative Bu–Cy regimen to piglets results in clinical signs comparable to those seen in pediatric patients subjected to myeloablative treatment prior to HSCT. Piglets may be used as a model for investigating chemotherapy-induced toxicity and dietary and medical interventions.
Collapse
Affiliation(s)
- Peter L Pontoppidan
- Department of Nutrition, Exercise and Sports, 30 Rolighedsvej, 1958 Frederiksberg C, Denmark
| | - René L Shen
- Department of Nutrition, Exercise and Sports, 30 Rolighedsvej, 1958 Frederiksberg C, Denmark
| | - Bodil L Petersen
- Department of Pathology, Roskilde Hospital, 4000 Roskilde, Denmark
| | - Thomas Thymann
- Department of Nutrition, Exercise and Sports, 30 Rolighedsvej, 1958 Frederiksberg C, Denmark
| | - Carsten Heilmann
- Pediatric Clinic, Department of Rheumatology, Rigshospitalet, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Klaus Müller
- Pediatric Clinic, Department of Rheumatology, Rigshospitalet, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
- Department of Rheumatology, Institute of Inflammation Research, Rigshospitalet, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Per T Sangild
- Department of Nutrition, Exercise and Sports, 30 Rolighedsvej, 1958 Frederiksberg C, Denmark
| |
Collapse
|
18
|
Lev A, Simon AJ, Broides A, Levi J, Garty BZ, Rosenthal E, Amariglio N, Rechavi G, Somech R. Thymic function in MHC class II–deficient patients. J Allergy Clin Immunol 2013; 131:831-9. [DOI: 10.1016/j.jaci.2012.10.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022]
|
19
|
Hypoxemic Bronchiolitis Related to Major Histocompatibility Class II Deficiency. Case Rep Med 2013; 2013:315073. [PMID: 24062773 PMCID: PMC3766589 DOI: 10.1155/2013/315073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/14/2013] [Indexed: 11/17/2022] Open
Abstract
Major histocompatibility complex class II expression deficiency is an autosomal recessive primary combined immunodeficiency. The prevalence of this deficiency is the highest in Mediterranean areas, especially North Africa. Early diagnosis is essential due to high mortality in the first 2 years of life. Prognosis is very poor when bone marrow transplantation cannot be performed. We report the case of an infant with major histocompatibility complex class II expression deficiency revealed by hypoxemic bronchiolitis due to Pneumocystis jiroveci.
Collapse
|
20
|
Al-Herz W, Alsmadi O, Melhem M, Recher M, Frugoni F, Notarangelo LD. Major Histocompatibility Complex Class II Deficiency in Kuwait: Clinical Manifestations, Immunological Findings and Molecular Profile. J Clin Immunol 2012; 33:513-9. [DOI: 10.1007/s10875-012-9831-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
|
21
|
Small TN, Qasim W, Friedrich W, Chiesa R, Bleesing JJ, Scurlock A, Veys P, Sparber-Sauer M. Alternative donor SCT for the treatment of MHC Class II deficiency. Bone Marrow Transplant 2012; 48:226-32. [DOI: 10.1038/bmt.2012.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
|
23
|
Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 2011; 118:5108-18. [DOI: 10.1182/blood-2011-05-352716] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractInherited deficiency of major histocompatibility complex (MHC) class II molecules impairs antigen presentation to CD4+ T cells and results in combined immunodeficiency (CID). Autosomal-recessive mutations in the RFXANK gene account for two-thirds of all cases of MHC class II deficiency. We describe here the genetic, clinical, and immunologic features of 35 patients from 30 unrelated kindreds from North Africa sharing the same RFXANK founder mutation, a 26-bp deletion called I5E6-25_I5E6 + 1), and date the founder event responsible for this mutation in this population to approximately 2250 years ago (95% confidence interval [CI]: 1750-3025 years). Ten of the 23 patients who underwent hematopoietic stem cell transplantation (HSCT) were cured, with the recovery of almost normal immune functions. Five of the patients from this cohort who did not undergo HSCT had a poor prognosis and eventually died (at ages of 1-17 years). However, 7 patients who did not undergo HSCT (at ages of 6-32 years) are still alive on Ig treatment and antibiotic prophylaxis. RFXANK deficiency is a severe, often fatal CID for which HSCT is the only curative treatment. However, some patients may survive for relatively long periods if multiple prophylactic measures are implemented.
Collapse
|
24
|
Shrestha D, Szöllosi J, Jenei A. Bare lymphocyte syndrome: an opportunity to discover our immune system. Immunol Lett 2011; 141:147-57. [PMID: 22027563 DOI: 10.1016/j.imlet.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/27/2022]
Abstract
Bare lymphocyte syndrome (BLS) is a rare immunodeficiency disorder manifested by the partial or complete disappearance of major histocompatibility complex (MHC) proteins from the surface of the cells. Based on this specific feature, it is categorized into three different types depending on which type of MHC protein is affected. These proteins are mainly involved in generating the effective immune responses by differentiating 'self' from 'non-self' antigens through a process referred to as antigen presentation. Investigations on BLS have immensely contributed to our understanding of the transcriptional regulation of these molecules and have led to the discovery of several important proteins of the antigen presentation pathway. Reviews on this subject consistently project type II BLS, MHC II deficiency as BLS syndrome, although literatures' document cases of other types of BLS too. Therefore, in this article, we have assembled information on the BLS syndrome to produce a systematic narration while emphasizing the importance of BLS system in studying various aspects of immune biology.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary
| | | | | |
Collapse
|
25
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|