1
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
2
|
Bleakley M, Sehgal A, Seropian S, Biernacki MA, Krakow EF, Dahlberg A, Persinger H, Hilzinger B, Martin PJ, Carpenter PA, Flowers ME, Voutsinas J, Gooley TA, Loeb K, Wood BL, Heimfeld S, Riddell SR, Shlomchik WD. Naive T-Cell Depletion to Prevent Chronic Graft-Versus-Host Disease. J Clin Oncol 2022; 40:1174-1185. [PMID: 35007144 PMCID: PMC8987226 DOI: 10.1200/jco.21.01755] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Graft-versus-host disease (GVHD) causes morbidity and mortality following allogeneic hematopoietic cell transplantation. Naive T cells (TN) cause severe GVHD in murine models. We evaluated chronic GVHD (cGVHD) and other outcomes in three phase II clinical trials of TN-depletion of peripheral blood stem-cell (PBSC) grafts. METHODS One hundred thirty-eight patients with acute leukemia received TN-depleted PBSC from HLA-matched related or unrelated donors following conditioning with high- or intermediate-dose total-body irradiation and chemotherapy. GVHD prophylaxis was with tacrolimus, with or without methotrexate or mycophenolate mofetil. Subjects received CD34-selected PBSC and a defined dose of memory T cells depleted of TN. Median follow-up was 4 years. The primary outcome of the analysis of cumulative data from the three trials was cGVHD. RESULTS cGVHD was very infrequent and mild (3-year cumulative incidence total, 7% [95% CI, 2 to 11]; moderate, 1% [95% CI, 0 to 2]; severe, 0%). Grade III and IV acute GVHD (aGVHD) occurred in 4% (95% CI, 1 to 8) and 0%, respectively. The cumulative incidence of grade II aGVHD, which was mostly stage 1 upper gastrointestinal GVHD, was 71% (95% CI, 64 to 79). Recipients of matched related donor and matched unrelated donor grafts had similar rates of grade III aGVHD (5% [95% CI, 0 to 9] and 4% [95% CI, 0 to 9]) and cGVHD (7% [95% CI, 2 to 13] and 6% [95% CI, 0 to 12]). Overall survival, cGVHD-free, relapse-free survival, relapse, and nonrelapse mortality were, respectively, 77% (95% CI, 71 to 85), 68% (95% CI, 61 to 76), 23% (95% CI, 16 to 30), and 8% (95% CI, 3 to 13) at 3 years. CONCLUSION Depletion of TN from PBSC allografts results in very low incidences of severe acute and any cGVHD, without apparent excess risks of relapse or nonrelapse mortality, distinguishing this novel graft engineering strategy from other hematopoietic cell transplantation approaches.
Collapse
Affiliation(s)
- Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Alison Sehgal
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Stuart Seropian
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Elizabeth F. Krakow
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Heather Persinger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Barbara Hilzinger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul J. Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Paul A. Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Mary E. Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Jenna Voutsinas
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Theodore A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Keith Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| | - Brent L. Wood
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Hematopathology, Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Shelly Heimfeld
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Warren D. Shlomchik
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- The Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
3
|
Soiffer RJ. Naïve T-Cell Depletion to Prevent GVHD: Searching for a Better Mousetrap. J Clin Oncol 2022; 40:1139-1141. [PMID: 35213234 DOI: 10.1200/jco.22.00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Song Q, Kong X, Martin PJ, Zeng D. Murine Models Provide New Insights Into Pathogenesis of Chronic Graft- Versus-Host Disease in Humans. Front Immunol 2021; 12:700857. [PMID: 34539630 PMCID: PMC8446193 DOI: 10.3389/fimmu.2021.700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for hematologic malignancies, but its success is complicated by graft-versus-host disease (GVHD). GVHD can be divided into acute and chronic types. Acute GVHD represents an acute alloimmune inflammatory response initiated by donor T cells that recognize recipient alloantigens. Chronic GVHD has a more complex pathophysiology involving donor-derived T cells that recognize recipient-specific antigens, donor-specific antigens, and antigens shared by the recipient and donor. Antibodies produced by donor B cells contribute to the pathogenesis of chronic GVHD but not acute GVHD. Acute GVHD can often be effectively controlled by treatment with corticosteroids or other immunosuppressant for a period of weeks, but successful control of chronic GVHD requires much longer treatment. Therefore, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HCT. Murine models of allo-HCT have made great contributions to our understanding pathogenesis of acute and chronic GVHD. In this review, we summarize new mechanistic findings from murine models of chronic GVHD, and we discuss the relevance of these insights to chronic GVHD pathogenesis in humans and their potential impact on clinical prevention and treatment.
Collapse
Affiliation(s)
- Qingxiao Song
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States.,Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohui Kong
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
5
|
Song Q, Wang X, Wu X, Qin H, Li Y, Riggs AD, Martin PJ, Chen YZ, Zeng D. Tolerogenic anti-IL-2 mAb prevents graft-versus-host disease while preserving strong graft-versus-leukemia activity. Blood 2021; 137:2243-2255. [PMID: 33511398 PMCID: PMC8063091 DOI: 10.1182/blood.2020006345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Donor T cells mediate both graft-versus-leukemia (GVL) activity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Development of methods that preserve GVL activity while preventing GVHD remains a long-sought goal. Tolerogenic anti-interleukin-2 (IL-2) monoclonal antibody (JES6-1) forms anti-IL-2/IL-2 complexes that block IL-2 binding to IL-2Rβ and IL-2Rγ on conventional T cells that have low expression of IL-2Rα. Here, we show that administration of JES6 early after allo-HCT in mice markedly attenuates acute GVHD while preserving GVL activity that is dramatically stronger than observed with tacrolimus (TAC) treatment. The anti-IL-2 treatment downregulated activation of the IL-2-Stat5 pathway and reduced production of granulocyte-macrophage colony-stimulating factor (GM-CSF). In GVHD target tissues, enhanced T-cell programmed cell death protein 1 (PD-1) interaction with tissue-programmed cell death-ligand 1 (PD-L1) led to reduced activation of protein kinase-mammalian target of rapamycin pathway and increased expression of eomesodermin and B-lymphocyte-induced maturation protein-1, increased T-cell anergy/exhaustion, expansion of Foxp3-IL-10-producing type 1 regulatory (Tr1) cells, and depletion of GM-CSF-producing T helper type 1 (Th1)/cytotoxic T cell type 1 (Tc1) cells. In recipient lymphoid tissues, lack of donor T-cell PD-1 interaction with tissue PD-L1 preserved donor PD-1+TCF-1+Ly108+CD8+ T memory progenitors and functional effectors that have strong GVL activity. Anti-IL-2 and TAC treatments have qualitatively distinct effects on donor T cells in the lymphoid tissues, and CD8+ T memory progenitor cells are enriched with anti-IL-2 treatment compared with TAC treatment. We conclude that administration of tolerogenic anti-IL-2 monoclonal antibody early after allo-HCT represents a novel approach for preventing acute GVHD while preserving GVL activity.
Collapse
Affiliation(s)
- Qingxiao Song
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaoning Wang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA
| | - Yingfei Li
- The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China; and
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
| | | | - Yuan-Zhong Chen
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
6
|
The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease. Blood 2020; 134:2139-2148. [PMID: 31697827 DOI: 10.1182/blood.2019000823] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022] Open
Abstract
Allogeneic stem cell transplantation is a cornerstone of curative therapy for high-risk and/or advanced hematological malignancies but remains limited by graft-versus-host disease (GVHD). GVHD is initiated by the interaction between recipient antigen-presenting cells (APCs) and donor T cells, culminating in T-cell differentiation along pathogenic type-1 and type-17 paradigms at the expense of tolerogenic regulatory T-cell patterns. Type-1 and type-17 T cells secrete cytokines (eg, granulocyte-macrophage colony-stimulating factor and interferon-γ) critical to the cytokine storm that amplifies expansion of donor APCs and their alloantigen presentation. It has become increasingly clear that pathogenic donor T-cell differentiation is initiated by both professional recipient APCs (eg, dendritic cells [DCs]) and nonprofessional APCs (eg, epithelial and mesenchymal cells), particularly within the gastrointestinal (GI) tract. In the immediate peritransplantation period, these APCs are profoundly modified by pathogen-associated molecular pattern (PAMP)/damage-associated molecular pattern (DAMP) signals derived from conditioning and intestinal microbiota. Subsequently, donor DCs in the GI tract are activated by DAMP/PAMP signals in the colon that gain access to the lamina propria once the mucosal barrier mucosa is compromised by GVHD. This results in donor DC expansion and alloantigen presentation in the colon and subsequent migration into the mesenteric lymph nodes. Here, new donor T cells are primed, expanded, differentiated, and imprinted with gut-homing integrins permissive of migration into the damaged GI tract, resulting in the lethal feed-forward cascade of GVHD. These new insights into our understanding of the cellular and molecular factors initiating GVHD, both spatially and temporally, give rise to a number of logical therapeutic targets, focusing on the inhibition of APC function in the GI tract.
Collapse
|
7
|
Zhang P, Yang S, Zou Y, Yan X, Wu H, Zhou M, Sun YC, Zhang Y, Zhu H, Xu K, Wang Y, Sheng LX, Mu Q, Sun L, Ouyang G. NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreatment scheme. BMC Immunol 2019; 20:46. [PMID: 31818250 PMCID: PMC6902350 DOI: 10.1186/s12865-019-0326-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is one of the most complex complications after allogeneic stem cell transplantation. Current standard of grading system is based on clinical symptoms in skin, liver and intestinal. However, it’s difficult to differ GVHD and its extent just by clinical manifestation. Here we retrospectively analyzed cell immune function in patients implemented allogeneic stem cell transplantation in Ningbo first Hospital from Jan 2013 to Jan 2018. Results the data are collected from 51 patients (mean age was 42; 45.1% women). The average NK cell percentage was 39.31% in severe GVHD (Grade III-IV), was 16.98% in mild GVHD (GradeI-II), while was 21.15% in No GVHD group. The statistical analysis showed difference among each grade. Further analysis was performed in Antithymocyte globulin (ATG) treated group and control group. We showed NK Cell percentage was sharply different in ATG treated group: 47.34% in severe GVHD, 11.98% in mild GVHD group, while 18.3% in no GVHD group. However, in control group, the average percentage of NK cells was 23.27% in severe GVHD, was 23.22%in mild GVHD group, while was 21.13% in no GVHD group. Conclusion The data supports that ATG can prevent GVHD by increasing NK cell percentage. The percentage of NK cell seemed to be a useful probe to evaluate the severity of GVHD in allogeneic stem cell transplantation patients using ATG in pretreatment.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China.
| | - Shujun Yang
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Hao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yong Cheng Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yi Zhang
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Li Xia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China.
| |
Collapse
|
8
|
Fowler KA, Vasilieva V, Ivanova E, Rimkevich O, Sokolov A, Abbasova S, Kim E, Coghill JM. R707, a fully human antibody directed against CC-chemokine receptor 7, attenuates xenogeneic acute graft-versus-host disease. Am J Transplant 2019; 19:1941-1954. [PMID: 30748092 DOI: 10.1111/ajt.15298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a barrier to the success of allogeneic hematopoietic stem cell transplantation (HSCT). Previously, we demonstrated that CC-chemokine receptor 7 (CCR7) is critical for aGVHD pathogenesis but dispensable for beneficial graft-versus-leukemia responses. As a result, we evaluated a fully human anti-CCR7-blocking antibody as a new approach to prevent aGVHD in preclinical models. Here we report that antibody R707 is able to block human CCR7 signaling and function in vitro in response to its 2 natural ligands. The antibody was less active against the murine orthologue, however, and failed to substantially limit aGVHD in a standard murine allogeneic HSCT model. Nevertheless, R707 significantly reduced xenogeneic aGVHD induced by human peripheral blood mononuclear cells (PBMCs). R707 limited CD4+ and in particular CD8+ T cell expansion during the period of antibody administration. These effects were transient, however, and T cell numbers recovered after antibody cessation. R707 did not substantially impair the antitumor potential of the PBMC inoculum as antibody-treated mice retained their capacity to reject a human acute myeloid leukemia cell line. Collectively, these data indicate for the first time that an antibody directed against CCR7 might represent a viable new approach for aGVHD prevention.
Collapse
Affiliation(s)
- Kenneth A Fowler
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | - Eldar Kim
- MSM Protein Technologies, Waltham, Massachusetts
| | - James M Coghill
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Huang W, Mo W, Jiang J, Chao NJ, Chen BJ. Donor Allospecific CD44 high Central Memory T Cells Have Decreased Ability to Mediate Graft-vs.-Host Disease. Front Immunol 2019; 10:624. [PMID: 31001254 PMCID: PMC6454869 DOI: 10.3389/fimmu.2019.00624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Data from both animal models and humans have demonstrated that effector memory T cells (TEM) and central memory T cells (TCM) from unprimed donors have decreased ability to induce graft-vs-host disease (GVHD). Allospecific TEM from primed donors do not mediate GVHD. However, the potential of alloreactive TCM to induce GVHD is not clear. In this study, we sought to answer this question using a novel GVHD model induced by T cell receptor (TCR) transgenic OT-II T cells. Separated from OT-II mice immunized with OVA protein 8 weeks earlier, the allospecific CD44high TCM were able to mediate skin graft rejection after transfer to naive mice, yet had dramatically decreased ability to induce GVHD. We also found that these allospecific CD44high TCM persisted in GVHD target organs for more than 30 days post-transplantation, while the expansion of these cells was dramatically decreased during GVHD, suggesting an anergic or exhausted state. These observations provide insights into how allospecific CD4+ TCM respond to alloantigen during GVHD and underscore the fundamental difference of alloresponses mediated by allospecific TCM in graft rejection and GVHD settings.
Collapse
Affiliation(s)
- Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Wenjian Mo
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jieling Jiang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Poe JC, Jia W, Di Paolo JA, Reyes NJ, Kim JY, Su H, Sundy JS, Cardones AR, Perez VL, Chen BJ, Chao NJ, Cardona DM, Saban DR, Sarantopoulos S. SYK inhibitor entospletinib prevents ocular and skin GVHD in mice. JCI Insight 2018; 3:122430. [PMID: 30282825 PMCID: PMC6237454 DOI: 10.1172/jci.insight.122430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HCT). The tyrosine kinase SYK contributes to both acute and chronic GVHD development, making it an attractive target for GVHD prevention. Entospletinib (ENTO) is a second-generation highly selective SYK inhibitor with a high safety profile. Potential utility of ENTO as GVHD prophylaxis in patients was examined using a preclinical mouse model of eye and skin GVHD and ENTO-compounded chow. We found that early SYK inhibition improved blood immune cell reconstitution in GVHD mice and prolonged survival, with 60% of mice surviving to day +120 compared with 10% of mice treated with placebo. Compared with mice receiving placebo, mice receiving ENTO had dramatic improvements in clinical eye scores, alopecia scores, and skin scores. Infiltrating SYK+ cells expressing B220 or F4/80, resembling SYK+ cells found in lichenoid skin lesions of chronic GVHD patients, were abundant in the skin of placebo mice but were rare in ENTO-treated mice. Thus, ENTO given early after HCT safely prevented GVHD.
Collapse
Affiliation(s)
- Jonathan C Poe
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Jia
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Foster City, California, USA
| | - Nancy J Reyes
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ji Yun Kim
- Department of Biology, Gilead Sciences, Foster City, California, USA
| | - Hsuan Su
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - John S Sundy
- Inflammation/Respiratory Section, Gilead Sciences, Foster City, California, USA
| | | | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Benny J Chen
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Nelson J Chao
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Juchem KW, Sacirbegovic F, Zhang C, Sharpe AH, Russell K, McNiff JM, Demetris AJ, Shlomchik MJ, Shlomchik WD. PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2017; 200:834-846. [PMID: 29212909 DOI: 10.4049/jimmunol.1701076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/03/2017] [Indexed: 01/22/2023]
Abstract
Effector memory T cells (TEM) are less capable of inducing graft-versus-host disease (GVHD) compared with naive T cells (TN). Previously, in the TS1 TCR transgenic model of GVHD, wherein TS1 CD4 cells specific for a model minor histocompatibility Ag (miHA) induce GVHD in miHA-positive recipients, we found that cell-intrinsic properties of TS1 TEM reduced their GVHD potency relative to TS1 TN Posttransplant, TS1 TEM progeny expressed higher levels of PD-1 than did TS1 TN progeny, leading us to test the hypothesis that TEM induce less GVHD because of increased sensitivity to PD-ligands. In this study, we tested this hypothesis and found that indeed TS1 TEM induced more severe skin and liver GVHD in the absence of PD-ligands. However, lack of PD-ligands did not result in early weight loss and colon GVHD comparable to that induced by TS1 TN, indicating that additional pathways restrain alloreactive TEM TS1 TN also caused more severe GVHD without PD-ligands. The absence of PD-ligands on donor bone marrow was sufficient to augment GVHD caused by either TEM or TN, indicating that donor PD-ligand-expressing APCs critically regulate GVHD. In the absence of PD-ligands, both TS1 TEM and TN induced late-onset myocarditis. Surprisingly, this was an autoimmune manifestation, because its development required non-TS1 polyclonal CD8+ T cells. Myocarditis development also required donor bone marrow to be PD-ligand deficient, demonstrating the importance of donor APC regulatory function. In summary, PD-ligands suppress both miHA-directed GVHD and the development of alloimmunity-induced autoimmunity after allogeneic hematopoietic transplantation.
Collapse
Affiliation(s)
- Kathryn W Juchem
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | | | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Arlene H Sharpe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115
| | - Kerry Russell
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | | | - Mark J Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520.,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Warren D Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
12
|
Abstract
Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.
Collapse
|
13
|
Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease. Hematol Oncol Stem Cell Ther 2017. [PMID: 28636890 DOI: 10.1016/j.hemonc.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (TN) cells, memory T (TM) cells, and regulatory T (Treg) cells mediate different forms of GVHD and GVL; TN cells mediate severe GVHD, whereas TM cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of TM cells in AHSCT, and the potential manipulation of T cells in AHSCT.
Collapse
|
14
|
Sofi MH, Heinrichs J, Dany M, Nguyen H, Dai M, Bastian D, Schutt S, Wu Y, Daenthanasanmak A, Gencer S, Zivkovic A, Szulc Z, Stark H, Liu C, Chang YJ, Ogretmen B, Yu XZ. Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight 2017; 2:91701. [PMID: 28515365 DOI: 10.1172/jci.insight.91701] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for a variety of hematologic malignances, yet its efficacy is impeded by the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells. Hence, strategies to limit GVHD are highly desirable. Ceramides are known to contribute to inflammation and autoimmunity. However, their involvement in T-cell responses to alloantigens is undefined. In the current study, we specifically characterized the role of ceramide synthase 6 (CerS6) after allo-HCT using genetic and pharmacologic approaches. We found that CerS6 was required for optimal T cell activation, proliferation, and cytokine production in response to alloantigen and for subsequent induction of GVHD. However, CerS6 was partially dispensable for the T cell-mediated antileukemia effect. At the molecular level, CerS6 was required for efficient TCR signal transduction, including tyrosine phosphorylation, ZAP-70 activation, and PKCθ/TCR colocalization. Impaired generation of C16-ceramide was responsible for diminished allogeneic T cell responses. Furthermore, targeting CerS6 using a specific inhibitor significantly reduced T cell activation in mouse and human T cells in vitro. Our study provides a rationale for targeting CerS6 to control GVHD, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.
Collapse
Affiliation(s)
| | | | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hung Nguyen
- Department of Microbiology and Immunology and
| | - Min Dai
- Department of Microbiology and Immunology and
| | | | | | - Yongxia Wu
- Department of Microbiology and Immunology and
| | | | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ying-Jun Chang
- Peking University People's Hospital and Institute of Hematology, Beijing, China
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
15
|
Zhou V, Agle K, Chen X, Beres A, Komorowski R, Belle L, Taylor C, Zhu F, Haribhai D, Williams CB, Verbsky J, Blumenschein W, Sadekova S, Bowman E, Ballantyne C, Weaver C, Serody DA, Vincent B, Serody J, Cua DJ, Drobyski WR. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease. J Clin Invest 2016; 126:3541-55. [PMID: 27500496 DOI: 10.1172/jci80874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell-mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin-expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non-Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10-regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers.
Collapse
|
16
|
Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice. Blood 2016; 127:3270-80. [PMID: 27143255 DOI: 10.1182/blood-2015-05-644476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/07/2016] [Indexed: 12/24/2022] Open
Abstract
Alloreactive T cells play a critical role in eliminating hematopoietic malignant cells but are also the mediators of graft-versus-host disease (GVHD), a major complication that subverts the success of allogeneic hematopoietic stem cell transplantation (HSCT). However, induction of alloreactive T cells does not necessarily lead to GVHD. Here we report the development of a cellular programming approach to render alloreactive T cells incapable of causing severe GVHD in both major histocompatibility complex (MHC)-mismatched and MHC-identical but minor histocompatibility antigen-mismatched mouse models. We established a novel platform that produced δ-like ligand 4-positive dendritic cells (Dll4(hi)DCs) from murine bone marrow using Flt3 ligand and Toll-like receptor agonists. Upon allogeneic Dll4(hi)DC stimulation, CD4(+) naïve T cells underwent effector differentiation and produced high levels of interferon γ (IFN-γ) and interleukin-17 in vitro, depending on Dll4 activation of Notch signaling. Following transfer, allogeneic Dll4(hi)DC-induced T cells were unable to mediate severe GVHD but preserved antileukemic activity, significantly improving the survival of leukemic mice undergoing allogeneic HSCT. This effect of Dll4(hi)DC-induced T cells was associated with their impaired expansion in GVHD target tissues. IFN-γ was important for Dll4(hi)DC programming to reduce GVHD toxicities of alloreactive T cells. Absence of T-cell IFN-γ led to improved survival and expansion of Dll4(hi)DC-induced CD4(+) T cells in transplant recipients and caused lethal GVHD. Our findings demonstrate that Dll4(hi)DC programming can overcome GVHD toxicity of donor T cells and produce leukemia-reactive T cells for effective immunotherapy.
Collapse
|
17
|
Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, Gooley TA, Sommermeyer F, Riddell SR, Shlomchik WD. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest 2015; 125:2677-89. [PMID: 26053664 DOI: 10.1172/jci81229] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HCT). In mice, naive T cells (TN) cause more severe GVHD than memory T cells (TM). We hypothesized that selective depletion of TN from human allogeneic peripheral blood stem cell (PBSC) grafts would reduce GVHD and provide sufficient numbers of hematopoietic stem cells and TM to permit hematopoietic engraftment and the transfer of pathogen-specific T cells from donor to recipient, respectively. METHODS In a single-arm clinical trial, we transplanted 35 patients with high-risk leukemia with TN-depleted PBSC grafts following conditioning with total body irradiation, thiotepa, and fludarabine. GVHD prophylactic management was with tacrolimus immunosuppression alone. Subjects received CD34-selected PBSCs and a defined dose of TM purged of CD45RA+ TN. Primary and secondary objectives included engraftment, acute and chronic GVHD, and immune reconstitution. RESULTS All recipients of TN-depleted PBSCs engrafted. The incidence of acute GVHD was not reduced; however, GVHD in these patients was universally corticosteroid responsive. Chronic GVHD was remarkably infrequent (9%; median follow-up 932 days) compared with historical rates of approximately 50% with T cell-replete grafts. TM in the graft resulted in rapid T cell recovery and transfer of protective virus-specific immunity. Excessive rates of infection or relapse did not occur and overall survival was 78% at 2 years. CONCLUSION Depletion of TN from stem cell allografts reduces the incidence of chronic GVHD, while preserving the transfer of functional T cell memory. TRIAL REGISTRATION ClinicalTrials.gov (NCT 00914940).
Collapse
|
18
|
Oelkrug C, Sack U, Boldt A, Nascimento IC, Ulrich H, Fricke S. Antibody- and aptamer-strategies for GvHD prevention. J Cell Mol Med 2014; 19:11-20. [PMID: 25353670 PMCID: PMC4288345 DOI: 10.1111/jcmm.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
Prevention of Graft-versus-Host-Disease (GvHD) by preserved Graft-versus-Leukaemia (GvL) effect is one of the major obstacles following allogeneic haematopoietic stem cell transplantation. Currently used drugs are associated with side effects and were not able to separate GvHD from the GvL-effect because of general T-cell suppression. This review focuses on murine models for GvHD and currently available treatment options involving antibodies and applications for the therapeutic use of aptamers as well as strategies for targeting immune responses by allogenic antigens.
Collapse
Affiliation(s)
- Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Over the past 5 years, many novel approaches to early diagnosis, prevention, and treatment of acute graft-versus-host disease (aGVHD) have been translated from the bench to the bedside. In this review, we highlight recent discoveries in the context of current aGVHD care. The most significant innovations that have already reached the clinic are prophylaxis strategies based upon a refinement of our understanding of key sensors, effectors, suppressors of the immune alloreactive response, and the resultant tissue damage from the aGVHD inflammatory cascade. In the near future, aGVHD prevention and treatment will likely involve multiple modalities, including small molecules regulating immunologic checkpoints, enhancement of suppressor cytokines and cellular subsets, modulation of the microbiota, graft manipulation, and other donor-based prophylaxis strategies. Despite long-term efforts, major challenges in treatment of established aGVHD still remain. Resolution of inflammation and facilitation of rapid immune reconstitution in those with only a limited response to corticosteroids is a research arena that remains rife with opportunity and urgent clinical need.
Collapse
|
20
|
Podgorny PJ, Liu Y, Dharmani-Khan P, Pratt LM, Jamani K, Luider J, Auer-Grzesiak I, Mansoor A, Williamson TS, Ugarte-Torres A, Hoegh-Petersen M, Stewart DA, Daly A, Khan FM, Russell JA, Storek J. Immune cell subset counts associated with graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:450-62. [PMID: 24406506 DOI: 10.1016/j.bbmt.2014.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/02/2014] [Indexed: 02/02/2023]
Abstract
Graft-versus-host disease (GVHD) is a major transplantation complication. The purpose of this study was to measure immune cell subsets by flow cytometry early after transplantation (before median day of GVHD onset) to identify subsets that may play a role in GVHD pathogenesis. We also measured the subsets later after transplantation to determine which subsets may be influenced by GVHD or its treatment. We studied 219 patients. We found that acute GVHD (aGVHD) was preceded by high counts of CD4 T cells and CD8 T cells. It was followed by low counts of total and naive B cells, total and cytolytic NK cells, and myeloid and plasmacytoid dendritic cells. Chronic GVHD (cGVHD) was preceded by low counts of memory B cells. In conclusion, both CD4 and CD8 T cells appear to play a role in the pathogenesis of aGVHD. Generation of B cells, NK cells, and dendritic cells may be hampered by aGVHD and/or its treatment. Memory B cells may inhibit the development of cGVHD.
Collapse
Affiliation(s)
- Peter J Podgorny
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Yiping Liu
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laura M Pratt
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kareem Jamani
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Iwona Auer-Grzesiak
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adnan Mansoor
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tyler S Williamson
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alejandra Ugarte-Torres
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mette Hoegh-Petersen
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Douglas A Stewart
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Daly
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Faisal M Khan
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James A Russell
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jan Storek
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
|