1
|
Józefczuk P, Biliński J, Minkowska A, Łaguna P. Gut microbiome in children undergoing hematopoietic stem cell transplantation. Best Pract Res Clin Gastroenterol 2024; 72:101955. [PMID: 39645282 DOI: 10.1016/j.bpg.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children as a treatment for various cancers, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or other diseases, e.g. severe congenital immunodeficiency, metabolic disorders, hence the patient population is quite diverse. There is an increasing interest on the role of the microbiome in peri-transplant period. In this review, concepts of HSCT with the focus on the importance of microbiome composition, its changes during treatment and possible microbiota oriented interventions will be discussed. This paper analyzes data in pediatric population, but in view of interesting results and absence of analogous data for pediatric patients, it also looks at studies performed on adult population and pre-clinical trials on animals discussing possible translation to children.
Collapse
Affiliation(s)
- Paweł Józefczuk
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland.
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland; Human Biome Institute, Gdansk, Warsaw, Poland
| | - Aleksandra Minkowska
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| |
Collapse
|
2
|
Hong T, Wang R, Wang X, Yang S, Wang W, Gao Q, Zhang X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front Immunol 2021; 12:644982. [PMID: 33815399 PMCID: PMC8010685 DOI: 10.3389/fimmu.2021.644982] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Kumari R, Palaniyandi S, Strattan E, Hildebrandt GC. Microbiome: an emerging new frontier in graft‑versus‑host disease. Inflamm Res 2020; 70:1-5. [PMID: 33185704 PMCID: PMC7661320 DOI: 10.1007/s00011-020-01419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-093 USA
| | - Gerhard C. Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-093 USA
| |
Collapse
|
4
|
Parco S, Benericetti G, Vascotto F, Palmisciano G. Microbiome and diversity indices during blood stem cells transplantation - new perspectives? Cent Eur J Public Health 2020; 27:335-339. [PMID: 31951695 DOI: 10.21101/cejph.a5393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The human body is colonized by bacteria, fungi and viruses. Resident commensal bacteria are a fundamental line of resistance to colonization by exogenous microbes. They actively regulate the production of nutrients by the host through a negative feedback mechanism, in order to prevent the availability of nutrients for potential pathogens. While only a small fraction of these microorganism may be pathogenic, the relationship between host and commensal microbiome is now studied as a whole, impacting several aspects of the host biology. Some studies have made clear the progresses in examining the role of microbiome on transplants and graft versus host disease (GVHD) severity and its pathogenesis: the risk of complications from allogenic hematopoietic stem cells transplantation (HSCT) is greater with the highest mortality if a patient has a lower bacterial diversity in the gut prior to the transplantation process beginning. Microbiota-associated molecular patterns are directly recognized by pathogen recognition receptors. The development of molecular methods has greatly expanded our knowledge of the composition and function of the microbiome in health and disease, shortening the response times vs. microbiological culture tests. The gut flora can make the difference when it comes to allo-HSCT. The aim of the study was to monitor microbiome of 10 children during allo-HSCT. METHODS Oral specimens and gut faecal microbiome (100 grams) samples were collected at 2, 16, 24 days. The samples were analysed by polymerase chain reaction and primary sequencing was done. To calculate the biodiversity of microbiome the Shannon index and the Observed species index were chosen. RESULTS Our study suggests some differences in the diversity indices (DIs) in 5 children affected by GVHD vs. not affected. The DIs in oral and faecal specimens show in all patients a diminution in the post-transplant phase with an improvement in species diversity after 16 days from the transplant. The Observed species index in faeces specimens after 16 days was higher in patients which had not GVHD; moreover, patients with GVHD showed a deterioration at 24 days. Oral specimens after 24 days showed a parallel trend in the two groups. The Shannon index shows a downward trend in faeces specimens of the children with GVHD at 24 days; the children without GVHD recover a good trend of entropy. Oral specimens at 24 days show low entropy in the two groups. Very aggressive bacterial species as Cronobacter and Routella in the faeces specimens of a child had not serious consequences for disease status: Cronobacter were not present 24 days after transplantation. CONCLUSIONS The data show the microbial metabolome could have an impact on patients with GVHD vs. no GVHD. A better understanding of the role of the oral and gut microbiome in GVHD can give directions to move towards the development of innovative approaches for preventing GVHD following allo-HCT, reducing also antibiotic therapy.
Collapse
Affiliation(s)
- Sergio Parco
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Giulia Benericetti
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Fulvia Vascotto
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Giuseppina Palmisciano
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| |
Collapse
|
5
|
Rivillas-Reyes JF, Hernández-Durán EF, Morales-Manrique JL, Rivillas MP, Lozano-Marquez E, Lozano-Marquez H. Inducción de tolerancia por vía oral en trasplante de órganos y tejidos. Revisión de la Literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n1.72108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La tolerancia oral es la supresión de la respuesta inmune a antígenos administrados con anterioridad por vía oral; su inducción tiene el propósito de evitar el uso de fármacos inmunosupresores, los cuales, dado que son poco específicos a antígenos, vuelven al huésped más susceptible de contraer infecciones y desarrollar neoplasias.Objetivos. Realizar una revisión de la literatura sobre los referentes teóricos más relevantes de la inducción de a tolerancia oral en lo que respecta al trasplante de órganos y tejidos para demostrar que el uso de esta alternativa terapéutica es viable en pacientes trasplantados.Materiales y métodos. Se realizó una revisión de la literatura en PubMed, MEDLINE, LILACS y Embase mediante la siguiente estrategia de búsqueda: periodo de publicación: sin límites; idiomas: Inglés y Español; tipo de artículos: estudios caso-control, revisiones sistemáticas y de la literatura; términos de búsqueda: “T-Lymphocytes, Regulatory”, “Autoimmunity”, Immunosuppression”, “Immune system” and “Immune Tolerance”, y sus equivalentes en español.Resultados. La búsqueda inicial arrojó 719 registros, sin embargo solo 99 abordaban la inducción de la tolerancia oral. Una vez los registros duplicados y los artículos sin acceso a texto completo fueron removidos, se incluyeron 72 estudios en la revisión.Conclusiones. La administración oral de antígenos es una opción efectiva para inducir tolerancia inmunológica en pacientes trasplantados (modelos murinos), pues elimina los efectos adversos que conlleva la terapia inmunosupresora actualmente utilizada.
Collapse
|
6
|
Bekker V, Zwittink RD, Knetsch CW, Sanders IM, Berghuis D, Heidt PJ, Vossen JM, de Vos WM, Belzer C, Bredius RG, van‘t Hof PJ, Lankester AC, Kuijper EJ. Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1164-1171. [DOI: 10.1016/j.bbmt.2019.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/31/2019] [Indexed: 01/17/2023]
|
7
|
Abstract
Graft-versus-host disease (GvHD) is a common complication of hematopoietic cell transplantation that negatively impacts quality of life in recipients and can be fatal. Animal experiments and human studies provide compelling evidence that the gut microbiota is associated with risk of GvHD, but the nature of this relationship remains unclear. If the gut microbiota is a driver of GvHD pathogenesis, then manipulation of the gut microbiota offers one promising avenue for preventing or treating this common condition, and antibiotic stewardship efforts in transplantation may help preserve the indigenous microbiota and modulate immune responses to benefit the host.
Collapse
|
8
|
Kumari R, Palaniyandi S, Hildebrandt GC. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 2019; 64:669-677. [PMID: 30523482 DOI: 10.1007/s10620-018-5369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Gerhard Carl Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA. .,Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
9
|
|
10
|
Toubai T, Tamaki H, Peltier DC, Rossi C, Oravecz-Wilson K, Liu C, Zajac C, Wu J, Sun Y, Fujiwara H, Henig I, Kim S, Lombard DB, Reddy P. Mitochondrial Deacetylase SIRT3 Plays an Important Role in Donor T Cell Responses after Experimental Allogeneic Hematopoietic Transplantation. THE JOURNAL OF IMMUNOLOGY 2018; 201:3443-3455. [PMID: 30389773 DOI: 10.4049/jimmunol.1800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) through its graft-versus-tumor (GVT) effects is a curative therapy against many hematological malignancies. However, GVT is linked to harmful graft-versus-host disease (GVHD) after allo-HCT. Both GVT and GVHD require allogeneic T cell responses, which is an energetically costly process that causes oxidative stress. Sirtuin 3 (SIRT3), a mitochondrial histone deacetylase (HDAC), plays an important role in cellular processes through inhibition of reactive oxygen species (ROS). Nonmitochondrial class of HDACs regulate T cell responses, but the role of mitochondrial HDACs, specifically SIRT3, on donor T cell responses after allo-HCT remains unknown. In this study, we report that SIRT3-deficient (SIRT3-/-) donor T cells cause reduced GVHD severity in multiple clinically relevant murine models. The GVHD protective effect of allogeneic SIRT3-/- T cells was associated with a reduction in their activation, reduced CXCR3 expression, and no significant impact on cytokine secretion or cytotoxic functions. Intriguingly, the GVHD protective effect of SIRT3-/- T cells was associated with a reduction in ROS production, which is contrary to the effect of SIRT3 deficiency on ROS production in other cells/tissues and likely a consequence of their deficient activation. Notably, the reduction in GVHD in the gastrointestinal tract was not associated with a substantial reduction in the GVT effect. Collectively, these data reveal that SIRT3 activity promotes allogeneic donor T cell responses and ROS production without altering T cell cytokine or cytolytic functions and identify SIRT3 as a novel target on donor T cells to improve outcomes after allo-HCT.
Collapse
Affiliation(s)
- Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8131, Japan
| | - Daniel C Peltier
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Corinne Rossi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109.,Department of Pediatric Hematology and Oncology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Katherine Oravecz-Wilson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, North Bergen, NJ 08903; and
| | - Cynthia Zajac
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Julia Wu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Yaping Sun
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Hideaki Fujiwara
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Israel Henig
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Stephanie Kim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109; .,Department of Pediatric Hematology and Oncology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
11
|
Golob JL, Pergam SA, Srinivasan S, Fiedler TL, Liu C, Garcia K, Mielcarek M, Ko D, Aker S, Marquis S, Loeffelholz T, Plantinga A, Wu MC, Celustka K, Morrison A, Woodfield M, Fredricks DN. Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation. Clin Infect Dis 2018; 65:1984-1991. [PMID: 29020185 PMCID: PMC5850019 DOI: 10.1093/cid/cix699] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is common after allogeneic hematopoietic cell transplantation (HCT). Risk for death from GVHD has been associated with low bacterial diversity in the stool microbiota early after transplant; however, the specific species associated with GVHD risk remain poorly defined. Methods We prospectively collected serial weekly stool samples from 66 patients who underwent HCT, starting pre-transplantation and continuing weekly until 100 days post-transplant, a total of 694 observations in HCT recipients. We used 16S rRNA gene polymerase chain reaction with degenerate primers, followed by high-throughput sequencing to assess the relative abundance of sequence reads from bacterial taxa in stool samples over time. Results The gut microbiota was highly dynamic in HCT recipients, with loss and appearance of taxa common on short time scales. As in prior studies, GVHD was associated with lower alpha diversity of the stool microbiota. At neutrophil recovery post-HCT, the presence of oral Actinobacteria and oral Firmicutes in stool was positively correlated with subsequent GVHD; Lachnospiraceae were negatively correlated. A gradient of bacterial species (difference of the sum of the relative abundance of positive correlates minus the sum of the relative abundance of negative correlates) was most predictive (receiver operator characteristic area under the curve of 0.83) of subsequent severe acute GVHD. Conclusions The stool microbiota around the time of neutrophil recovery post-HCT is predictive of subsequent development of severe acute GVHD in this study.
Collapse
Affiliation(s)
- Jonathan L Golob
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Congzhou Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Kristina Garcia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Marco Mielcarek
- Clinical Research Division, Fred Hutchinson Cancer Institute.,Medicine
| | - Daisy Ko
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Sarah Aker
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Sara Marquis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Tillie Loeffelholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | | | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Institute
| | - Kevin Celustka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Alex Morrison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Maresa Woodfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington.,Department of Microbiology, University of Washington, Seattle
| |
Collapse
|
12
|
Advances in the understanding and management of mucositis during stem cell transplantation. Curr Opin Support Palliat Care 2018; 11:341-346. [PMID: 28984677 DOI: 10.1097/spc.0000000000000310] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Mucositis is a severe and common side effect of anticancer treatments, with an incidence of between 40 and 80% depending on the cytotoxic regimen used. The most profound mucositis burden is experienced during conditioning regimens for hematopoietic stem cell transplant (HSCT), where the use of highly mucotoxic agents with or without total body irradiation leads to serious damage throughout the alimentary tract. Currently, the assessment and management of both oral and gastrointestinal mucositis lack authoritative guideline, with recommendations only achieved in narrow clinical scenarios. This review provides a brief overview of current management guidelines for mucositis in both adult and pediatric patients receiving HSCT, highlights recent advances in mucositis prevention and discusses future research avenues. RECENT FINDINGS The Multinational Association of Supportive Care in Cancer and International Society for Oral Oncology (MASCC/ISOO) guidelines for the prevention of mucositis in HSCT are scarce, with low level laser therapy (photobiomodulation) and palifermin only recommended for oral mucositis. Loperamide and octreotide remain gold-standard for the treatment of diarrhea, despite poor efficacy. Although several interventions have been trialled in pediatric cohorts, no recommendations currently exist for children receiving high-dose chemotherapy or total body irradiation for HSCT. SUMMARY HSCT continues to be associated with mucositis, which impacts on patients' ability and willingness to receive engraftment, and worsens clinical outcome. Research into the prevention and treatment of mucositis in this setting remains limited, with an overwhelming amount of small, single-center studies that fail to achieve a sufficient level of evidence that warrant recommendation(s). As such, our ability to manage mucotoxic side effects of high-dose chemotherapy and irradiation is limited, particularly in children.
Collapse
|
13
|
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered to be the strongest curative immunotherapy for various malignancies (primarily, but not limited to, haematologic malignancies). However, application of allo-HSCT is limited owing to its life-threatening major complications, such as graft-versus-host disease (GVHD), relapse and infections. Recent advances in large-scale DNA sequencing technology have facilitated rapid identification of the microorganisms that make up the microbiota and evaluation of their interactions with host immunity in various diseases, including cancer. This has resulted in renewed interest regarding the role of the intestinal flora in patients with haematopoietic malignancies who have received an allo-HSCT and in whether the microbiota affects clinical outcomes, including GVHD, relapse, infections and transplant-related mortality. In this Review, we discuss the potential role of intestinal microbiota in these major complications after allo-HSCT, summarize clinical trials evaluating the microbiota in patients who have received allo-HSCT and discuss how further studies of the microbiota could inform the development of strategies that improve outcomes of allo-HSCT.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Medical College of Cornell University, New York, New York, USA
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
15
|
Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone Marrow Transplant 2017; 52:1643-1650. [PMID: 28967895 DOI: 10.1038/bmt.2017.200] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that host-microbiota interactions influence GvHD risk following allogeneic hematopoietic stem cell transplant. However, little is known about the influence of the transplant recipient's pre-conditioning microbiota nor the influence of the transplant donor's microbiota. Our study examines associations between acute gastrointestinal GvHD (agGvHD) and 16S rRNA fecal bacterial profiles in a prospective cohort of N=57 recipients before preparative conditioning, as well as N=22 of their paired HLA-matched sibling donors. On average, recipients had lower fecal bacterial diversity (P=0.0002) and different phylogenetic membership (UniFrac P=0.001) than the healthy transplant donors. Recipients with lower phylogenetic diversity had higher overall mortality rates (hazard ratio=0.37, P=0.008), but no statistically significant difference in agGvHD risk. In contrast, high bacterial donor diversity was associated with decreased agGvHD risk (odds ratio=0.12, P=0.038). Further investigation is warranted as to whether selection of hematopoietic stem cell transplant donors with high gut microbiota diversity and/or other specific compositional attributes may reduce agGvHD incidence, and by what mechanisms.
Collapse
|
16
|
Peric Z, Vranjes VR, Durakovic N, Desnica L, Marekovic I, Serventi-Seiwerth R, Nemet D, Bilinski J, Basak G, Vrhovac R. Gut Colonization by Multidrug-Resistant Gram-Negative Bacteria Is an Independent Risk Factor for Development of Intestinal Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:1221-1222. [DOI: 10.1016/j.bbmt.2017.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
17
|
Teshima T, Reddy P, Zeiser R. Reprint of: Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2016; 22:S3-8. [PMID: 26899274 DOI: 10.1016/j.bbmt.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
18
|
Magenau J, Runaas L, Reddy P. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol 2016; 173:190-205. [PMID: 27019012 DOI: 10.1111/bjh.13959] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HCT) is a potent immunotherapy with curative potential for several haematological disorders. Overcoming the immunological barrier of acute graft-versus-host disease (GVHD) remains a fundamental impediment to expanding the efficacy of HCT. GVHD reflects a complex pathological interaction between the innate and adaptive immune systems of the host and donor. Over the past decade there has been a tremendous advancement in our understanding of the cellular and molecular underpinnings of this devastating disease. In this review, we cover several recently appreciated facets of GVHD pathogenesis including novel extracellular mediators of inflammation, immune subsets, intracellular signal transduction, post-translation modifications and epigenetic regulation. We begin to develop general themes regarding the immunological pathways in GVHD pathogenesis, discuss critical outstanding questions, and explore new avenues for GVHD treatment and prevention.
Collapse
Affiliation(s)
- John Magenau
- Blood and Marrow Transplant Program, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lyndsey Runaas
- Blood and Marrow Transplant Program, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- Blood and Marrow Transplant Program, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Teshima T, Reddy P, Zeiser R. Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2015; 22:11-6. [PMID: 26453971 DOI: 10.1016/j.bbmt.2015.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
20
|
Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, Turroni S, Centanni M, Severgnini M, Peano C, de Bellis G, Basaglia G, Gotti R, Masetti R, Pession A, Brigidi P, Candela M. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant 2015; 50:992-8. [PMID: 25893458 DOI: 10.1038/bmt.2015.16] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/27/2022]
Abstract
Acute GvHD (aGvHD) is the main complication of hematopoietic SCT (HSCT) during the treatment of hematological disorders. We carried out the first longitudinal study to follow the gut microbiota trajectory, from both the phylogenetic and functional points of view, in pediatric patients undergoing HSCT. Gut microbiota trajectories and short-chain fatty acid production profiles were followed starting from before HSCT and through the 3-4 months after transplant in children developing and not developing aGvHD. According to our findings, HSCT procedures temporarily cause a structural and functional disruption of the gut microbial ecosystem, describing a trajectory of recovery during the following 100 days. The onset of aGvHD is associated with specific gut microbiota signatures both along the course of gut microbiota reconstruction immediately after transplant and, most interestingly, prior to HSCT. Indeed, in pre-HSCT samples, non-aGvHD patients showed higher abundances of propionate-producing Bacteroidetes, highly adaptable microbiome mutualists that showed to persist during the HSCT-induced ecosystem disruption. Our data indicate that structure and temporal dynamics of the gut microbial ecosystem can be a relevant factor for the success of HSCT and opens the perspective to the manipulation of the pre-HSCT gut microbiota configuration to favor mutualistic persisters with immunomodulatory properties in the gut.
Collapse
Affiliation(s)
- E Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - D Zama
- Pediatric Oncology and Haematology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - C Nastasi
- Pediatric Oncology and Haematology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - C Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - J Fiori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - S Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - S Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M Centanni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - C Peano
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - G de Bellis
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - G Basaglia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Masetti
- Pediatric Oncology and Haematology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - A Pession
- Pediatric Oncology and Haematology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - P Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Shono Y, Docampo MD, Peled JU, Perobelli SM, Jenq RR. Intestinal microbiota-related effects on graft-versus-host disease. Int J Hematol 2015; 101:428-37. [PMID: 25812838 DOI: 10.1007/s12185-015-1781-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pretransplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal microbiota manipulation that might be advantageous in decreasing allo-HSCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,
| | | | | | | | | |
Collapse
|
22
|
Sporrer D, Gessner A, Hehlgans T, Oefner PJ, Holler E. The Microbiome and Allogeneic Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Docampo MD, Auletta JJ, Jenq RR. Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biol Blood Marrow Transplant 2015; 21:1360-6. [PMID: 25708215 DOI: 10.1016/j.bbmt.2015.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has many critical roles in maintaining gastrointestinal epithelial and gastrointestinal systemic immune homeostasis. This review provides insight into how allogeneic hematopoietic cell transplantation (HCT) and its associated complications and supportive care therapies affect the microbiota. Additionally, the review discusses how preservation and restoration of the microbiota might be advantageous in decreasing HCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology, Weill Cornell Graduate School of Medical Sciences, New York, New York.
| | - Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
24
|
Abstract
New insights gained through the use of state-of-the-art technologies, including next-generation sequencing, are starting to reveal that the association between the gastrointestinal tract and the resident mycobiota (fungal community) is complex and multifaceted, in which fungi are active participants influencing health and disease. Characterizing the human mycobiome (the fungi and their genome) in healthy individuals showed that the gastrointestinal tract contains 66 fungal genera and 184 fungal species, with Candida as the dominant fungal genera. Although fungi have been associated with a number of gastrointestinal diseases, characterization of the mycobiome has mainly been focused on patients with IBD and graft-versus-host disease. In this Review, we summarize the findings from studies investigating the relationship between the gut mycobiota and gastrointestinal diseases, which indicate that fungi contribute to the aggravation of the inflammatory response, leading to increased disease severity. A model explaining the mechanisms underlying the role of the mycobiota in gastrointestinal diseases is also presented. Our understanding of the contribution of the mycobiota to health and disease is still in its infancy and leaves a number of questions to be addressed. Answering these questions might lead to novel approaches to prevent and/or manage acute as well as chronic gastrointestinal disease.
Collapse
|
25
|
Bartman C, Chong AS, Alegre ML. The influence of the microbiota on the immune response to transplantation. Curr Opin Organ Transplant 2015; 20:1-7. [PMID: 25563985 PMCID: PMC4423793 DOI: 10.1097/mot.0000000000000150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW In the past decade, appreciation of the important effects of commensal microbes on immunity has grown exponentially. The effect of the microbiota on transplantation has only recently begun to be explored; however, our understanding of the mechanistic details of host-microbe interactions is still lacking. RECENT FINDINGS It has become clear that transplantation is associated with changes in the microbiota in many different settings, although what clinical events and therapeutic interventions contribute to these changes remains to be parsed out. Research groups have begun to identify associations between specific communities of organisms and transplant outcomes, but it remains to be established whether microbial changes precede or follow transplant rejection episodes. Finally, results from continuing exploration of basic mechanisms by which microbial communities affect innate and adaptive immunity in various animal models of disease continue to inform research on the microbiota's effects on immune responses against transplanted organs. SUMMARY Commensal microbes may alter immune responses to organ transplantation, but direct experiments are only beginning in the field to identify species and immune pathways responsible for these putative effects.
Collapse
Affiliation(s)
- Caroline Bartman
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia PA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| | - Anita S. Chong
- Department of Surgery, Section of Transplantation, The University of Chicago
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago
| |
Collapse
|
26
|
|
27
|
Next generation treatment of acute graft-versus-host disease. Leukemia 2014; 28:2283-91. [PMID: 24938648 DOI: 10.1038/leu.2014.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023]
Abstract
Despite rapid increase in the utilization of allogeneic hematopoietic stem cell transplantation, non-relapse mortality and sequela from acute graft-versus-host disease (GVHD) remain principle barriers. GVHD involves complex interactions between innate and adaptive immunity, culminating in tissue damage by inflammatory mediators and cellular effectors. Recently, our understanding of the molecular intricacies of GVHD has grown tremendously. New insights into the roles played by novel cytokines, chemokines, intracellular signaling pathways, epigenetics and post-translational modifications of proteins in GVHD biology provide numerous targets that might be therapeutically exploited. This review highlights recent advances and identifies opportunities for reshaping contemporary GVHD therapeutics.
Collapse
|
28
|
Alegre ML, Mannon RB, Mannon PJ. The microbiota, the immune system and the allograft. Am J Transplant 2014; 14:1236-48. [PMID: 24840316 PMCID: PMC4423796 DOI: 10.1111/ajt.12760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023]
Abstract
The microbiota represents the complex collections of microbial communities that colonize a host. In health, the microbiota is essential for metabolism, protection against pathogens and maturation of the immune system. In return, the immune system determines the composition of the microbiota. Altered microbial composition (dysbiosis) has been correlated with a number of diseases in humans. The tight reciprocal immune/microbial interactions complicate determining whether dysbiosis is a cause and/or a consequence of immune dysregulation and disease initiation or progression. However, a number of studies in germ-free and antibiotic-treated animal models support causal roles for intestinal bacteria in disease susceptibility. The role of the microbiota in transplant recipients is only starting to be investigated and its study is further complicated by putative contributions of both recipient and donor microbiota. Moreover, both flora may be affected directly or indirectly by immunosuppressive drugs and antimicrobial prophylaxis taken by transplant patients, as well as by inflammatory processes secondary to ischemia/reperfusion and allorecognition, and the underlying cause of end-organ failure. Whether the ensuing dysbiosis affects alloresponses and whether therapies aimed at correcting dysbiosis should be considered in transplant patients constitutes an exciting new field of research.
Collapse
Affiliation(s)
| | - Roslyn B. Mannon
- Department of Medicine, The University of Alabama at Birmingham, AL
| | - Peter J. Mannon
- Department of Medicine, The University of Alabama at Birmingham, AL
| |
Collapse
|